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PREFACE

The theory and practice of time-series analysis and forecasting has devel-
oped rapidly over the last several years. One of the better known short-term
forecasting methods is often referred to as univariate Box-Jenkins analysis,
or ARIMA analysis. Several years ago I introduced this method into my
undergraduate course in model building and forecasting. I searched in vain
for a text that presented the concepts at a level accessible to readers with a
modest background in statistical theory and that also showed clearly how
the method could be applied to a wide variety of real data sets. That
fruitless search became my motivation for writing this text.

The purposes of this text are (1) to present the concepts of univariate
Box-Jenkins/ARIMA analysis in a manner that is friendly to the reader
lacking a sophisticated background in mathematical statistics, and (2) to
help the reader learn the art of ARIMA modeling by means of detailed case
studies. Part 1 (Chapters 1-11) presents the essential concepts underlying
the method. Part II (Chapter 12 and Cases 1-15) contains practical rules to
guide the analyst, along with case studies showing how the technique is
applied.

This book can be used as a basic or supplementary text in graduate
courses in time-series analysis and forecasting in MBA programs and in
departments of economics, engineering, operations research, or applied
statistics. It can serve as a basic text in similar advanced undergraduate
courses. Practicing forecasters in business, industry, and government should
find the text a helpful guide to the proper construction of ARIMA forecast-
ing models.

The theory is presented at a relatively elementary level. Only a one-
semester course in statistical methods is required. The reader should know
the fundamentals of probability, estimation, and hypothesis testing, espe-
cially the use of the r-distribution and the chi-squared distribution. Some
knowledge of regression methods is also helpful. Proofs do not appear in the
text, although some results are derived; most technical matters are relegated
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to appendixes. The reader well-grounded in mathematical statistics will find
the discussion of the theory to be quite elementary. The reader with a
minimal background in mathematical statistics (at whom the book is aimed)
should find the theoretical material to be sufficiently challenging and a
helpful stepping-stone to more advanced literature.

The 15 case studies in Part II use real data to show in detail how the
univariate Box-Jenkins method is applied. They illustrate the varieties of
models that can occur and the problems that arise in practice. The practical
rules summarized in Chapter 12 are emphasized and illustrated throughout
the case studies. The reader who becomes thoroughly familiar with the case
studies should be well-prepared to use the univariate Box-Jenkins method.

The case studies move from easier to more challenging ones. They may
be read as a whole following completion of the first 12 chapters, or some of
them may be read following the reading of selected chapters. Here is a
suggested schedule:

1. After Chapters 1-4, read Cases 1-4.
2. After Chapter 6, review Cases 1-4.
3. After Chapter 7, read Cases 5-8.

4. After Chapter 9, review Cases 1-8.
5. After Chapter 11, read Cases 9-15.

The material in this text is based on the work of many individuals, but
especially that of George E. P. Box and Gwilym M. Jenkins. I am deeply
indebted to an anonymous reviewer whose painstaking comments on several
drafts led to numerous improvements in both substance and style; any
remaining errors of fact or judgment are my own. I was also fortunate in
having the editorial guidance and encouragement of Beatrice Shube and
Christina Mikulak during this project. Rich Lochrie influenced my treat-
ment of the case studies. My colleagues Underwood Dudley and John
Morrill were always patient with my questions. Ralph Gray's constant
support was invaluable. Rande Holton, Mike Dieckmann, and Debbie
Peterman at the DePauw University Computer Center were exceptionally
helpful. I have been fortunate in having many students who provided
challenging questions, criticism, data, preliminary data analysis, references,
and programming assistance, but nine individuals deserve special mention:
Carroll Bottum, Jim Coons, Kester Fong, Ed Holub, David Martin, Fred
Miller, Barry Nelson, John Tedstrom, and Regina Watson. Lucy Field,
Louise Hope, and Vijaya Shetty typed portions of the manuscript; Charity
Pankratz deserves an honorary degree, Doctor of Humane Typing. And 1
thank my children for finally realizing that I will not be able to retire next
year just because I have written a book.
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All data analysis presented in this text was carried out on a VAX 11-780
at the DePauw University Computer Center using an interactive program.
Inquiries about the program should be addressed to me at DePauw Univer-
sity, Greencastle, Indiana 46135.

ALAN PANKRATZ

Greencastle, Indiana
April 1983
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1

OVERVIEW

1.1 Planning and forecasting

In December 1981 I made plans to drive to Chicago with my family to visit
relatives. The day before we intended to leave, the weather service issued a
winter storm warning for that night and the following day. We decided to
take a train rather than risk driving in a blizzard. As it turned out, there was
a bad storm; but I was able to sleep and read (though not at the same time)
on the train instead of developing a tension headache from driving on icy.
snow-filled roads.

The weather forecast (highly accurate in this instance) was clearly an
important factor in our personal planning and decision making. Forecasting
also plays a crucial role in business, industry, government, and institutional
planning because many important decisions depend on the anticipated
future values of certain vanables. Let us consider three more examples of
how forecasting can aid in planning.

1. A business firm manufactures computerized television games for
retail sale. If the firm does not manufacture and keep in inventory enough
units of its product to meet demand, it could lose sales to a competitor and
thus have lower profits. On the other hand, keeping an inventory is costly. If
the inventory of finished goods is too large, the firm will have higher
carrying costs and lower profits than otherwise. This firm can maximize
profits (other things equal) by properly balancing the benefits of holding
inventory (avoiding lost sales) against the costs (interest charges). Clearly,

3



4 Overview

the inventory level the firm should aim for depends partly on the antic-
ipated amount of future sales. Unfortunately, future sales can rarely be
known with certainty so decisions about production and inventory levels
must be based on sales forecasts.

2. A nonprofit organization provides temporary room and board for
indigent transients in a large city in the northern part of the United States.
The number of individuals requesting aid each month follows a complex
seasonal pattern. Cold weather drives some potentially needy individuals
out of the city to warmer climates, but it also raises the number of requests
for aid from those who remain in the city during the winter. Warmer
weather reverses this pattern. The directors of the organization could better
plan their fund-raising efforts and their ordering of food and clothing if
they had reliable forecasts of the seasonal variation in aid requests.

3. A specialty foods wholesaler knows from expenence that sales are
usually sufficient to warrant delivery runs into a given geographic region if
population density exceeds a critical minimum number. Forecasting the
exact amount of sales is not necessary for this decision. The wholesaler uses
census information about population density to choose which regions to
serve.

Forecasts can be formed in many different ways. The method chosen
depends on the purpose and importance of the forecasts as well as the costs
of the alternative forecasting methods. The food wholesaler in the example
above combines his or her experience and judgment with a few minutes
looking up census data. But the television game manufacturer might employ
a trained statistician or economist to develop sophisticated mathematical
and statistical models in an effort to achieve close control over inventory
levels.

1.2 What this book is about

As suggested by its title this book is about forecasting with single-series
(univariate) Box-Jenkins (UBJ) models.* We use the label “Box-Jenkins”
because George E. P. Box and Gwilym M. Jenkins are the two people most

*Although our focus is on forecasting, univariate Box-Jenkins analysis is often useful for
simply explaining the past behavior of a single data series, for whatever reason one may want
to do so. For example. if we discover that interest rates have historically shown a certain
scasonal pattern. we may better understand the causes and consequences of past policy
decisions made by the Open Market Committee of the Federal Reserve System. This informa-
tion may be valuable to persons having no desire to forecast interest rates.
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responsible for formalizing the procedure used in the type of analysis we
will study. They have also made important contributions to the underlying
theory and practice. The basic theory and modeling procedures presented in
this book are drawn largely from their work [1].*

We use the letters UBJ in this text to stand for “ univariate Box-Jenkins.”
UBJ models are also often referred to as ARIMA models. The acronym
ARIMA stands for Auto-Regressive Integrated Moving Average. This
terminology is explained further in Chapters 3 and 5. We use the labels
UBJ, ARIMA, and UBJ-ARIMA more or less interchangeably throughout
the book.

“Single-series” means that UBJ-ARIMA forecasts are based only on past
values of the variable being forecast. They are not based on any other data
series. Another word for single-series is ““univariate” which means “one
variable.” We use the terms single-series and univariate interchangeably.

For our purposes a model is an algebraic statement telling how one thing
is statistically related to one or more other things. An ARIMA model is an
algebraic statement telling how observations on a variable are statistically
related to past observations on the same variable. We will see an example of
an ARIMA model later in this chapter.

All statistical forecasting methods are extrapolative in nature: they in-
volve the projection of past patterns or relationships into the future. In the
case of UBJ-ARIMA forecasting we extrapolate past patterns within a
single data series into the future.

The purpose of this book is twofold. The first objective is to explain the
basic concepts underlying UBJ-ARIMA models. This is done in Part I
(Chapters 1-11). These concepts involve the application of some principles
of classical probability and statistics to time-sequenced observations in a
single data senes.

The second objective of this book is to provide enough detailed case
studies and practical rules to enable you to build UBJ-ARIMA models
properly and quickly. This is done in Part II.

Box and Jenkins propose an entire family of models, called ARIMA
models, that seems applicable to a wide variety of situations. They have also
developed a practical procedure for choosing an appropriate ARIMA model
out of this family of ARIMA models. However, selecting an appropriate
ARIMA model may not be easy. Many writers suggest that building a
proper ARIMA model is an art that requires good judgment and a lot of
experience. The practical rules and case studies in Part II are designed to
help you develop that judgment and to make your experiences with UBJ
modeling more valuable.

*All references are listed by number at the end of the book.
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In this chapter we consider some restrictions on the types of data that
can be analyzed with the UBJ method. We also summarize the Box-Jenkins
three-stage procedure for building good ARIMA models.

In Chapter 2 we present two important tools, the estimated autocorrela-
tion function and the estimated partial autocorrelation function, used in the
UBJ method to measure the statistical relationships between observations
within a single data series.

In Chapter 3 we go more deeply into the principles underlying UBJ
analysis. In Chapter 4 we summarize the characteristics of a gopod ARIMA
model and present two examples of the three-stage UBJ modeling proce-
dure.

The emphasis in Chapter 5 is on special notation used for representing
ARIMA models and on the intuitive interpretation of these models.

Chapters 6 through 11 contain more detailed discussion of the basic
concepts behind the UBJ method along with some examples.

Chapter 12 contains a list of practical rules for building UBJ-ARIMA
forecasting models. This chapter is followed by 15 case studies. The data in
the case studies are related largely to economics and business, but modeling
procedures are the same regardless of the context from which the data are
drawn.

1.3 Time-series data

In this book we are concerned with forecasting rime-series data. Time-series
data refers to observations on a variable that occur in a time sequence. We
use the symbol z, to stand for the numerical value of an observation; the
subscript ¢ refers to the time period when the observation occurs. Thus a
sequence of n observations could be represented this way: z,, z;. z3,.... 2,.

As an example of time-series data consider monthly production of
athletic shoes (in thousands) in the United States for the year 1971.* The
sequence of observations for that year is as follows:

t z, t z,

1 659 7 520
2 740 8 641
3 821 9 769
4 805 10 718
5 687 11 697
6 687 12 696

*Data from various issues of Business Statistics. U.S. Commerce Department.
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Figure 1.1 Example of time-series data: Production of athletic shoes, in thousands,
January 1971 to December 1975.
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In this example z, is the observation for January 1971, and its numerical
value is 659; z, is the observation for February 1971, and its value is 740,
and so forth.

It is useful to look at time-series data graphically. Figure 1.1 shows 60
monthly observations of production of athletic shoes in the United States
covering the period January 1971 to December 1975.

The vertical axis scale in Figure 1.1 measures thousands of pairs of shoes
produced per month. The horizontal axis is a time scale. Each asterisk is an
observation associated with both a time period (directly below the asterisk
on the horizontal axis) and a number of pairs of shoes in thousands (directly
to the left of the asterisk on the vertical axis). As we read the graph from left
to right, each asterisk represents an observation which succeeds the previous
one in time. These data are recorded at discrete intervals: the lines connect-
ing the asterisks do not represent numerical values, but merely remind us
that the asterisks occur in a certain time sequence.

1.4 Single-series (univariate) analysis

The phrase “time-series analysis” is used in several ways. Sometimes it
refers to any kind of analysis involving times-series data. At other times it is
used more narrowly to describe attempts to explain behavior of time-series
data using only past observations on the variable in question. Earlier we
referred to this latter activity as single-series or univariate analysis, and we
said that UBJ-ARIMA modeling is a type of univariate analysis.

In some types of statistical analysis the various observations within a
single data series are assumed to be statistically independent. Some readers
might recall that this is a standard assumption about the error term (and
therefore about observations on the dependent vaniable) in traditional
regression analysis. But in UBJ-ARIMA analysis we suppose that the
time-sequenced observations in a data series (..., z,_;,2,, 2,,, ... ) May
be statistically dependent. We use the statistical concept of correlation to
measure the relationships between observations within the series. In UBJ
analysis we want to examine the correlation between z at time 7 (2,) and z at
earlier time periods (z,_,, Z,_,, Z,_3, ... ). In the next chapter we show how
to calculate the correlation between observations within a single time series.

We can illustrate the idea of UBJ forecasting in a rough way using Figure
1.2. Suppose we have available 60 time-sequenced observations on a single
variable. These are represented on the left-hand side of the graph in Figure
1.2, labeled “Past”. By applying correlation analysis to these 60 observa-
tions, we build an ARIMA model. This model describes how any given
observation (z,) is related to previous observations (z,_,, z,_3, ... ). We
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4 O Observed value
X Forecast value

ooXoe,,

A ] ] | | i | | .
Y55 56 57 58 59 60 61 62 Time
Past Future
(Sixty available observations {Forecasts derived from
on 8 single series) the ARIMA model)

Build an ARIMA modei to describe
patterns in the 60 available observations

Figure 1.2 The idea of UBJ forecasting.

may use this model to forecast future values (for periods 61,62, ... ) of this
variable.

Thus, if the data series being analyzed is athletic shoe production, our
forecasts of shoe production for period 61 and thereafter are based only on
the information contained in the available (past) data on shoe production.
We make no appeal to additional information contained in other variables
such as Gross National Product, interest rates, average monthly tempera-
tures, and so forth. Instead we start with the idea that shoe production for
any given time period may be statistically related to production in earlier
periods. We then attempt 1o find a good way of stating the nature of that
statistical relationship.

1.5 When may UBJ models be used?

Short-term forecasting. UBJ-ARIMA models are especially suited to
short-term forecasting. We emphasize short-term forecasting because most
ARIMA models place heavy emphasis on the recent past rather than the
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distant past. For example, it is not unusual to see an ARIMA model where
z, is related explicitly to just the two most recent observations (z,_, and
2,_5). On the other hand, ARIMA models showing z, explicitly related to
observations very far in the past, such as z,_,, or z,_,,s are rare indeed.

This emphasis on the recent past means that long-term forecasts from
ARIMA models are less reliable than short-term forecasts. For example,
consider an ARIMA model where z, is related explicitly to the most recent
value z,_,. Let n be the last period for which data are available. To forecast
z,., (one period ahead) we use the most recent value z,. To forecast z, . ,
(two periods ahead) we want the most recent observation z,,, |, but it is not
available; we must use the forecast of z,, | in place of the observed value for
that period. Obviously our forecasts for period n + 2 and beyond are less
reliable than the forecast for period n + | since they are based on less
reliable information (i.e., forecasts rather than observations).

Data types. The UBJ method applies to either discrete data or continu-
ous data. Discrete data are measured in integers only (e.g., 1, 8, —42), never
in decimal amounts. Data that can be measured in decimal amounts (e.g.,
41, —19.87,2.4) are called continuous data.

For example, counting the number of fielding errors committed by each
major league baseball team produces discrete data: there is no such thing as
part of an error. But measuring the distance in meters from home plate
down the third-base line to the left-field wall in each baseball stadium could
produce continuous data: it is possible to measure this variable in parts of a
meter.

Although the UBJ method can handle either discrete or continuous data,
it deals only with data measured at equally spaced, discrete time intervals.
For example, consider an electronic machine that measures the pressure in a
tank continuously. A gauge attached to the machine produces a reading at
every moment in time, and a mechanical pen continuously records the
results on a moving strip of paper. Such data are not appropniate for the
UBJ method because they are measured continuously rather than at discrete
time intervals. However, if tank pressure were recorded once every hour, the
resulting data series could be analyzed with the UBJ technique.

Data measured at discrete time intervals can arise in two ways. First, a
variable may be accumulated through time and the total recorded periodi-
cally. For example, the dollar value of all sales in a tavern may be totaled at
the end of each day, while tons of steel output could be accumulated and
recorded monthly. Second, data of this type can arise when a variable is
sampled periodically. Recording tank-pressure readings once every hour (as
discussed in the last paragraph) is an example of such sampling. Or suppose
an investment analyst records the closing price of a stock at the end of each
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week. In these last two cases the variable is being sampled at an instant in
time rather than being accumulated through time.

UBJ-ARIMA models are particularly useful for forecasting data series
that contain seasonal (or other periodic) vanation, including those with
shifting seasonal patterns. Figure 1.3 is an example of seasonal data. It
shows monthly cigar consumption (withdrawals from stock) in the United
States from 1969 through 1976.* These data repeat a pattern from year to
year. For instance, October tends to be associated with a high value and
December with a low value during each year. With seasonal data any given
observation is similar to other observations in the same season during
different years. In the cigar-consumption series, October is similar to other
Octobers, February is like other Februarys, and so on. We discuss seasonal data
and models in detail in Chapter 11

Sample size. Building an ARIMA model requires an adequate sample
size. Box and Jenkins [1, p. 33} suggest that about 50 observations is the
minimum required number. Some analysts may occasionally use a smaller
sample size, interpreting the results with caution. A large sample size is
especially desirable when working with seasonal data.

Stationary series. The UBJ-ARIMA method applies only to stationary
data series. A stationary time series has a mean, variance, and autocorrela-
tion function that are essentially constant through time.¥ (We introduce the
idea of an autocorrelation function in Chapter 2. An autocorrelation func-
tion is one way of measuring how the observations within a single data
series are related to each other.) In this section we illustrate the idea of a
constant mean and variance.

The stationarity assumption simplifies the theory underlying UBJ models
and helps ensure that we can get useful estimates of parameters from a
moderate number of observations. For example, with 50 observations we
can get a fairly good estimate of the true mean underlying a data series if
there is only one mean. But if the variable in question has a different mean
each time period, we could not get useful estimates of each mean since we
typically have only one observation per time period.

The mean of a stationary series indicates the overall level of the series.
We estimate the true mean () underlying a series with the sample mean

"Data from various issues of the Survev of Current Bustness, U.S. Commerce Department.

* The cigar series is analyzed in detail in Case 13.

*The formal definition of stationarity is more complicated than this, but the definition given
here is adequate for present purposes. We discuss stationarity more formally in Chapter 3.
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(7). The sample mean of a time series is calculated just as any ordinary
arithmetic mean. That is, sum the observations for each time period (z,) and
divide by the total number of observations (7n):

7 =

3=

L, (1)
=1

Consider the data in Figure 1.4. By summing the observations and
dividing by 60 (the number of observations) we find the mean of this time
series to be 100:

s=ly, - L
= nz:z,-60(102+99+ 101 + - -- + 98)
= -1 (6000)
60
= 100

If a time series is stationary then the mean of any major subset of the
series does not differ significantly from the mean of any other major subset
of the series. The series in Figure 1.4 appears to have a mean that is
constant through time. For example, the first half of the data set (observa-
tions 1 through 30) seems to have about the same mean as the second half of
the data set (observations 31 through 60). We should expect the mean to
fluctuate somewhat over brief time spans because of sampling variation. In
later chapters we consider two methods besides visual inspection for de-
termining if the mean of a series is stationary.

We use the sample variance s? of a time series to estimate the true
underlying variance 6. As usual the variance measures the dispersion of the
observations around the mean. The sample variance of a time series is
calculated just as any variance. That is, find the deviation of each observa-
tion from the mean, square each deviation, sum the deviations, and divide
by the total number of observations (n):

2=1% -2y (12)

Clearly, if the z, observations gather closely around 2, then s? will be
relatively small since each individual squared deviation (z, — z)* will be
small.

Consider again the data in Figure 1.4. If we insert the previously
calculated mean (100) into equation (1.2), find the deviation (z, — 7) of
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each observation from the mean, square and sum these deviations and
divide by 60, we find that the variance of this series (rounded) is 7.97:

. =\2
s_:=~’;2(z,—.z)7

L
60

[(102 - 100) + (99 - 100)? + (101 = 100)* + --- + (98 — 100)’]

=%(4+1+1+~--+4)

= 7.97

If a data series is stationary then the variance of any major subset of the
series will differ from the variance of any other major subset only by
chance. The variance of the data in Figure 1.4 does not appear to change
markedly through time. Of course, we should expect the variance to fluctuate
somewhat over short time spans just because of sampling error. In Chapter
7 we refer to a more rigorous method for determining if the variance of a
series is stationary, but visual inspection is commonly used in practice.

The stationarity requirement may seem quite restrictive. However, most
nonstationary series that arise in practice can be transformed into stationary
series through relatively simple operations. We introduce some useful
transformations to achieve stationarity in Chapters 2 and 7. These transfor-
mations are illustrated in detail in the case studies.

1.6 The Box-Jenkins modeling procedure

The last two sentences at the end of Section 1.4 are important because they
summarize the general nature of the UBJ-ARIMA method. Because all
aspects of UBJ analysis are related in some way to the ideas contained in
those sentences, we repeat the ideas here for emphasis. (i) The observations
in a time series may be statistically related to other observations in the same
series. (ii) Our goal in UBJ analysis is to find a good way of stating that
statistical relationship. That is, we want to find a good model that describes
how the observations in a single time series are related to each other.

An ARIMA model is an algebraic statement showing how a time-series
variable (z,) is related to its own past values (z,_y, 2,3, 2,_3,... ). We
discuss the algebraic form of ARIMA models in detail starting in Chapter 3,
but it will be helpful to look at one example now. Consider the algebraic



The Box-Jenkins modeling procedure 17
expression
2,=C+ ¢,z,_, + a, (1.3)

Equation (1.3) is an example of an ARIMA model. It says that z, is related
to its own immediately past value (z,_,). C is a constant term. ¢, is a fixed
coefficient whose value determines the relationship between z, and z,_,. The
a, term is a probabilistic “shock™ element.

The terms C, ¢,2,_,, and a, are each components of z,. C is a determinis-
tic (fixed) component, ¢,z,_, is a probabilistic component since its value
depends in part on the value of z,_,, and a, is a purely probabilistic
component. Together C and ¢,2,_, represent the predictable part of z, while
a, is a residual element that cannot be predicted within the ARIMA model.
However, as discussed in Chapter 3, the a, term is assumed to have certain
statistical properties.

We have not yet defined what a “good” model 1s. In fact a satusfactory
model has many characteristics as summarized in Chapter 4 and discussed
in detail in later chapters. For now remember that a good model includes the
smallest number of estimated parameters needed to adequately fit the patierns
in the available dara.

Box and Jenkins propose a practical three-stage procedure for finding a
good model. Qur purpose here is to sketch the broad outline of the
Box-Jenkins modeling strategy; we consider the details in later chapters.
The three-stage UBJ procedure is summarized schematically in Figure 1.5.

Choose one or more ARIMA
models as candidates

{

Estimate the parameters
Stage 2: Estimation of the model (s} chosen
at Stage 1

¥

Stage 1: Identification

Check the candidate
Stage 3: Diagnostic checking model (s) for
adequacy

is model

Forecast | d
satisfactory?

Figure 1.5 Stages in the Box-Jenkins iterative approach to model building. Adapted
from Box and Jenkins [1, p. 19] by permission.
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Stage 1: identification. At the identification stage we use two graphical
devices to measure the correlation between the observations within a single
data series. These devices are called an estimated autocorrelation function
(abbreviated acf) and an estimated partial autocorrelation function (abbrevia-
ted pacf). We look at examples of these graphical tools in Chapter 2. The
estimated acf and pacf measure the statistical relationships within a data
series in a somewhat crude (statistically inefficient) way. Nevertheless, they
are helpful in giving us a feel for the patterns in the available data.

The next step at the identification stage is to summarize the statistical
relationships within the data series in a more compact way than is done by
the estimated acf and pacf. Box and Jenkins suggest a whole family of
algebraic statements (ARIMA models) from which we may choose. Equa-
tion (1.3) is an example of such a model. We will see more examples of these
mathematical statements starting in Chapter 3.

We use the estimated acf and pacf as guides to choosing one or more
ARIMA models that seem appropriate. The basic idea is this: every
ARIMA model [such as equation (1.3)] has a theoretical acf and pacf
associated with it. At the identification stage we compare the estimated acf
and pacf calculated from the available data with various theoretical acf’s and
pacf’s. We then tentatively choose the model whose theoretical acf and pacf
most closely resemble the estimated acf and pacf of the data series. Note
that we do not approach the available data with a nigid, preconceived idea
about which model we will use. Instead, we let the available data *“talk to
us” in the form of an estimated acf and pacf.

Whichever model we choose at the identification stage, we consider it
only tentatively: it is only a candidate for the final model. To choose a final
model we proceed to the next two stages and perhaps return to the
identification stage if the tentatively considered model proves inadequate.

Stage 2: estimation. At this stage we get precise estimates of the
coefficients of the model chosen at the identification stage. For example, if
we tentatively choose equation (1.3) as our model, we fit this model to the
available data series to get estimates of ¢, and C. This stage provides some
warning signals about the adequacy of our model. In particular, if the
estimated coefficients do not satisfy certain mathematical inequality condi-
tions, that model is rejected. The method for estimating the coefficients in a
model is a technical matter considered in Chapter 8. The inequality condi-
tions the estimated coefficients must satisfy are discussed in Chapter 6.

Stage 3: diagnostic checking. Box and Jenkins suggest some diagnostic
checks to help determine if an estimated model is statistically adequate. A
model that fails these diagnostic tests is rejected. Furthermore, the results at
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this stage may also indicate how a model could be improved. This leads us
back to the identification stage. We repeat the cycle of identification,
estimation, and diagnostic checking until we find a good final model. As
shown in Figure 1.5, once we find a satisfactory model we may use it to
forecast.

The iterative nature of the three-stage UBJ modeling procedure is im-
portant. The estimation and diagnostic-checking stages provide warning
signals telling us when, and how, a model should be reformulated. We
continue to reidentify, reestimate, and recheck until we find a model that is
satisfactory according to several criteria. This iterative application of the
three stages does not guarantee that we will finally arrive at the best possible
ARIMA model, but it stacks the cards in our favor.

We return to the three stages of UBJ modeling in Chapter 4 where we
consider two examples. The case studies in Part II illustrate the use of the
UBJ modeling procedure in detail.

1.7 UBJ models compared with other models

The UBJ approach has three advantages over many other traditional
single-series methods. First, the concepts associated with UBJ models are
derived from a solid foundation of classical probability theory and mathe-
matical statistics. Many other historically popular univanate methods
(though not all) are derived in an ad hoc or intuitive way.

Second, ARIMA models are a family of models, not just a single model.
Box and Jenkins have developed a strategy that guides the analyst in
choosing one or more appropriate models out of this larger family of
models.

Third, it can be shown that an appropriate ARIMA model produces
optimal univanate forecasts. That is, no other standard single-series model
can give forecasts with a smaller mean-squared forecast error (i.e., forecast-
error vanance).*

In sum, there seems to be general agreement among knowledgeable
professionals that properly built UBJ models can handle a wider variety of
situations and provide more accurate short-term forecasts than any other
standard single-series technique. However, the construction of proper UBJ
models may require more experience and computer time than some histori-
cally popular univariate methods.

*The optimal nature of ARIMA forecasts is discussed in Chapter 10.
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Single-series (univariate) models differ from multiple-senes (multivariate)
models. The latter involve a sequence of observations on at least one
variable other than the one being forecast.* Multiple-series models should
theoretically produce better forecasts than single-series models because
multiple-series forecasts are based on more information than just the past
values of the series being forecast. But some analysts argue that UBJ models
frequently approach or exceed the forecasting accuracy of multiple-series
models in practice. This seems especially true for short-term forecasts.
Cooper {4], Naylor et al. [5], and Nelson [6] discuss the accuracy of
UBJ-ARIMA models compared with multiple-senies econometric (regres-
sion and correlation) models.’

Summary

1. Box and Jenkins propose a family of algebraic models (called
ARIMA models) from which we select one that seems appropriate for
forecasting a given data series.

2. UBJ-ARIMA models are single-series or univariate forecasting mod-
els: forecasts are based only on past patterns in the senies being forecast.

3. UBJ-ARIMA models are especially suited to short-term forecasting
and to the forecasting of series containing seasonal variation, including
shifting seasonal patterns.

4. UBJ-ARIMA models are restricted to data available at discrete,
equally spaced time intervals.

5. Construction of an adequate ARIMA model requires a minimum of
about 50 observations. A large sample size is especially desirable when
seasonal variation is present.

6. The UBJ method applies only to stationary time series.

7. A stationary series has a mean, variance, and autocorrelation func-
tion that are essentially constant over time.

8. Although many nonstationary series arise in practice, most can be
transformed into stationary series.

9. In UBJ-ARIMA analysis, the observations in a single time series are
assumed to be (potentially) statistically dependent—that is, sequentially or
senially correlated.

*Box and Jenkins [1, Chapters 10 and 11] discuss a certain type of multivariate ARIMA model
which they call a transfer function. For more recent developments in multivariate time-series
analysis, see Jenkins and Alavi [2] and Tiao and Box [3].

*In Appendix 10A of Chapter 10 we discuss how ARIMA models may be used to complement
econometric models.
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10. The goal of UBJ analysis is to find an ARIMA model with the
smallest number of estimated parameters needed to fit adequately the
patterns in the available data.

11. The UBJ method for finding a good ARIMA model involves three
steps: identification, estimation, and diagnostic checking.

12. At the identification stage we tentatively select one or more
ARIMA models by looking at two graphs derived from the available data.
These graphs are called an estimated autocorrelation function (acf) and an
estimated partial autocorrelation function (pacf). We choose a model whose
associated theoretical acf and pacf look like the estimated acf and pacf
calculated from the data.

13. At the estimation stage we obtain estimates of the parameters for
the ARIMA model tentatively chosen at the identification stage.

14. At the diagnostic-checking stage we perform tests to see if the
estimated model is statistically adequate. If it is not satisfactory we return to
the identification stage to tentatively select another model.

15. A properly constructed ARIMA model produces optimal univanate
forecasts: no other standard single-series technique gives forecasts with a
smaller forecast-error vanance.

Questions and Problems

1.1 Consider the following sequence of total quarterly sales at a drug
store:

Year Quarter Sales

1963 $12,800
13,400
11,200
14,700
13,000

9,400
12,100
15,100
11,700
14,000
10,900
14,900

1964

1965

H W= b W~ bW —
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1.2

(a) Do these observations occur at equally spaced, discrete time
intervals?

(b) Did these observations result from daily sales being accumulated
and recorded periodically, or sampled and recorded periodically?

(c¢) Could these observations be used to construct an ARIMA model?
Explain.

(d) Plot these observations on a graph with time on the horizontal
axis and sales on the vertical axis.

(e) Does there appear to be a seasonal pattern in this data series? If
so, would this fact disqualify the use of an ARIMA model to forecast
future sales?

() Letz, z,,2z,,..., z, stand for the sequence of observations above.
What is the numerical value of n? Of z,? Of z,? Of z,?

What are the restrictions on the type of time-series data to which

UBJ-ARIMA analysis may be applied?

13
14
1.5
1.6

What is meant by a “stationary” time series?
Summarize the UBJ three-stage modeling procedure.
What kind of information is contained in an estimated acf?

What is the difference between a univariate time-series forecasting

model and a multivariate time-series forecasting model?

1.7

What advantages do UBJ-ARIMA models have compared with other

traditional univariate forecasting models? What disadvantages?

1.8

Consider the following time series:

t z, t z,
- 1 106 13 106
2 107 14 98
3 98 15 99
4 98 16 96
5 101 17 95
6 99 18 99
7 102 19 100
8 104 20 102
9 97 21 108
10 103 22 106
11 107 23 104

105 24 98

—
[ 38
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(a) Does this series appear to be stationary? (It may help if you plot
the series on a graph.)

() Does this series contain enough observations for you to build a
UBJ-ARIMA model from it?

{c) Calculate the mean and variance for this series.
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INTRODUCTION TO
BOX-JENKINS ANALYSIS
OF A SINGLE DATA SERIES

In the last chapter we referred to the estimated autocorrelation function
(acf) and estimated partial autocorrelation function (pacf). They are used in
UBJ analysis at the identification stage to summarize the statistical patterns
within a single time series. Qur chief task in this chapter is to learn how an
estimated acf and pacf are constructed. In Chapter 4 we show how an
estimated acf and pacf are used in building an ARIMA model.

Before examining the idea of the estimated acf and pacf we brefly
consider two other topics. First, we examine a transformation, called
differencing, that is frequently applied to time-series data to induce a
stationary mean. Second, we look at an operation, called calculation of
deviations from the mean, used to simplify the calculations performed in
UBJ-ARIMA analysis.

2.1 Differencing

We pointed out in the last chapter that UBJ-ARIMA analysis is restricted
to stationary time series. Fortunately, many nonstationary series can be
transformed into stationary ones. Thus the UBJ method can be used to
analyze even nonstationary data. We discuss nonstationary series in detail
in Chapter 7. In this section we introduce a common transformation called

24
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differencing. Differencing is a relatively simple operation that involves
calculating successive changes in the values of a data series.

Differencing is used when the mean of a series is changing over time.
Figure 2.1 shows an example of such a series. (These 52 observations are the
weekly closing price of AT & T common stock for 1979.* We analyze them
in detail in Part 11, Case 6.) Of course, it is possible to calculate a single
mean for this series. It is 57.7957, shown in Figure 2.1 as the horizontal line
running through the center of the graph. However, this single number is
misleading because major subsets of the series appear to have means
different from other major subsets. For example, the first half of the data
set lies substantially above the second half. The series is nonstationary
because its mean is not constant through time.

To difference a data series, define a new variable (w,) which is the change
in z,, that is,}

w,=2z,—2z_, t=2,3.....n 2.1)

Using the data in Figure 2.1 we get the following results when we difference
the observations:

wy, =z, — z, = 61.625 — 61 = 0.625
wy =2, =z, = 61 — 61.625 = —0.625

W, =2,—2;=64—-61=3

wey = zg; — 25, = 52.25 — 51.875 = 0.375

These results are plotted in Figure 2.2. The differencing procedure seems to
have been successful: the differenced series in Figure 2.2 appears to have a
constant mean. Note that we lost one observation: there is no z available to
subtract from z, so the differenced series has only 51 observations.

Series w, is called the first differences of z,. If the first differences do not
have a constant mean, we redefine w, as the first differences of the first
differences:

wl=(zl_zl-l)—(zl—l_21—2)’ 1=3,4,...,n (2.2)

*Data from The Wall Street Journal.
“Diffcrcncing for a series with nonstationary seasonal variation is only slightly more com-
plicated. We discuss seasonal differencing in Chapter 11.
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441 » 1 53.5
451 » 1 53. 375
451 * I 53. 375
471 & 1 53. 5
481 ™ 1 53. 75
491 » 1 54
501 » I 53. 125
S11e— 1 51875
521 = 1 52. 25

I+ 444444444440ttt crttbttbbaitttttrbbastbtbrttrsttts

Figure 2.1 Example of a time series with a nonstationary mean: Weekly closing
prices. AT & T common stock, 1979.
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TIME 1
21
31
41
SI
61
71
81
1
101
111
121
131
141
151
161
171
181
191

201
211
221
231
241
251
261
271
281
291
301
311
321
331
341
351
361
371
381
391
401
411
421
431
441
451
461
471
481
491
501
511
52l

I

AT&T STOCK PRICE
~—DIFFERENCING: 1

-—EACH VERTICAL AXIS INTERVAL = 106771
LOuW = MEAN = HIGH =
2.125 -. 171569 3

B e e s T e R R T X R N V7 YIRS

-==}———-‘—'. - 625
» -. 625
1 * 3
» - 25
vd
*J1 - 375
I« 5
»-==::::::::::——I -2
* -. 375
ﬁ\&\ . 125
I_____—& .5
f_—l -5
* -. 625
1 * . 875
* -. 25
*c::::::::?—f—-—'l -2
* 1 ~. 875
* -5
1 * .25
*"’x/ -.75
i -. 625
1 * . 625
1 =~ 1.125
.<r‘/—. -. 875
T -. 125
/J_,\ 125
* 1 -. 875
T 125
1 _» . 125
«Z -. .’325
1\.\ .375
1/* . 875
# -~ 25
»<_—1 -1.5
*» 1 - 375
=% [o]
el -1.125
I ~. 125
] o .12
—_— - 625
I - 5
1 * 625
1*\/ -. 125
1 * (o]
1 * . 125
1 L4 .25
1 * 25
— )
1 875
*1::_____‘1 -1.25
) Saad 3 . 375
B L o + B T + ++

Figure 2.2 First differences of the AT & T stock price series.
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28 Introduction to Box—Jenkins analysis of a single data series

Series w, is now called the second differences of z, because it results from
differencing z, twice. Usually, first differencing is sufficient to bring about a
stationary mean. Calculating the second differences for the series in Figure
2.1 does not seem necessary because the first differences in Figure 2.2
appear to have a constant mean. However, we show some calculations for
purposes of illustration. Since the second differences are the first differences
of the first differences, we merely apply differencing to the data in Figure
2.2:

wy=(2;-2;) = (2, - z;)
= (-0.625) — (0.625) = —1.25
we = (24 = 23) = (21, = 2,)

3.625

= (3) - (—0.625)
ws = (25— z,) — (24 — z3)

=(-025)-(3)= —325

wsy = (25, = 25)) — (251 — 255)
= (0.375) — (—1.25) = 1.625

When differencing is needed to induce a stationary mean, we construct a
new series w, that is different from the original series z,. We then build an
ARIMA model for the stationary series w,. However, usually we are
interested in forecasting the original series z, so we want an ARIMA model
for that series. Fortunately, this does not present a serious problem since w,
and z, are linked by definition (2.1) in the case of first differencing or by
definition (2.2) in the case of second differencing. In Chapter 7 and in the
case studies (Part II) we will see exactly how an ARIMA model for w,
implies an ARIMA model for z,.

A final point about differencing: a series which has been made stationary
by appropriate differencing frequently has a mean of virtually zero. For
example, the nonstationary series in Figure 2.1 has a mean of about 57.8.
But the stationary series in Figure 2.2 achieved by differencing the data in
Figure 2.]1 has a mean of about —0.2, which is obviously much closer to
zero than 57.8. This result is especially common for data in the social and
behavioral sciences.
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2.2 Deviations from the mean

When the mean of a time series is stationary (constant through time) we
may treat the mean as a deterministic (meaning fixed, or nonstochastic)
component of the series. To focus on the stochastic behavior of the senies we
express the data in deviations from the mean. That is, define a new time
senies 7, as each z, minus Z, where the sample mean Z is an estimate of the
parameter u:

z'l =z - z (2.3)

The new series (Z,) will behave exactly as the old series (z,) except that the
mean of the Z, series will equal precisely zero rather than 7. Since we know 2
we can always add it back into the Z, series after we have finished our
analysis to return to the overall level of the original senes.

Consider the stationary simulated senies in Figure 1.4. We have already
found the mean of that series to be 100. Therefore the Z, values for this
senies are calculated as follows:

5=z, —2=102-100 =2
fy=z2,—2= 99-100= -1

5=2,—2=101-100 = 1

Figure 2.3 shows the new series Z,. It is indistinguishable from the series
z, in Figure 1.4 except that it has a mean of zero. In fact, the two senes z,
and Z, have all the same statistical properties except for their means. For
example, the variances of the two series are identical (both are 7.97).

2.3 Two analytical tools: the estimated autocorrelation
function (acf) and estimated partial autocorrelation
function (pacf)

Several times we have referred to the estimated autocorrelation function
(acf) and the estimated partial autocorrelation function (pacf). These tools
are very important at the identification stage of the UBJ method. They
measure the statistical relationship between observations in a single data
series. In this section we discuss how estimated acf’s and pacf’s are con-
structed from a sample.
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30

SIMULATED SERIES
--DIFFERENCING: O

--EACH VERTICAL AXIS INTERVAL = . 229167
LOW = MEAN = HIGH =
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I*##-ﬁ-ﬁ##-ﬁ#"‘-ﬁ*-ﬁ**-ﬁ"‘*-ﬁ++++'.-*¢+######-ﬁ##**#*#-ﬁ#**-ﬁ-ﬁ-ﬁ-ﬁ VALUE
11 1 * 2
21 g< -1
31 I * 1
41 * I -3
SI * 2
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81 '::___-___-I -4
I I g~ L ]
101 L -1
111 _g—__________.ﬁ'}. 0
121 - 1 -4
131 —— 4
141 * (o)
151 * I -5
161 ' o}
171 » 1 -1
181 I * 5
191 * o}
201 n< 1 -4
211 * o}
221 % w——m———— 1 -4
231 - o}
241 I >« 3
251 * o}
261 «<1 -1
271 1 - 2
281 - 1 -2
291 » 0
301 <1 -1
311 S —— 3
321 * 1 -2
331 \» o
341 1 \‘_-i 3
351 L L 1 -3
361 e — 4
371 # em—g=————— -4
381 ___________—___—-Q 4
391 # enmzs | -1
401 1 ———— D
411 * 1 -3
421 T 2
431 1 . 3
441 * I -2
451 * 1
461 » 1 -2
471 * (o)
481 1 3
S501% 1 -&
511 b #* 5
S521 » 1 -4
531 I 3
541 .< 0
551 1 3
561 * 1 -2
571 2. 0
581 * I -3
591 S 1
&01 * 1 -2
IR T L DL T TR T R R N o S SR R S +*

Figure 2.3 The data from Figure 1.4 expressed in deviations from the mean.
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In this chapter we discuss the estimated acf and pacf primarily as tools
for summarizing and describing the patterns within a given data series. But
constructing an estimated acf and pacf is not merely an exercise in descrip-
tive statistics. As emphasized in Chapter 3, we use the estimated acf and
pacf for statistical inference. That is, we use them to infer the structure of
the true, underlying mechanism that has given rise to the available data.

We use the data displayed in Figures 1.4 and 2.3 to illustrate the
construction of an estimated acf and pacf. Remember that the data in
Figure 2.3 are the data in Figure 1.4 expressed in deviations from the mean;
these two series have identical statistical properties (except for their means),
including the same acf and pacf.

Graphical analysis. The estimated acf and pacf of a data senies are most
useful when presented in their graphical forms as well as their numerical
forms. To help motivate the ideas behind autocorrelation and partial
autocorrelation analysis we first consider some simpler forms of graphical
analysis.

One possible type of graphical analysis is merely to look at the observa-
tions in Figure 2.3 (or Figure 1.4) in the hope of seeing a pattern. But this is
not a very promising approach. Some data series show very clear and
obvious patterns to the eye, but many do not. Even if a series does display
an obvious visual pattern, estimating its exact nature simply by looking at a
plot of the data would be difficult and would give quite subjective results.

A more promising type of graphical analysis is to plot various Z, ., values
(for k = 1,2, ... ) against the previous observations 7,.* After all, in uni-
variate analysis we are starting with the idea that the observations from
different time periods may be related to each other. Perhaps we could see
these relationships if we plot each observation (Z,.,) against the corre-
sponding observation that occurs k periods earlier (Z,).

It will be helpful if we first arrange the data in columns to create ordered
pairs: each observation is paired with the corresponding observation k
periods earlier. Then we may plot the ordered pairs on a two-space graph.

For example, letting k = 1 we can pair 7, | with Z, by first writing all the
Z, values in a column. Then create another column, 7, ,, by shifting every
element in column Z, up one space. The results of doing this for a portion of
the data in Figure 2.3 are shown in Table 2.1. The arrows indicate the
shifting of the data.

*The reader should not be confused by the arbitrary use of a positive sign on the subscript k.
We may refer to the relationship between z, and the value that occurs & periods earlier, 2, _, . or
to the relationship between Z,, , and the value that occurs k periods earlier, Z,. In both cases we
are dealing with the relationship between two observations separated by k periods; only the
notation is different.
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For t = | we have paired 7, = —1 (in column 3 of Table 2.1) with the
observation one period earlier, Z, = 2 (in column 2). For t = 2 we have
paired Z, = 1 (in column 3) with the observation one period earlier, 7, = — 1
(in column 2), and so forth. Note that we have 59 ordered pairs: there is no
Z,, available to pair with Z,.

Next, we plot each 7, ., value in column 3 against its paired 7, value in
column 2. This should allow us to see how the observations 7, , are related,
on average, to the immediately previous observations Z,. The ordered pairs
(%, 2,,,) are plotted in Figure 2.4.

There seems to be an inverse relationship between these ordered pairs,
that is, as Z, increases (moving to the right along the horizontal axis) there is
a tendency for the next observation (Z,, ) to decrease (moving downward
on the vertical axis).

Now suppose we want to see the relationship between observations
separated by two time periods. Letting Xk = 2 we want to relate observations
Z.,, to observations two periods earlier, Z,. We do this by again writing
down the original observations in a column labeled Z,. But now we create a
new column Z, , , by shifting all the observations in Z, up two spaces. Using
a portion of the data in Figure 2.3, the results are shown in Table 2.2. Again
the arrows show the shifting procedure.

This time we have 58 ordered pairs: there is no g, to pair with 7, and no
7, to pair with Zs,. In general, with a sample size of n we will have n — k
ordered pairs when we relate observations separated by & time periods. In
this instance n = 60 and k& = 2, so we have 60 — 2 = 58 ordered pairs.

By plotting each Z,, , observation from column 3 in Table 2.2 against its
paired Z, value in column 2, we can see how observations in this series are

Table 2.1 Ordered pairs (Z,, 7, ) for the data

in Figure 23
t z, Z4
1 2 -1
4 -3 2
59 1 -2
60 ~2 /n.a.“

“n.a. = not available.



~
Zp e

%

Figure 2.4 A plot of ordered pairs (7,, 7, ;) using the data from columns 2 and 3
in Table 2.1.

Table 2.2 Ordered pairs (Z,, 7,, ,) for the data
in Figure 2.3

f z-l Ze+2

1 2

2 - /—-3
3 1/ 2
4 —3/ 0
5 2 _
58 -3 -2
59 l/u.af’
60 -2 n.a.

“n.a. = not available.
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34 Introduction to Box-Jenkins analysis of a single data series

related to observations two periods earlier. Figure 2.5 is a plot of the
ordered pairs (Z,, Z,,,). On average, there appears to be a positive relation-
ship between them. That is, higher Z, values (moving to the right on the
horizontal axis) seem to be associated with higher values two periods later,
Z,, , (moving up on the vertical axis).

We could now let k = 3 and plot the ordered pairs (Z,, Z,, ;). Then we
could let k = 4 and plot the pairs (Z,, Z,,,), and so forth. The practical
upper limit on k is determined by the number of observations in the series.
Remember that as k increases by one the number of ordered pairs decreases
by one. For example, with n = 60 and k = 40 we have only n — k = 60 —
40 = 20 pairs to plot. This number is too small to provide a useful guide to
the relationship between Z, and 7, .

Estimated autocorrelation functions. Rather than plotting more ordered
pairs, return to the two diagrams we have already produced, Figures 2.4 and
2.5. Visual analysis of diagrams like these might give a rough idea about
how the observations in a time series are related to each other. However,
there are two other graphical tools that summarize many relationships like
those in Figures 2.4 and 2.5. These tools are called an estimated autocorrela-

%e2

® o O
[ ®
L 4 L L] [ ] [
L N L]
[ ] L]
e o ® o 0 [ ] L]
® * ®
® o © *
* o ®
* [ ] L N ] ®
L
L L ]

- Z,

14

Figure 2.5 A plot of ordered pairs (Z,, %, ;) using the data from columns 2 and 3
in Table 2.2.
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tion function (acf) and an estimated partial autocorrelation function (pacf). In
this section we examine the estimated acf.

The idea in autocorrelation analysis is to calculate a correlation coeffi-
cient for each set of ordered pairs (Z,, Z,,,). Because we are finding the
correlation between sets of numbers that are part of the same series, the
resulting statistic is called an aurocorrelation coefficient (auro means self ).
We use the symbol r, for the estimated autocorrelation coefficient of
observations separated by k time periods within a time series. (Keep in
mind that the r,’s are statistics; they are calculated from a sample and they
provide estimates of the true, underlying autocorrelation coefficients desig-
nated p,.) After calculating estimated autocorrelation coefficients, we plot
them graphically in an estimated autocorrelation function (acf), a diagram
that looks something like a histogram. We will see an example of an
estimated acf shortly.

An estimated autocorrelation coefficient (r,) is not fundamentally differ-
ent from any other sample correlation coefficient. It measures the direction
and strength of the statistical relationship between ordered pairs of observa-
tions on two random variables. It is a dimensionless number that can take
on values only between —1 and + 1. A value of — 1 means perfect negative
correlation and a value of + 1 means perfect positive correlation. If r, = 0
then z,,, and z, are not correlated at all in the available data. (Of course,
sampling error could cause an r, value to be nonzero even though the
corresponding parameter p, is zero. We deal with this matter further in
Chapter 3.) Figure 2.6 illustrates various degrees of autocorrelation that
might arise in a given sample.

The standard formula for calculating autocorrelation coefficients is*

Y (2= £)zias - 2)
r, = =1 - (24)
Z (Z, - z_)z

(=1

Equation (2.4) can be written more compactly since Z, is defined as z, — Z.
Substitute accordingly and (2.4) becomes

n—k
Z frz.r-rk
=S5 (2.5)
Zl (z)°
-

*There are other ways of calculating r,. Jenkins and Watts (7] discuss and evaluate some of the
alternatives. Equation (2.4) seems to be most satisfactory and is commonly used.
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Apply (2.5) to the ordered pairs in Table 2.1 to find r, as follows

Z‘)

+zz'
+ (2,

_ (=1 + (=1)(1) + -+ (1)(=2)
@7+ (=) + e+ (-2

= -0.51
Likewise, r, for the same data set is calculated by applying (2.5) to the

~
Ztek

~
z, e
(a) &)
Zeok Zeek
o]
Yk‘o
o]
ry=0.6 ooo 0% o o°
o © 00,0 o}
o_0 ° ‘OOO 00 o
o 20f5% 0
° % ° °°O°°O o]
[o2e] o]
o] OOO o o]
% %
(d)

(c) .
Figure 2.6 Examples of different degrees of autocorrelation that could arise in a

sample: (a) strong positive autocorrelation; (&) strong negative autocorrelation; (¢)
moderately strong positive autocorrelation; (d) zero autocorrelation.
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ordered pairs in Table 2.2 in this manner:

rn =

_@QM+ D=3+ +(=3)(=2)
@+ (=17 + -+ (=2)°

0.22

Other r, are calculated in a similar fashion. It is more convenient to use a
computer to calculate autocorrelation coefficients than to find them by
hand. Below we apply a computer program to the data in Figure 1.4. The
program first finds the mean of the senes (Z). It then finds the dewations
(Z,) of each observation from the mean as shown in Figure 2.3. The r, are
then calculated by applying equation (2.5) to the Z, values in Figure 2.3.

Box and Jenkins [1, p. 33] suggest that the maximum number of useful
estimated autocorrelations is roughly n/4, where n is the number of
observations. In our example n = 60, so n/4 = 15. Using a computer to
calculate r, (for k= 1,2,..., 15) for the data in Figure 1.4 gives the
estimated acf shown in Figure 2.7.

The third column in Figure 2.7 (LAG) is k, the number of time periods
separating the ordered pairs used to calculate each r,. The first column

+ + + + + + s+ + + + AUTOCORRELATIONS + + + + + + + 4+ 4+ + + + +

+ FOR DATA SERIES: SIMULATED SERIES +
+ DIFFERENCING: O MEAN = 100 -
+ DATA COUNT = &40 STD DEV = 2.82253 +
COEF T-VAL LAG 0

-0.51 -3 .94 1 LI O ]

0. 22 1.41 2 C 0>2>52>> 1

-0.25 -1.50 3 [ <<<LKKLKo ]

0. 16 0. 92 4 C 0>>>>> ]

-0.09 -0.50 S 4 <Ko ]

0. 09 0. 53 6 C 0>>> ]
-0.02 -0.13 7 4 <0 ]

0. 05 0. 31 8 4 0>> ]

0. 05 0. 26 9 4 0>> ]
-0.12 -0.71 10 4 <0 bl

0.10 0.57 11 4 0>5> ]

~-0.11 -0.64 12 C <LLL0 ]

0.16 0.88 13 8 0>>>>> b ]
-0.21 -1.14 14 C <LLLLLK0 ]

0.22 1.19 195 4 05555355 ]

CHI-SQUARED#* = 38.83 FOR DF = 15

Figure 2.7 Estumated autocorrelation function (acf) calculated from the data in
Figure 1.4.
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(COEF) is the set of r,, the estimated autocorrelation coefficients calculated
by applying (2.5) to the data in Figure 14. Note that the first two
autocorrelation coefficients (—0.51, 0.22) are identical to the ones we found
by hand. The second column (T-VAL) measures the statistical significance
of each r,. (We discuss the topic of statistical significance in Chapter 3. For
now note that a large absolute 7-value indicates that the corresponding r, is
significantly different from zero, suggesting that the parameter p, is non-
zero.) The diagram next to the three columns of numbers in Figure 2.7 is a
plot of the various r, values. All positive r, values are represented to the
right of the zero line and all negative r, values are shown to the left of the
zero line. The length of each spike (<« or =) is proportional to the value
of the corresponding r,. The square brackets [ ] show how large each r,
would have to be to have an absolute ¢-value of approximately 2.0. Any r,
whose spike extends past the square brackets has an absolute #-value larger
than 2.0.

Looking at the pattern in an estimated acf is a key element at the
identification stage of the UBJ method. The analyst must make a judgment
about what ARIMA model(s) might fit the data by examining the patterns
in the estimated acf. Thus, there is an element of subjectivity in the UBJ
method. However, the acf offers great advantages over other types of
graphical analysis. It summarizes in a single graph information about many
different sets of ordered pairs (Z,, Z,,,), whereas a graph like Figure 2.4
gives information about only one set of ordered pairs. Furthermore, the acf
provides mathematically objective measures of the relationship between
each set of ordered pairs. In addition, we can perform statistical tests of
significance using the acf and pacf that we cannot perform using visual
analysis of plots of ordered pairs.

Before you read further be sure you understand (i) what estimated
autocorrelations (r, ) measure, (i1) how the r, are calculated, and (iii) how
the r, are represented graphically in an estimated acf diagram.

Estimated partial autocorrelation functions.* An estimated partial auto-
correlation function (pacf) is broadly similar to an estimated acf. An
estimated pacf is also a graphical representation of the statistical relation-
ship between sets of ordered pairs (Z,, 2, ,) drawn from a single time series.
The estimated pacf is used as a guide, along with the estimated acf, in
choosing one or more ARIMA models that might fit the available data.

*In this section we assume the reader is familiar with the rudiments of multiple regression
analysis. Those wanting to review the fundamentals may consult an introductory statistics text
such as Mansfield {8, Chapters 11 and 12} or an intermediate text such as Wonnacott and
Wonnacott [9, Chapter 3].
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The idea of partial autocorrelation analysis is that we want to measure
how 7, and Z,,, are related, but with the effects of the intervening Z’s
accounted for. For example, we want to show the relationship between the
ordered pairs (Z,, Z,, ,) taking into account the effect of 7, , on Z,.,. Next,
we want the relationship between the pairs (Z,, Z,, ), but with the effects of
both ., , and Z,, , on %, , accounted for, and so forth, each time adjusting
for the impact of any z’s that fall between the ordered pairs in question.
The estimated partial autocorrelation coefficient measuring this relationship
between Z, and Z,,, is designated ¢,,. (Recall that ¢,, is a statistic. It is
calculated from sample information and provides an estimate of the true
partial autocorrelation coefficient ¢,,.)

In constructing an estimated acf we examine ordered pairs of Z’s, but we
do not account for the effects of the intervening #’s. Thus in calculating
estimated autocorrelation coefficients, we deal with only two sets of vari-
ables at a time, so autocorrelation analysis is easy to picture graphically. To
do so we just look at a two-dimensional scatter diagram (e.g., Figure 2.4 or
2.5) and think of an autocorrelation coefficient as measuring how closely the
matched pairs are related to each other.

By comparison, in partial autocorrelation analysis we must deal with
more than two variables at once. That is, we have to contend not only with
the ordered pairs (Z,, Z,. ), but also with all the Z’s that fall between these
matched pairs (Z,,, £,, 5,..., Z,,— ). Thus visualizing partial autocorrela-
tions on a two-dimensional graph is not possible. [The only exception is the
first partial ¢,,. Since there are no £’s falling between Z, and Z,, , we can use
a scatter diagram of the ordered pairs (Z,, Z,, ) to picture the idea of the
first partial autocorrelation coefficient. In fact, ¢,, = r,.]

The most accurate way of calculating partial autocorrelation coefficients
is to estimate a series of least-squares regression coefficients. An estimated
regression coefficient is interpreted as a measure of the relationship between
the “dependent” variable and the “independent” variable in question, with
effects of other variables in the equation taken into account. That is exactly the
definition of a partial autocorrelation coefficient: ¢,, measures the relation-
ship between 7, and Z,,, while the effects of the 7’s falling between these
ordered pairs are accounted for.

Let us show how estimated partial autocorrelation coefficients are found
by applying regression techniques to the data in Figure 2.3. First consider
the true regression relationship between 7, , and the preceding value Z,:

2= ¢ni tuy (26)

where ¢, is the partial autocorrelation coefficient to be estimated for & = 1.
In equation (2.6), Z,,, and Z, are all the possible ordered pairs of
observations whose statistical relationship we want t0 measure. ¢,, is the
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true partial autocorrelation coefficient to be estimated by the regression.
u,,, is the error term representing all the things affecting 7, , that do not
appear elsewhere in the regression equation. Since there are no other Z’s
between Z, and Z,, |, we can visualize an estimate of equation (26) as an
estimated regression line running through the scatter of data in Figure 2.4.
Using a least-squares regression computer program to estimate ¢,,, we find
é,, = —0.513.

Now we want to find é,,. This entails estimating the multiple regression

2 =0 T Ol tu,, (2.7)

where ¢, is the partial autocorrelation coefficient to be estimated for k = 2.

Note that ¢,, is estimated with Z,, | included in the equation. Therefore, ¢,,

estimates the relationship between Z, and Z, , with Z,,, accounted for.

Estimating regression (2.7) with the data in Figure 2.3, we find ¢,, = —0.047.
Next, we estimate the following regression to find ¢

i3 =320 T D32+ P332+ U, (2.8)

where ¢, is the partial autocorrelation coefficient to be estimated for k& = 3.
By including Z,,; and 7,,, in this regression we are accounting for their
effects on 7, , while estimating ¢;,. Therefore, 5, is the estimated partial
autocorrelation for k = 3. Using the data in Figure 2.3 gives this estimate of
330 ¢33 = —0.221.

There is a slightly less accurate though computationally easier way to
estimate the ¢,, coefficients. It involves using the previously calculated
autocorrelation coefficients (7,). As long as a data series is stationary the
following set of recursive equations gives fairly good estimates of the partial
autocorrelations: *

-

Pnu=rn
k-1
Te — Z ‘i’k—l.j’k-j
*i’kk = I:_]l (k=2,3,...) (2.9)
L= X $u-ajh)
j=1

where
Sy = Pu-1.; — PPk, (k=345 =12..,k=-1)
*This method of estimating partial autocorrelations is based on a set of equations known as the

Yule-Walker equations. The method for solving the Yule-Walker equations for the ¢, values
embodied in (2.9) is due to Durbin (10}
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IHustrating how equations (2.9) can be used to calculate partial autocor-
relations by hand is cumbersome and we will not do that here. But using a
computer program to apply these equations to the estimated autocorrela-
tions in Figure 2.7 (derived from the data in Figure 2.3) gives the estimated
partial autocorrelation function (pacf) shown in Figure 2.8.

The column labeled LAG is the sequence of values for k = 1,2,3, ...
indicating which set of ordered pairs (Z,, Z,, ,) we are examining. Column
COEF is the set of estimated partial autocorrelation coefficients (¢,,) for
each set of ordered pairs (7, 7,,,) calculated using equation (2.9). The
column labeled T-VAL shows the s-statistic associated with each ¢,,. We
discuss these -statistics in Chapter 3. For now, remember that any ¢,, with
an absolute s-value larger than 2.0 1s considered to be significantly different
from zero, suggesting that the parameter ¢, is nonzero.

The graph toward the right-hand side of the pacf is a visual representa-
tion of the ¢,, coefficients. Positive ¢, coefficients are represented to the
right of the zero line and negative ¢, coefficients are shown to the left of
the zero line. Each graphical spike (<< or >») is proportional to the value
of the corresponding ¢,, coefficient. Any ¢,, with a spike extending past
the square brackets [ } has an absolute ¢-value greater than 2.0. Note that the
first three estimated partial autocorrelations in Figure 2.8 (—0.51, —0.05,
—0.20) are very close to the estimates we obtained earlier for the same data
using regression analysis (—0.513, —0.047, —0.221).

We make extensive use of estimated pacf’s in applying the UBJ method.
For now be sure you understand (1) how to interpret estimated partial
autocorrelation coefficients, (ii) how estimated partial autocorrelation coef-
ficients can be calculated, (iii) how partial autocorrelation coefficients differ

4 4 44+ 44+ 4+ 4+ 4+ 4+ + PARTIAL AUTOCORRELATIONS + + + + + + + + + + +

COEF T-VAL LAGC 0
-0.51 -3.94 1 LLLLLLLLLIKLLKKLKKKD 1
-0.05 -0.36 2 C <<0 ]
-0.20 -1.59 3 [<<<KKLK<LL0 ]
-0.06 -0.50 4 4 <<0 ]
-0.03 -0.21 S L <0 ]
0. 02 0.17 ] L 0> ]
0.07 0. 51 7 4 0>> ]
0. 09 0.73 8 L 0>>> bl
0.18 1.41 9 L 0>>>55> 1
-0.03 =0.19 10 C <0 ]
0. 05 0.37 11 L 0>> bl
-0.04 -0.31 12 C <0 ]
0. 05 0.41 13 4 0>> ]
-0.14 -1.07 14 L <<<KK<0 ]
0. 03 0.24 15 L 0> 1

Figure 2.8 Estimated partial autocorrelation function (pacf) calculated from the
data in Figure 1.4.
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from autocorrelation coefficients, and (iv) how estimated partial autocorre-
lations are represented graphically in an estimated pacf.

Stationarity and estimated autocorrelation functions. In Chapter 1 we
pointed out that a data series had to be rendered stationary (have a mean,
variance, and acf that are essentially constant through time) before the UBJ
method could be applied. It happens that the estimated acf is useful in
deciding whether the mean of a series is stationary. If the mean is stationary
the estimated acf drops off rapidly to zero. If the mean is not stationary the
estimated acf drops off slowly toward zero.

Consider the estimated acf in Figure 2.7. It was calculated using the data
series in Figure 1.4 which appears to have a stationary (constant) mean.
This conclusion is reinforced by the appearance of the estimated acf in
Figure 2.7 since it drops off to zero quite rapidly. That is, the estimated
autocorrelations quickly become insignificantly different from zero. Only
one acf spike (at lag 1) extends past the square brackets and only the first
three spikes have absolute r-values greater than 1.2,

In contrast, consider the estimated acf in Figure 2.9. It was calculated
using the AT & T stock price data in Figure 2.1. The mean of that series
appears to be shifting through time. We therefore expect the estimated acf
for this series to drop slowly toward zero. This is what we find. The first
four autocorrelations in Figure 2.9 have absolute t-values greater than 2.0,
and the first six have absolute 7-values exceeding 1.6. This is fairly typical
for a data series with a nonstationary mean. If estimated autocorrelations

* 4+ * + 4+ 4+ 4+t + e+ AUTOCORRELATIONS « « + + + + + + + + + + «

+ FOR DATA SERIES: AT&T STOCK PRICE +
+ DIFFERENCING: O MEAN = $7.7957 +
+ DATA COUNT = 52 STD DEV = 3. 4136 +
COEF T-VAL LAGC [¢]

0. 93 b.74 1 L Q>O335I3D0D300330055505>
0. 86 3.75 2 L Q3333533353 IO55D03055>

0. 81 2.85 3 L Q>33OO3DDD5352I00035>
0.75 2.29 4 C Q>3D333DDD233035155>

0.68 1.9 S 4 Q>>3D3DD3D033D05301

0. 62 1. 62 b6 L Q>33DD553D533033> ]

0.55 1.38 7 L Q>533553335555> ]

0. 49 1.19 8 L Q35335533355 > ]

0. 44 1.03 9 C Q523535335335 ]

0. 38 0.87 10 r Q>>535335> ]

0. 29 0.65 11 4 a>>>555> ]

0. 22 0.49 12 L a>>>>> b

0. 18 0.39 13 L a>>>> ]

CHI-SQUARED# = 280.32 FOR DF = 13

Figure 2.9 Estimated acf calculated from the AT & T stock price data in Figure
2.1.
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have absolute t-values greater than roughly 1.6 for the first five to seven
lags, this is a warning that the series may have a nonstationary mean and
may need to be differenced. The estimated autocorrelations need not start
from a high level to indicate nonstationarity. See Part II, Case 8 for an
estimated acf that starts from relatively small autocorrelations but whose
slow decay indicates the data are nonstationary.

Summary

1. A data series with a nonstationary mean can often be transformed
into a stationary series through a differencing operation.

2. To difference a series once, calculate the period-to-period changes:
w, = z, — z,_,. To difference a series twice, calculate the changes in the first
differences: w, = (z, — z,_,) — (z,_, — z,_5).

3. In practice first differencing is required fairly often; second dif-
ferencing is called for only occasionally; third differencing (or more) is
virtually never needed.

4. To focus on the stochastic (nondeterministic) components in a sta-
tionary time series, we subtract out the sample mean Z, which is an estimate
of the parameter p. We then analyze these data expressed in deviations from
the mean: 7, = z, — Z.

S. A senes expressed in deviations from the mean has the same statisti-
cal properties as the original senes (e.g., it has the same variance and
estimated acf) except the mean of the differenced series is identically zero.

6. An estimated autocorrelation function (acf) shows the correlation
between ordered pairs (Z,, Z,,,) separated by various time spans (k =
1,2,3,...), where the ordered pairs are drawn from a single time series.
Each estimated autocorrelation coefficient 7, is an estimate of the corre-
sponding parameter p,.

7. An estimated partial autocorrelation function (pacf) shows the
correlation between ordered pairs (Z,, 7,,,) separated by various time
spans (k =1,2,3,...) with the effects of intervening observations
(Z,ov Z,49+---4 Z,,4-,) accounted for. The ordered pairs are drawn from a
single time series. Each estimated partial autocorrelation coefficient ¢, is
an estimate of the corresponding parameter ¢,,.

8. The estimated acf for a series whose mean is stationary drops off

rapidly to zero. If the mean is nonstationary the estimated acf falls slowly
toward zero.
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Questions and Problems

2.1 In Section 2.2 we assert that expressing a data series in deviations from
the mean shifts the series so its mean is identical to zero. Prove this
assertion. That is, prove 3(z, — 7) = 0. Hint: Use the following two rules
about summation: L(x + y) = Lx + Ly and £K = nK when K is a con-
stant.

2.2 Does a series expressed in deviations from the mean always have a
mean of zero? Does a differenced series always have a mean of zero?
Discuss.

2.3 Consider the time series in Problem 1.8.
(a) Express those data in deviations from the mean.
() Calculate ry, r,, and r, for this series. Plot these values on an acf
diagram.
(c¢) Calculate J>“, J;u, and 4333 for this series. Plot these values on a
pacf diagram.

2.4 How can you tell if the mean of a time series is stationary?

2.5 Calculate the first differences of the following time series. Does the
estimated acf of the original series confirm that differencing is required? If
so, is first differencing sufficient to induce a stationary mean?

t 2, t 2, t 2, t 2, t 2,
1 23 13 29 25 39 37 48 49 41
2 21 14 31 26 38 38 50 50 39
3 23 1S 30 27 40 39 49 51 39
4 25 16 35 28 40 40 52 52 35
s 22 17 36 29 39 41 46 53 38
6 27 18 34 30 42 42 48 54 35
7 26 19 32 31 40 43 50 55 37
8 29 20 36 32 45 4 47 56 32
9 28 21 35 33 46 45 45 57 33
10 27 22 35 34 47 46 46 58 34
11 30 23 38 35 45 47 42 59 32
12 3 24 40 36 4 48 40 60 33

2.6 How many useful estimated autocorrelation coefficients can one ob-
tain from a given sample?
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UNDERLYING STATISTICAL
PRINCIPLES

In Chapter 1 we discussed the nature of time-series data and introduced the
three-stage modeling framework proposed by Box and Jenkins (identifica-
tion, estimation, diagnostic checking). Then in Chapter 2 we constructed
two useful graphs from a set of time-series observations—an estimated
autocorrelation function (acf) and an estimated partial autocorrelation
function (pacf). An estimated acf and pacf show how the observations in a
single time series are correlated.

In Chapter 4 we show how ARIMA models are constructed by applying
the three-stage UBJ procedure to two data sets. But first we must establish
some terminology and introduce some principles that underlie the UBJ
method. These principles are similar to those in an introductory statistics
course, although the terminology may be different.

3.1 Process, realization, and model

An important question is: From where do observations (like those shown in
Figures 1.1 and 1.4) come? A quick answer is that the shoe production data
in Figure 1.1 came from a U.S. Commerce Department publication called
Business Statistics, and the simulated series in Figure 1.4 came from a
computer. Another similar answer is to say that the Commerce Department
data came from a survey of shoe manufacturers.

45
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But the question about “where the observations come from” is meant to
get at a different, more abstract matter. A better way to ask it is: What kind
of underlying mechanism produced these observations?

In UBJ-ARIMA analysis observations are assumed to have been pro-
duced by an ARIMA process. The corresponding concept in classical
statistics is the population. The population is the set of all possible observa-
tions on a variable; correspondingly, an ARIMA process consists of all
possible observations on a time-sequenced variable.

Now we must add something to the preceding definition of a process to
clanify it. An ARIMA process consists not only of all possible observations
on a time-sequenced variable, but it also includes an algebraic statement,
sometimes called a generating mechanism, specifying how these possible
observations are related to each other. We examine two such algebraic
statements later in this chapter.

In classical statistics we distinguish between the population (all possible
observations) and a sample (a set of actual observations). A sample is a
particular subset of the population. In UBJ-ARIMA analysis we usually
refer to a sample as a realization. A realization is one subset of observations
coming from the underlying process. For example, the shoe production data

Process
{the set of possibte
observations on a time —
sequenced variable, including
3 stochastic generating
mechanism specifying how the
2's are related through time)

3)
We hope the chosen mode! is
2 good representation of the
unknown, underlying process
as well as being a good
representation of the
available data

(1

A process gives
riseto @
realization

Model
Realization (a represeniation of the process,
(the available data) (2) developed by analyzing the

realization)

We choose 2
model to fita
given reafization
by following the
three —stage UBJ
modeling procedure

Figure 3.1 The relationship among a process, realization, and model.
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in Figure 1.1 are a realization; these data are only 60 observations out of
many possible observations.

If we could discover the underlying process that has generated a realiza-
tion, then maybe we could forecast future values of each series with some
accuracy, assuming the same mechanism continues to produce future
observations. Unfortunately, in practice we never know the underlying
process.

Our goal in UBJ analysis is to find a good representation of the process
generating mechanism that has produced a given realization. This represen-
tation is called a model. An ARIMA model is an algebraic statement chosen
in light of the available realization. Our hope is that a model which fits the
available data (the realization) will also be a good representation of the
unknown underlying generating mechanism. The three-stage UBJ procedure
is designed to guide us to an appropriate model. We return to this important
topic in Chapter 4, where we introduce the characteristics of a good model
and present two examples of UBJ-ARIMA modeling. Figure 3.1 sum-
marizes the relationship among a process, a realization, and a model.

3.2 Two common processes

An ARIMA process refers to the set of possible observations on a time-
sequenced variable, along with an algebraic statement (a generating mecha-
nism) describing how these observations are related. In this section we
introduce two common ARIMA processes. We examine their algebraic form
and discuss their stochastic (probabilistic) nature.

In Chapter 2 we learned how to construct an estimated acf and pacf from
a realization. Every ARIMA process has an associated theoretical acf and
pacf. We will examine the theoretical acf’s and pacf’s of two common
processes in this section. Then in Chapter 4 we see how to identify an
ARIMA model by comparing the estimated acf and pacf calculated from a
realization with various theoretical acf’s and pacf’s.

Their algebraic form. The generating mechanisms for two common
ARIMA processes are written as follows:

z,=C+ ¢yz,_, + a, (3.1)

2,=C~#b,a,_, +a, (3.2)
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Consider process (3.1). Processes with past (time-lagged) z terms are
called autoregressive (abbreviated AR) processes. The longest time lag
associated with a z term on the right-hand-side (RHS) is called the AR order
of the process. Equation (3.1) is an AR process of order 1, abbreviated
AR(1), because the longest time lag attached to a past z value is one period.
That is, the subscript of the RHS z is ¢ — 1. On the left-hand-side (LHS), z,
represents the set of possible observations on a time-sequenced random
variable z,.*

Process (3.1) tells us how observed values of z, are likely to behave
through time. It states that z, is related to the immediately past value of the
same variable (z,_,). The coefficient ¢, has a fixed numerical value (not
specified here) which tells how z, is related to z,_,." C is a constant term
related to the mean of the process. The variable g, stands for a random-shock
element. Although z, is related to z,_,, the relationship is not exact: it is
probabilistic rather than deterministic. The random shock represents this
probabilistic factor. We discuss the random-shock term a, in more detail
later.

Now consider process (3.2). Processes with past (time-lagged) random
shocks are called moving-average (abbreviated MA) processes.* The longest
time lag is called the MA order of the process. Equation (3.2) is an MA
process of order 1, abbreviated MA(1), since the longest time lag attached to
a past random shock is ¢ — 1. Once again z, on the LHS is the set of
possible observations on the time-sequenced random variable z,, C is a
constant related to the mean of the process, and a, is the random-shock
term.

The negative sign attached to &, is merely a convention. It makes no
difference whether we use a negative or a positive sign, as long as we are
consistent. We follow the convention used by Box and Jenkins by prefixing
all 8 coefficients with negative signs.

*It is common to denote a random variable with an upper-case letter (Z,) and a particular
value of that random variable with a lower-case letter (z,). However. the common practice in
Box-Jenkins literature is to use lower-case letters for both random variables and specific
observations. letting the context determine the interpretation. We follow this practice in the
text; the symbol z, refers to a random variable when we speak of a process. and the same
symbol refers to a specific observation when we speak of a realization.

YThe ¢ and # coefficients in ARIMA processes are assumed to be fixed parameters. It is
possible to postulate variable-parameter models. with coefficients changing through time in
some specified manner. However, such models are beyond the scope of this book. Standard
UBJ-ARIMA models are fixed-parameter models, and we restrict our inquiry to these
standard types.

#The label * moving average” is technically incorrect since the MA coefficients may be negative
and may not sum to unity. This label is used by convention.
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One aspect of process (3.2) is sometimes confusing for students at first
glance. We have emphasized that ARIMA models are univanate; they deal
with the relationship between observations within a single data series.
Process (3.1) is consistent with this since the set of possible observations at
time 7 (z,) is related to the set of possible observations on the same variable
attime r — 1 (z,_,).

However, in process (3.2) z, is related to a past random shock. How can
we think of (3.2) as a univanate process if it does not describe how z, is
related to other past z elements in the same series? The answer is that any
MA process, including equation (3.2), is a univariate process because past
random-shock terms can be replaced by past z terms through algebraic
manipulation. In Chapter 5 we show how this is done. Alternatively,
consider that @, is simply part of z,. Thus, an MA term represents a
relationship between z, and a component of a past z term, where the
component is the appropriately lagged random shock.

Their stochastic nature: the random shock a,. Because of the random
shock a,, an ARIMA process generates realizations in a stochastic (meaning
chance or probabilistic) manner. The a, terms in an ARIMA process are
usually assumed to be Normally, identically, and independently distributed
random variables with a mean of zero and a constant variance. Such
variables are often called “ white noise.” Figure 3.2 illustrates this idea with
a Normal distribution centered on zero. The horizontal axis shows the
values of a, that could occur. The area under the curve between any two a,
values (such as the shaded area between g, and a,,) equals the probability

fla)

#,=0
v L3
81 82

Figure 3.2 A normal distribution for the random shock a,.
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of a, falling within that range. Since the a, are identically distributed for all
t, this distribution characterizes a, for all ¢. Since the a, are independently
distributed they are not autocorrelated, that is, knowing the set of past
random shocks (a,_,, a,_5, a,_3,... ) would not help us predict the current
shock a,.

To see the importance of the chance element a,, consider two extreme
situations. First, suppose the random shocks were absent from equations
(3.1) and (3.2). Then they would be deterministic rather than stochastic
relationships. In (3.1) z, would be exactly known from C, ¢,, and z,_,. In
(3.2) z, would be exactly known from C. We will not consider such
deterministic relationships but deal only with stochastic processes whose
random shocks meet the above assumptions.

Alternatively, suppose we would have C = ¢, = 8, = 0 in equations (3.1)
and (3.2). Then, in both cases, z, = a, so that z, would have no identifiable
univariate time structure. Realizations generated by this process would be
white noise, a sequence of uncorrelated values.

Consider again the shoe production data in Figure 1.1. In UBJ-ARIMA
analysis we assume these data were generated by an unknown stochastic
process. Thus, we think of any specific observed value (e.g., z, = 659 for
January 1971) as composed of three parts: a deterministic part represented
by the constant term C, another part reflecting past observations repre-
sented by AR and MA terms, and a pure chance component represented by
a,. Since the value of each observation z, is determined at least partly by
chance, we think of this particular realization as only one which might have
occurred. Mere chance could have produced many realizations other than
the one actually observed.

In practice we cannot return to January 1971 to observe how athletic
shoe production might have been different due to chance. But we can
imagine conducting such an experiment and recording the results. As we
conduct this experiment suppose the random shock a, for each month is
drawn from a probability distribution like the one in Figure 3.2.

We can imagine conducting this experiment for the year 1971 over and
over again, hundreds or thousands of times, each time drawing a different
value of a, for each month. Since g, is a component of z,, z, for each month
would also have a different value for each experiment and thus each
experiment would generate a different realization.

This idea is illustrated in Figure 3.3. We have reproduced the first 12
months of the realization shown in Figure 1.1 along with two other
(imaginary) realizations that might have occurred instead because of the
stochastic nature of the underlying process. The heavy line with the asterisks
is the original realization; the other lines are the two imaginary realizations.
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SHOE PRODUCTION
--DIFFERENCING: ©
--EACH VERTICAL AXIS INTERVAL = 11. 125

LOW = MEAN = HIGH =
409 750. 75 943
TIME I++ ++ VALUE
71 11 659
21 740
31 821
41 805
51 687
61 687
71 520
81 641
91 769
101 718
111 - 697
121 o’ * I 696

Figure 3.3 Actual realization for athletic shoe production, January 1971-Decem-
ber 1971, and two imaginary realizations.

Their stochastic nature: joint probability functions. Another way of
discussing the stochastic nature of an ARIMA process such as (3.1) or (3.2)
1s to describe it in terms of a stationary, Normal, joint probability distribution
function.

Consider the realization z,,..., z,. Let us suppose these observations are
drawn from a joint probability distribution

P(z,...,2,) (3.3)

where P( ) is a joint probability density function that assigns a probability
to each possible combination of values for the random variables z,..., z,.

Our goal in forecasting is to make statements about the likely values of
future z's. Now, if we know the joint density function P(z,..., z,,,).
including the relevant marginal probabilities, we could form the conditional
distribution

P(zn-o-llzl""vzn) (3'4)

Then from knowledge of the past values (z,,..., z,) we could use (3.4) to
make a probability statement about the future value z, _,.

Recall that UBJ-ARIMA analysis is restricted to stationary processes
and realizations. (Keep in mind that many nonstationary realizations can be
rendered stationary with suitable transformations.) For a process 10 be
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stationary, the joint distribution function describing that process must be
invariant with respect to time. That is, if we displace each random variable
(z,,..., 2,,4) by m time periods, we have the stationarity condition

P(Ziams s Zpsgam) = P25 200) (3.5)

Condition (3.5) is sometimes referred to as strong or strict stationarity. It
shows the entire probability structure of our joint function constant through
time. Weak stationarity requires only that certain characteristics of our joint
function be time-invariant. But now we encounter a pleasing simplification:
if our joint function is a joint Normal distribution, then it is strongly
stationary if its mean (first moment) and variance and covariances (second
moment) are constant over time. In fact our assumption that the random
shocks a, are Normally distributed is equivalent to the assumption that the
joint distribution for the z’s is a joint Normal distribution.

If we have a stationary joint Normal distribution for the z’s, then we
have a constant mean, p = E(z,) for all z’s,*

p=E(z,) = E(z.,) (3.6)

a constant variance, 67 = y, = E(z, — p)?, for all z’s,
oz2=70=E(Zr.—”‘)z'—'E(sz_P')z (37)

and constant covariances, v, = E[(z, — uXz,,, — )}, for any two z’s
separated by k time periods,

T = E[(Zl - P‘)(sz - P‘)] = E[(zl+m - "')(Zl+k+m - P')] (38)

(Since we are talking about the covariances between random variables
occurring within the same time series, these covariances are called auroco-
variances.)

We can conveniently summarize variances and covariances in matrix
form. A matrix is simply an array of numbers. In this case we want to
present the variances and covariances of the random variables (z,,..., z,)
in an organized array. The variance—covariance matrix for a stationary joint

*E is the expected value operator.
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distribution function for (z,,..., z,) is a square array:
Yo " Y2 - Ya
] Yo i M2 - Ya2

o Y Mo Yas

39
Y2 {1 Yo (39)

Yn—1 Ya-2 Yo-3 . Yo _

Row 1 (the top row) and column 1 (the left-most column) refer to random
variable z,, row 2 (second from the top) and column 2 (second from the left)
refer to random variable z,, and so forth. The covariance between any two z
variables is the y value corresponding to the appropriate row and column.
For example, the covariance between z; and z, is circled; it is found where
row 3 (for z;) intersects column 2 (for z,). The subscript k attached to v
refers to the number of time periods separating the two variables whose
covariance is being considered. Since z, and z, are separated by one time
period, their vy, has the subscript £ = 1.

Note that the covariance between z, and itself is the variance of z,. When
k =0, (z, — p) times (z,,, — p) is simply (z, — p)*, in which case v, = v,
= o2

Matrix (3.9) is a useful vehicle for discussing the idea of stationarity. For
example, since the variance o? (equal to v,) does not vary with time for a
stationary process, we find the same element along the entire main diagonal.
That is, the variance of z, is Y, the variance of z, is also y,, the variance of
z4 1s also vy, and so on.

Similarly, stationary covariances depend only on the number of time
periods separating the variables in question, not on the particular time
subscripts attached to them. For example, the covariance between z, and z,
is v,; they are separated by one time period. The covariance between z, and
z4 is also v, because they are also separated by one time period. The same is
true for z; and z,, z, and z;, and so forth. Therefore, the diagonals
immediately above and below the main diagonal contain the constant v,.
The stationarity assumption likewise explains why every other diagonal is
made up of a constant.

Autocovariances are awkward to use because their sizes depend on the
units in which the variables are measured. It is convenient to standardize
autocovariances so their values fall in the range between —1 and +1
regardless of the units in which the variables are measured. This is accom-
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plished by dividing each autocovariance (v, ) by the variance of the process
(Yo = 02). Such standardized autocovariances are autocorrelation coeffi-
cients and, for a process, are denoted by the symbol p. By definition,

Yk
= — 3.10
P Yo ( )

As with autocovariances. autocorrelations can be conveniently repre-
sented in matrix form. Start with matrix (3.9) and divide each element by v,.
All elements on the main diagonal become one, indicating that each z, is
perfectly correlated with itself. All other y, values become p, values as
indicated by equation (3.10):

- .
1 4 P2 - e P
[ 1 P P2 - Pa-2
[ P 1L pr oo Paos
P2 P 1 (3.11)
_pn-l Pn-2  Pn-3 . 1 ]

Once again, stationarity dictates that each diagonal be composed of a
constant.*

Although we may discuss the stochastic nature of ARIMA processes in
terms of joint probability distribution functions like (3.3) and (3.4), in
practice we do not specify such distribution functions in detail. Instead we
summarize the behavior of a process with a stochastic generating mecha-
nism, like the AR(1) or MA(1) in equation (3.1) or (3.2). We may then use
these generating mechanisms to derive the mean, variance, and autocovari-
ances (and corresponding autocorrelation coefficients) and the conditional
distribution of future z’s for that process. Such derivations are presented in
Chapters 6 and 10.

Theoretical acf’s and pacf’s. Each time-dependent process has a theoreti-
cal acf and pacf associated with it. These are derived by applying certain

*It can be shown that for stationary processes, the autocorrelation matrix (3.11) and the
autocovariance matrix (3.9) are positive definite. It follows that the determinant of the
autocorrelation matrix and all principal minors are positive, so the autocorrelation coefficients
for a stationary process must satisfy numerous conditions. For linear processes these stationar-
ity conditions can be stated conveniently in the form of restrictions on the AR coefficients. The
restrictions are discussed in Chapter 6.
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definitions and rules to the process in question. In Chapter 6 we derive the
theoretical acf’s for processes (3.1) and (3.2). For now we simply present the
theoretical acf’s and pacf’s associated with these two processes.

Remember that theoretical acf’s and pacf’s are different from estimared
ones. Estimated acf’s and pacf’s (like the ones we constructed in Chapter 2)
are found by applying equation (2.5) to the n observations in a realization.
On the other hand, theoretical acf’s and pacf’s are found by applying
definitions and rules about mathematical expectation to specific processes.

As we shall see in Chapter 4, a critical part of the identification stage in
UBJ-ARIMA modeling involves the comparison of estimated acf’s and
pacf’s with theoretical acf’s and pacf’s. Thus the UBJ analyst must become
thoroughly familiar with the most common theoretical acf’s and pacf’s.

Following are the most important general characteristics of theoretical
AR and MA acf’s and pacf’s, summarized in Table 3.1. (We discuss mixed
ARMA processes, which contain both AR and MA terms, starting in
Chapter 6.) :

1. Stationary autoregressive (AR) processes have theoretical acf’s that
decay or “damp out” toward zero. But they have theoretical pacf’s
that cut off sharply to zero after a few spikes. The lag length of the last
pacf spike equals the AR order ( p) of the process.

2. Moving-average (MA) processes have theoretical acf s that cut off to
zero after a certain number of spikes. The lag length of the last acf
spike equals the MA order (g) of the process. Their theoretical
pacf’s decay or “die out” toward zero.

Figure 3.4 shows the kinds of theoretical acf’s and pacf’s associated with
an AR(I) process like (3.1). Note that the acf decays toward zero whether ¢,

Table 3.1 General characteristics of theoretical acf’s
and pacf’s for AR and MA processes

Process acf pacf
AR Decays toward zero Cuts off to zero
(lag length of
last spike equals
AR order of process)
MA Cuts off to zero Decays toward zero
(lag length of
last spike equals

MA order of process)
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is positive (Example I) or negative (Example II). When ¢, is negative the
autocorrelations alternate in sign, starting on the negative side. But, as with
all stationary AR processes, the absolute values of the autocorrelations in
Example II die out toward zero rather than cut off to zero.

In Examples I and 11 the theoretical pacf has a spike at lag 1 followed by
a cutoff to zero. This cutoff in the pacf is typical for AR processes. There is
only one spike in the pacf’s in Figure 3.4 because they are associated with
AR(]) processes. That is, the lag length of the last spike in the theoretical
pacf of an AR process is equal to the AR order (the maximum lag length of
the z terms) of the process.

Figure 3.5 shows examples of theoretical acf’s and pacf’s associated with
MA(1) processes. The lag length of the last spike in the theoretical acf of an
MA process equals the order of the MA process. Thus, an MA(]) theoretical
acf has a spike at lag 1 followed by a cutoff to zero. This is an example of
the general rule for MA theoretical acf’s: they always cut off to zero rather
than decay toward zero. For the MA(1) the sign and size of 8, determine the

Example I: ¢, is positive

+1.01

1 ll"ln.... - 1 ™

k= k=
4‘ Lag length l’ Lag length

-1.0-+ -1.0-+-

Example li: ¢, is negative

+1.01 +1.0+
T I | acf 1 pacf
0 IIII.‘. e % O ym
I I Lag length & Lag fength
~1.04+ -1.0+

Figure 3.4 Theoretical acf’s and pacf’s for stationary AR(1) processes.
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sign and size of the acf spike. The MA(1) acf spike is positive if 8, is
negative, but negative if 8, is positive.

All theoretical pacf’s for MA processes decay toward zero unlike the
pacf’s for AR processes, which cut off to zero. The pacf for an MA process
may or may not alternate in sign. As shown in Figure 3.5, when 6, is
negative the theoretical pacf for an MA(1) starts on the positive side and
alternates in sign. But when 6, is positive the pacf decays entirely on the
negative side.

In Chapter 5 we consider three additional common processes and their
associated acf’s and pacf’s. Familiarity with the common theoretical acf’s
and pacf’s is essential for the analyst who wants to use the UBJ method
effectively. The vanious theoretical acf’s and pacf’s may differ substantially
from each other in detail, and this may seem confusing initially. But keep in
mind these two points: (i) Thorough knowledge of just a few common
theoretical acf’s and pacf’s is sufficient for building proper ARIMA models

Example 1: @, is negative

+1.0 + +1.0 T
? I acf 1 I pacf
P 0 - ¢kk 0 TLll‘ ‘1. = ~
l Lag length l Lag length
~1.0+ -1.0 L
Example 11: 6, is positive
+1.0 T +1.0 T
T acf T pact
Pr 0 H n Sk O *I]".... —>
l ' Lag length l I Lag length
-1.0 L -1.0~+

Figure 3.5 Theoretical acf’s and pacf’s for MA(1) processes.
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for the vast majority of data sets. (ii) Unusual ARIMA processes share
certain general characteristics with the more common ones. Thus, knowl-
edge of the common theoretical acf’s and pacf’s gives good guidance even
when the appropriate model is not common.

Estimated acf’s and pacf’s. At the identification stage of UBJ-ARIMA
analysis we first calculate an estimated acf and pacf by applying (2.5) and
(2.9) to the available data. Then we compare the estimated acf and pacf with
some common theoretical acf’s and pacf’s to find a reasonably good
“match.” We then select as a tentative model for our data the process
associated with the matching theoretical acf and pacf.

Suppose, for example, that an estimated acf (calculated from a given
realization) has a single spike at lag 1. We know that a theoretical acf with a
spike at lag I characterizes an MA(1) process, represented algebraically by
equation (3.2). Therefore, we would tentatively choose equation (3.2) as a
model to represent the realization in question. We then go to the estimation
and diagnostic-checking stages to estimate the parameters and to test the
adequacy of the chosen model. Clearly, an important step in this procedure
is the tentative matching of estimated acf’s and pacf’s with theoretical acf’s
and pacf’s. In this section we use simulation methods to develop a feel for
how closely estimated acf’s and pacf’s might, or might not, match theoreti-
cal acf’s and pacf’s.

We specify two processes—an AR(1) and an MA(1)—assuming we know
their parameters. (In practice we never know what process has generated a
given realization. But as a learning exercise we can pretend that we know
these processes exactly.) Then we use a computer to produce a series of
Normally and independently distributed random shocks with zero mean
and a constant variance. Using the known processes and the random shocks
produced by the computer, we generate five simulated realizations for each
process. Finally, we compute estimated acf’s and pacf’s from these simu-
lated realizations to see how closely they match the known theoretical acf’s
and pacf’s associated with the known AR(1) and MA(1) processes by which
the realizations were generated.

As a numerical illustration of how these simulated realizations are
generated, consider the following AR(1) process:

z,=0.5z,_, + a, (3.12)

In this example, ¢, = 0.5 and C = 0. Let the starting value for z,_, be 0.
Now suppose we draw at random a sequence of a, values, for ¢ = 1, 2, 3,
and 4, from a collection of Normally and independently distributed num-
bers having a mean of zero and a constant variance [designated a, ~
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NID(0, 02)). Let these a, values be (3, —2, — 1,2). Then we can calculate the
values of z, for t = 1, 2, 3, and 4 recursively as follows:

z; = 0.5z, + a,
=0.5(0) + 3
=3
z, =05z, + a,
=0.53)-2
= -0.5 (3.13)
z23=0.5z, + a,4
=0.5(-0.5) -1
= -125
2, =05z, +a,
=0.5(-1.25) +2
= 1.375
Keep in mind that we generated this realization (3, —0.5, —1.25, 1.375)
artificially. In practice the random shocks are not observable, and C and ¢,
are unknown. Here we are merely trying to illustrate how process (3.12)
could generate one particular series of observations (3.13). All the simulated
realizations considered in this section were generated in a similar fashion,
though using a computer for convenience.
The following AR(1) process was used to simulate five different realiza-
tions:
z,=07z,_, + a, (3.14)
In all cases ¢, = 0.7, C = 0, the starting value for z,_, is zero, the variance
of the random shocks (02) is one, and n = 100.

The theoretical acf and pacf for process (3.14) are shown in Figure 3.6.
As with all stationary AR(1) processes, the theoretical acf decays toward
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zero and the theoretical pacf cuts off to zero after a spike at lag 1. The
estimated acf and pacf for each of the five realizations are shown in Figure
3.7.

The important thing to note is this: although the estimated acf’s and
pacf’s are similar to the theoretical acf and pacf in Figure 3.6, in some cases
the similarity is vague. This is because the estimated acf’s and pacf’s are
based on a realization and therefore contain sampling error. Thus we cannot
expect an estimated acf and pacf to match the corresponding theoretical acf
and pacf exactly.

This suggests ambiguities at the identification stage as we try to match
the estimated acf and pacf with a theoretical acf and pacf. While estimated
acf’s and pacf’s are extremely helpful, they are only rough guides to model
selection. That is why model selection at the identification stage is only
tentative. We need the more precise parameter estimates obtained at the

+1.0 + act
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de
o
[+ ]
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|1 fss
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l" 12345677 3 length
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Figure 3.6 Theoretical acf and pacf for process (3.14). z, = 0.7z,_, + a,, with
a, ~ NID(0, 1).
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Figure 3.7 (Continued).
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Figure 3.7 (Continued).

estimation stage and the results of the diagnostic-checking stage to help us
choose a final model for forecasting.
The following MA(1) process was used to simulate five realizations:

z,= —08a,_, +a, (3.15)

For all five realizations 6, = 0.8, C = 0, 0 = 1, and n = 100. Note that 6,
is positive so in process (3.15) it has a negative sign; we are following the
convention of writing MA coefficients with negative signs.

The theoretical acf and pacf derived from process (3.15) are shown in
Figure 3.8. The estimated acf and pacf for each realization are shown in
Figure 3.9. Again we find that while the estimated acf’s and pacf’s are
similar to the theoretical ones (in Figure 3.8), they do not match perfectly
because the estimated ones contain sampling error.

Box and Jenkins comment on the imperfect relationship between esti-
mated and theoretical acf’s in this way:

... detailed adherence to the theoretical autocorrelation function can-
not be expected in the estimated function. In particular, moderately
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large estimated autocorrelations can occur after the theoretical auto-
correlation function has damped out, and apparent ripples and trends
can occur in the estimated function which have no basis in the
theoretical function. In employing the estimated autocorrelation func-
tion as a tool for identification, it is usually possible to be fairly sure
about broad characteristics, but more subtle indications may or may
not represent real effects, and two or more related models may need to
be entertained and investigated further at the estimation and diagnos-
tic checking stages of model building. [1, p. 177; emphasis in original.
Quoted by permission.]

This point is emphasized by a result due to Bartlett {11} showing that
estimated autocorrelation coefficients at different lags (r,, 7, ;, i = 0) may
be correlated with each other. Thus, a large estimated autocorrelation
coefficient might also induce neighboring coefficients to be rather large. (See
Part 11, Cases 2 and 4 for examples of this phenomenon.)

+1.0-r acf
e O 123 A~ > k= Lag length
-049
-1.0--
+1.0 pact
T 1 23 4
S O l T ' —3= k= Lag length
s =
58 s
o 9 | !
< |
g
-1.0+

Figure 3.8 Theoretical acf and pacf for process (3.15): z, = —0.8a,_, + a,, with

a, ~ NID(0, 1).
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Figure 3.9 Five estimated acfs and pacf’s for realizations generated by process
(3.15).
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Figure 39 (Continued).

3.3 Statistical inference at the identification stage

Recall that in classical statistics we may want to know something about the
population, but getting all relevant information about the population is
frequently impossible or too costly. Therefore, we infer something about the
population by using a sample, along with some probability concepts and
formulas and theories from mathematical statistics. The sample may be used
to estimate a characteristic of the population or to test a hypothesis about the
population. This type of inductive reasoning is known as statistical in-
ference.

In UBJ-ARIMA analysis we engage in statistical inference at all three
stages of the method. That is, we infer something about the unknown
process by using the realization, along with some probability principles and
statistical concepts. At the identification stage we use the estimated acf and
pacf, calculated from the realization, to help us tentatively select one or
more models to represent the unknown process that generated the realiza-
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tion. The purpose of this section is to discuss and illustrate statistical
estimation and hypothesis testing, as they occur at the identification stage.*

Testing autocorrelation coefficients. In Chapter 2 we saw how autocor-
relation coefficients are calculated from a realization. An estimated autocor-
relation coefficient (r,) is an estimate of the corresponding (unknown)
theoretical autocorrelation coefficient (p,). We do not expect each r, to be
exactly equal to its corresponding p, because of sampling error. Thus, with
k = 1 and n = 100, we would get a certain value for r, using (2.5). But if we
could then obtain another realization with n = 100 and recalculate r;, we
would probably get a different value. In turn, another realization would give
us yet another value for r,. These differences among the various r’s are due
to sampling error. This was illustrated in the last section where we saw a
series of estimated acf’s and pacf’s that were similar to, but not identical to,
the corresponding theoretical acf’s and pacf’s.

If we could calculate r, for all possible realizations with n = 100 we
would have a collection of all possible r, values. The distribution of these
possible values is called a sampling distribution.’ As with other sample
statistics, these different possible sample values (r,) will be distributed
around the parameter (p,) in some fashion. R. L. Anderson [13] has shown
that the r, values are approximately Normally distributed when p, = 0 if n
is not too small. '

Bartlett {11] has derived an approximate expression for the standard
error of the sampling distribution of r, values. (The standard error of a
sampling distribution is the square root of its estimated variance.) This
estimated standard error, designated s(r,), 1s calculated as follows:

k-1 \1/?
s(r,) = (l +2) ,}2) n=1'/2 (3.16)

J=1

This approximation is appropriate for stationary processes with Normally
distributed random shocks where the true MA order of the processis k — 1.

This expression may be applied to the first three autocorrelations in
Figure 3.10 in the following way. First, let ¥ = 1. Then sum inside the
parentheses of expression (3.16) from j = 1 to j = 0; since j must increase

*Calling the second stage the estimation stage is misleading because statistical estimation also
takes place at the other two stages.

*You may find it helpful at this point to review the concept of a sampling distribution in an
introductory statistics textbook such as Wonnacott and Wonnacott [12].
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Figure 3.10 Estimated acf and pacf to illustrate calculation of standard errors of r,
and ¢,

by 1 to perform summation, there is no summation in this case, and we
replace the summation term with a zero. Thus withn = 60 and k = 1,

s(r) = (1 +0)"/*n~172
= (60)""*

=0.13
Next, let k = 2. Then (3.16) gives this result:

s(r)=(1+272)n- 122

[1+2(-0.62)*] %6072
(1.33)(0.13)
=0.17
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Then letting k = 3 we obtain

s(r)=(1+2r2 + 2r22)|/2n"/2

= [1 +2(-0.62)* + 2(0.35)*] 60172
= (1.42)(0.13)

= 0.18

Other s(r,) values are calculated in a similar fashion.

Now use these estimated standard errors to test the null hypothesis Hy:
p, =0 for k=1,2,3,.... It is common when using the estimate s(r,) in
place of the true standard error o(r,) to refer to the t-distribution rather
than the Normal distribution. We test the null hypothesis by finding out
how far away the sample statistic r, is from the hypothesized value p, = 0,
where “how far” is a t-statistic equal to a certain number of estimated
standard errors. Thus we find an approximate z-statistic in this way:

e — Py

I =
. s(r)

(3.17)

Let p, in (3.17) equal its hypothesized value of zero and insert each
calculated r, along with its corresponding estimated standard error s(r;).
Using the r, values in the acf in Figure 3.10, for k = 1 we find

A T ]
n 5("|)

_—062-0
0.13

4

= —4.78.

This result says that r; falls 4.78 estimated standard errors below zero.*
Using a rule of thumb that only about 5% of the possible r, would fall two
or more estimated standard errors away from zero if p, = 0, we reject the
null hypothesis p, = 0 since r, is significantly different from zero at about
the 5% level.

*Hand calculations may give results slightly different from those printed in Figure 3.10 because
of rounding.
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Figure 3.11 illustrates these ideas. The label on the horizontal axis shows
that this is a distribution of all possible values of r, for a certain sample size
n. That is, Figure 3.11 is a sampling distribution for r,. This distribution is
centered on the parameter p,, which is unknown. Since this is approximately
a Normal (or ) distribution with an estimated standard error s(r,) given by
(3.16), the interval p, + 2s(r,) contains about 95% of all possible r, values.
This is represented by the shaded area under the curve. If p, = 0, then r, in
our example (—0.62) is 4.78 estimated standard errors below zero. Instead
of calculating the ¢-value, we might look at the square brackets [ ] at lag 1 in
Figure 3.10. These brackets are about two standard errors above and below
zero. Since the acf spike at lag 1 extends beyond the bracket on the negative
side, the autocorrelation at that lag is more than two standard errors below
zero. Thus whether we use the two standard error limits (square brackets)
printed on the acf, or calculate a r-value as we did above, we conclude that
r, is significantly different from zero at better than the 5% level. Similar
calculations for k = 2 and k = 3 give these results:*

A
"2 s(ry)

_035-0
0.17

2.06
' =0
" s(r3)

_—001-0
0.18

= —-0.17

It must be emphasized that these calculations are only approximate since
they are based on Bartlett’s approximation (3.16) for the standard error of
the sampling distribution of r,. We are taking a practical approach to a
difficult mathematical problem, giving up some precision to achieve a useful
procedure.

In the preceding example, we implicitly were supposing that the true MA
order of the underlying process was first zero, then one, then two, and so
forth. That is, equation (3.16) applies when the true MA order of the
underlying process is k — 1. When calculating s(r,) above, we let k = 1,
implying that the MA order of the process was kK ~ 1 =1 — 1 = 0; when
calculating s(r,) we let k = 2, implying a true MA order of k — 1 = 2 —

*Hand calculations may give a slightly different answer due to rounding.
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flry)

Shaded area is approximately
95% of the area under the curve

Sample statistic 7, = —0.62,
4.78 standard errors below the
hypothesized value p, =0

A I
' zw, oy p,+2w.)

///////,

L£]

Figure 3.11 An approximately Normal (or ¢) sampling distribution for r,, with
estimated standard error s(r,) given by equation (3.16).

! = 1; when calculating s(r,) we let k = 3, implying a true MA order of
two. All the acf r-values printed in this text are based on standard errors
calculated in this manner.

If we let the assumed true MA order increase by one each time we test an
additional r, coefficient, we see from (3.16) that s(r, ) tends to increase as &
increases. This is illustrated in Figure 3.10, where the square brackets trace
out a gradually widening band. This occurs because we add an additional r?
term in (3.16) each time k increases. These additional terms may be quite
small so that s(r,) might not increase noticeably until we cumulate several
rZ terms. This gradual increase in s(r,) is illustrated in Figure 3.10 where
the two standard error limits are virtually constant from lags 2 through 9.

At times we may want to assume that the true MA order of an
underlying process is a single value. For example, we might maintain the
hypothesis that the underlying process is white noise. There would be no
autocorrelation within the process and the true MA order would be zero.
Then we must replace k — 1 at the top of the summation sign in (3.16) with
the fixed value of zero. In that case (3.16) tells us that s(r,)=n"'? =
60~ 172 = 0.13 for all k. Then we would use the square brackets at lag 1 in
Figure 3.10 as the two standard error limits for other lags as well. For all
acf’s in this text, the assumed true MA order can be fixed at any desired
value by extending the printed two standard error limits appropriately. For
example, if we suppose that the true MA order (k — 1) is fixed at 2, then

= 3. We would then extend the square brackets printed at lag 3 to other
lags.
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Testing partial autocorrelation coefficients. We can also test the statisti-
cal significance of estimated partial autocorrelation coefficients. The required
estimated standard error* is

s(éu) = ™2 (3.18)

Let us apply (3.18) to test the significance of the first three partial
autocorrelation coefficients in Figure 3.10. The ¢,, shown there were
calculated from a sample of 60 observations. Inserting #» = 60 into (3.18) we
find that s($,,) = 0.13 for all k. Testing the null hypothesis H,: ¢,, = 0, we
get this r-statistic:

t$ ‘pll ¢ll
" ()
_ -0.62-0
0.13
= —4.78

Since the absolute value of this z-statistic is greater than 2.0 we conclude
that ¢,, is different from zero at about the 5% significance level and we
reject the null hypothesis ¢, = 0.

Now letting k = 2 and testing the null hypothesis Hj: ¢,, = 0, we get
this z-statistic:

b — ¢
s(ds)

_ —005-0
T 0.3

= -0.35

lon =

For k = 3, testing the null hypothesis Hy: ¢5; = 0,
_ $33 = 933

A ==

! n
#» s(&5)

_030-0
0.13

= 2.35

Again we find that our calculations agree with the results printed by

*For discussion of this result see Quenouille {14}, Jenkins {15]. and Danaels [16].
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computer (Figure 3.10) though calculations by hand may give slightly
different results due to rounding. As with estimated acf’s, the square
brackets printed on estimated pacf’s throughout this book are approxi-
mately two standard errors above and below zero. These brackets provide a
fast way to find estimated partial autocorrelations that are significantly
different from zero at about the 5% level. In Figure 3.10, we see immediately
that the estimated partial autocorrelations at lags 1, 3, and 5 are different
from zero at about the 5% significance level because their printed spikes
extend beyond the square brackets.

Summary

1. In UBJ-ARIMA analysis a set of time-series observations is called a
realization.

2. A realization is assumed to have been produced by an underlying
mechanism called a process.

3. A process includes all possible observations on a time-sequenced
variable along with an algebraic statement (a generating mechanism) de-
scribing how these possible observations are related. In practice, generating
mechanisms are not known.

4. We use the UBJ three-stage procedure (identification, estimation,
and diagnostic checking) to find a model that fits the available realization.
Our hope is that such a model is also a good representation of the unknown
underlying generating mechanism.

5. AR means autoregressive. Each AR term in an ARIMA process has a
fixed coefficient (¢) multiplied by a past z term.

6. MA means moving average. Each MA term in an ARIMA process
has a fixed coefficient (§) multiplied by a past random shock.

7. Two common processes are
AR(1):z,=C+ ¢,z,_, + a,
MA(l):z,=C—6,a,_, + a,

where z, is the variable whose time structure is described by the process; C
is a constant term related to the mean y; ¢,2,_, is an AR term; 6,a,_, is an
MA term; and g, is a current random shock. The label AR(1) means that
the longest time lag attached to an AR term in that process is one time
period; the label MA(1) means that the longest time lag attached to an MA
term in that process is one time period.
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8. The longest time lag associated with an AR term is called the AR
order of a process. The longest time lag attached to an MA term is called
the MA order of a process.

9. a4, is a random-shock term that follows a probability distribution.
The usual assumption is that the a,’s are identically (for all ¢), indepen-
dently, and Normally distributed random variables with a mean of zero and
a constant vanance.

10. MA terms (past random-shock terms) in an ARIMA process can be
replaced by AR terms through algebraic manipulation. Thus, all ARIMA
processes are, directly or indirectly, univanate processes; z, is a function of
its own past values. We illustrate this point in Chapter 5.

11. We may think of a realization as observations drawn from a
stationary, joint, Normal probability distribution function. Such a function
is fully characterized by its mean, variance, and covariances. Because it is
stationary, it has a constant mean, a constant variance, and constant
covariances (covariances that depend only on the time span separating the
variables in question, not on their particular time subscripts.)

12. Rather than specifying joint distribution functions in detail, we
summarize a process in the form of a generating mechanism. From this
generating mechanism we may derive the mean, variance, autocovariances
(and autocorrelation coefficients), and the conditional distnbution of future
z’s for that process.

13. A theoretical autocorrelation coefficient (p,) is an autocovariance
(Y,) divided by the variance of the process (y, = 0.):

Yi
P =
Yo
14. The diagonals of the variance-covariance matrix and the autocorre-
lation coefficient matrix for a stationary process are each composed of a
constant.

15. Every ARIMA process has an associated theoretical acf and pacf.
Stationary AR processes have theoretical acf’s that decay toward zero and
theoretical pacf’s that cut off to zero. MA processes have theoretical acf’s
that cut off to zero and theoretical pacf’s that decay toward zero.

16. Estimated acf’s and pacf’s do not match theoretical acf’s and pacf’s
in every detail because the estimated ones are contaminated with sampling
€rror.

17. Because z, is stochastic, any given realization is only one which
might have occurred. Likewise, any estimated autocorrelation coefficient r,
is only one which might have occurred; that is, a different realization would
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produce a different value for each r,. The distribution of possible values for
r, is a sampling distribution.

18. For large n, when p, = 0, the sampling distribution for r, is
approximately Normal with a standard error estimated by equation (3.16).
The estimated standard error for partial autocorrelation coefficients is given
by equation (3.18).

19. Estimated autocorrelation or partial autocorrelation coefficients
with absolute ¢-values larger than 2.0 are statistically different from zero at
roughly the 5% significance level.

Appendix 3A: expected value rules and definitions*
Rule I-E: expected value of a discrete random variable

E(x) = Txf(x) = p,

X

where x is a discrete random variable; E is the expected value operator;
f(x) is the probability density function of x; p, is the mean of x.

Rule II-E: expected value of a constant
E(C)=C
where C is a constant.

Rule III-E: expected value of a finite linear combination of random
variables. If m is a finite integer,

E(Cix, + Cyx, + -+ + C,x,,)
= C,E(x) + GE(x;) +--- + C,E(x,)
where C,, G,,..., C, are constants; x,, X,,..., X,, are random variables.

Rule IV-E: expected value of an infinite linear combination of random
variables. If m = oo, Rule HI-E holds only if X% ,C; (where G, = 1)
converges (is equal to some finite number).

*For simplicity. these rules are stated for discrete random variables. For continuous random
variables, summation signs are replaced by integral signs.
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Rule V-E: covariance

Yoo = €oV(x,0) = E[(x = g, )(v = n,)]
= ZZ(X - p)(v — 1) f(x.v)

where v, is the covariance of x and v; x, v are discrete random variables;
.. i, are means of x and v. respectively. If x = z, andv =z, _, then v, is
an autocovariance denoted as vy, where & = |i}.

Rule VI-E: variance

Y., = 62 = var, = cov(x, x)
= E[(x = p)(x = )]
= E(x - p,)’

=X (x = g ) f(x)

Following the notation for autocovariances noted under Rule V-E, if
X=ZpYex T Y = 0:2'

Questions and Problems

3.1 Explain the relationship among an ARIMA process, a realization, and
an ARIMA model.

3.2 Suppose you want to forecast a variable whose ARIMA process is
known. Would you first have to build an ARIMA model?

3.3 Consider this ARIMA process:

(a)
(b)
©
()
(e)
)
®

z,=C~—0a,_,—ba_,+a,

How can you tell that this is a process rather than 2 model?
What is the AR order of this process? Explain.

What is the MA order of this process? Explain.

Is this a mixed process? Explain.

Why are the 8 coefficients written with negative signs?

Is this a univariate process? Explain.

Contrast the statistical characteristics or attributes of 8, and a,.
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(h) What are the usual assumptions about a, in ARIMA analysis?
Ilustrate graphically. Are these assumptions always satisfied in prac-
tice? Why are these assumptions made?

3.4 Explain the difference between a determunistic relationship and a
stochastic process.

3.5 How are estimated acf’s and pacf’s found? How are theoretical acf’s
and pacf’s found?

3.6 Consider the following pairs of theoretical acf’s and pacf’s. In each
case indicate whether the pair of diagrams is associated with an AR or an

acf pacf
(a) P I l > k Pk k
b) P l [ I I >t Pk l [ > k
(c) Pa I 3= k Ok I [ 'j 1 — k
d) Pe l I I l I >k Ork J > k
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MA process, state the AR or MA order of the process, and write out the
process generating mechanism. Explain your reasoning.

3.7 Explain why estimated acf’s and pacf’s do not match theoretical acf’s
and pacf’s in every detail.

3.8 Consider the following estimated autocorrelation coefficients calcu-
lated from a realization with n = 100:

k T

0.50
0.28
0.10
0.05
-0.01

W oH W -

(a) Calculate an approximate t-statistic for each r, on the assumption
that the true MA order increases by one with each additional calcula-
tion.

(b) Plot the r, values on an acf diagram. Indicate on the acf how
large each r, would have to be if it were to be significantly different
from zero at roughly the 5% level.

(¢) Repeat parts (a) and (b) above on the assumption that the true
MA order is fixed at zero.

3.9 Consider these estimated partial autocorrelation coefficients calculated
from a realization with n = 100:

k ek

-0.60
-0.32
-0.21
0.11
0.03

W hH W -

(a) Calculate an approximate t-statistic for each ¢, .

(b) Plot the <f>k « values on a pacf diagram. Indicate on the pacf how
large each ¢,, would have to be if it were to be significantly different
from zero at about the 5% level.
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AN INTRODUCTION
TO THE PRACTICE
OF ARIMA MODELING

In this chapter we first discuss the general characteristics of a good ARIMA
model. Then we apply the strategy of identification, estimation, and di-
agnostic checking to two realizations.

After reading this chapter you should be ready to start on the case
studies in Part II. (See the Preface or the Introduction to the cases for a
suggested reading schedule.) You must read Chapters 5-12 to have a full
grasp of the notation and procedures employed in the case studies. But the
first few cases are not t0o complicated; starting them after this chapter will
help you develop a better understanding of the practice of ARIMA model-
ing.

4.1 What is a good model?

Several times in the first three chapters we have referred to the goal of
building a good model. Before looking at two examples of UBJ model
building in the next section, we summarize the qualities of a good ARIMA
model.

It is important to remember the difference between a model and a
process. In practice we never know which ARIMA process has generated a
given realization, so we must follow a trnial-and-error procedure. In the

80
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“trial” part of the procedure (the identification stage) we are guided by the
estimated acf and pacf calculated from the realization. We select some
hypothetical ARIMA generating mechanisms, like the AR(l) or MA(])
mechanisms shown in equations (3.1) and (3.2), in the hope that they will fit
the available data adequately. These possible or “trial” generating mecha-
nisms are models. A model is different from a process: a process is the true
but unknown mechanism that has generated a realization, while a model is
only an imitation or representation of the process. Because the process is
unknown, we never know if we have selected a model that is essentially the
same as the true generating process. All we can do is select a model that
seems adequate in light of the available data.

How do we decide if a model is a good one? Following are some
important points to remember. They are summarized in Table 4.1.

(1) A good model is parsimonious. Box and Jenkins emphasize a key
principle of model building called the principle of parsimony, meaning
“thrift.” A parsimonious model fits the available data adequately without
using any unnecessary coefficients. For example, if an AR(1) model and an
AR(2) model are essentially the same in all other respects, we would select
the AR(1) model because it has one less coefficient to estimate.

The principle of parsimony is important because, in practice, parsimoni-
ous models generally produce better forecasts. The idea of parsimony gives
our modeling procedure a strong practical orientation. In particular, we are
not necessarily trying to find the true process responsible for generating a
given realization. Rather, we are happy to find a model which only

Table 4.1 Characteristics of a good ARIMA model

1. It is parsimonious (uses the smallest number of coefficients needed to
explain the available data).
2. It is stationary (has AR coefficients which satisfy some mathematical in-
equalities; see Chapter 6).
3. It is invertible (has MA coefficients which satisfy some mathematical in-
equalities; see Chapter 6).
4. It has estimated coefficients (¢’s and 8°s) of high quality (see Chapter 8):
(a) a_bsolute t-values about 2.0 or larger,
(®) ¢’s and &’s not too highly correlated.
§. It has uncorrelated residuals (see Chapter 9).
6. It fits the available data (the past) well enough to satisfy the analyst:
(a) root-mean-squared error (RMSE) is acceptable,
(b) mean absolute percent error (MAPE) is acceptable.
7. It forecasts the future satisfactorily.
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approximates the true process as long as the model explains the behavior of
the available realization in a parsimonious and statistically adequate manner.
The importance of the principle of parsimony cannot be overemphasized.

Matrix (3.11) is a convenient vehicle for discussing the principle of
parsimony. For example, consider the theoretical acf for an AR(1) process
with ¢, > 0 in Figure 3.4, Example 1. This is simply a plot of the p, values
(k= 1,...,n~— 1) found in the upper-night triangle of matrix (3.11) for that
particular process. (We need only the p,’s in the upper-right triangle since
(3.11) is symmetric.) For the n random variables (z,,..., z,) we can show
that an AR(1) process has n nonzero p, values (p,,. .., p,_,)- However, we
can represent all this information in a highly parsimonious manner with the
AR(1) generating mechanism (3.1), a process containing only two parame-
ters (C and ¢,). In fact, as we show in Chapter 6, all the autocorrelation
coefficients for an AR(1) process are a function of ¢,.

In later chapters and in the case studies in Part II we see that many
realizations characterized by a large number of statistically significant
autocorrelation coefficients can be represented parsimoniously by generat-
ing mechanisms having just a few parameters.

(2) A good AR model is stationary. As noted in Chapter 1 the UBJ-
ARIMA method applies only to a realization that is (or can be made)
stationary, meaning it has a constant mean, variance, and acf. Any model
we choose must also be stationary. In Chapter 6 we learn that we can check
a model for stationarity by seeing if the estimated AR coefficients satisfy
some mathematical inequalities.

(3) A good MA model is invertible. Invertibility is algebraically similar
to stationarity. We check a model for invertibility by seeing if the estimated
MA coefficients satisfy some mathematical inequalities. These inequalities
and the idea behind invertibility are discussed in Chapter 6.

(4) A good model has high-quality estimated coefficients at the estimation
stage. (This refers to the estimated ¢’s and 8°’s, designated ¢ and 4, not the
autocorrelation coefficients r, and partial autocorrelation coefficients ¢,
found at the identification stage.) We want to avoid a forecasting model
which represents only a chance relationship, so we want each é or 6
coefficient to have an absolute 7-statistic of about 2.0 or larger. This means
each estimated ¢ or @ coefficient should be about two or more standard
errors away from zero. If this condition is met, each ¢ or § is statistically
different from zero at about the 5% level.
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In addition, estimated ¢ and # coefficients should not be too highly
correlated with each other. If they are they tend to be somewhat unstable
even if they are statistically significant. This topic is discussed in Chapter 8.

(5) A good model has statistically independent residuals. An important
assumption stated in Section 3.2 is that the random shocks (a,) are
independent in a process. We cannot observe the random shocks, but we
can get estimates of them (designated 4,) at the estimation stage. The 4, are
called residuals of a model. We test the shocks for independence by
constructing an acf using the residuals as input data. Then we apply -tests
to each estimated residual autocorrelation coefficient and a chi-squared test
to all of them as a set. These r-tests and chi-squared test are primary tools at
the diagnostic-checking stage, discussed in detail in Chapter 9. If the
residuals are statistically independent, this is important evidence that we
cannot improve the model further by adding more AR or MA terms.

(6) A good model fits the available data sufficiently well at the estimation
stage. Of course no model can fit the data perfectly because there is a
random-shock element present in the data. We use two measures of close-
ness of fit: the root-mean-squared error (RMSE) and the mean absolute
percent error (MAPE). These two ideas are discussed in Chapter 8.

How well is “sufficiently well?” This is a matter of judgment. Some
decisions require very accurate forecasts while others require only rough
estimates. The analyst must decide in each case if an ARIMA model fits the
available data well enough to be used for forecasting.

(7) Above all, a good model has sufficiently small forecast errors. Al-
though a good forecasting model will usually fit the past well, it is even
more important that it forecast the future satisfactorily. To evaluate a model
by this criterion we must monitor its forecast performance.

4.2 Two examples of UBJ-ARIMA modeling

In this section we present two examples of the complete UBJ modeling cycle
of identification, estimation, and diagnostic checking. In both examples the
data are simulated with a computer: first, a generating mechanism is
chosen; then, a set of random shocks are generated to represent the purely
stochastic part of the mechanism.

Example 1. Consider the realization in Figure 4.1. Inspection suggests
that the vanance of the series is approximately constant through time. But
the mean could be fluctuating through time, so the series may not be



TIME

1
11
21
31
a1
51
61
71
8l
91
101
111
121
131
141
151
161
171
181
191
201
211
221
231
241
251
261
271
281
291
301
311
321
331
341
3s1
361
371
381
391
401
a1l
421
431
a4l
451
461
a71
481
491
501
S11
s21
531
s41
551
561
S71
s81
591
601
I

SIMULATED DATA
~-~DIFFERENCING: O

——EACH VERTICAL AXIS INTERVAL = .212083
LOW = MEAN = HIGH =
91. 62 97. 1893 101.8
I * 99. 06
I . 99. 08
1 /,/ 98. 27
1 97.5
& 4 97. 28
Pl 95. 95
» I 95. 65
\% 96. 99
o3 97.29
.<"-____ I 93. 54
* 1 95.3
TTe—1 96. 91
—— 99. 02
1 * 101. 1
1 e 98. 11
1+ 97.84
ﬁ\\\ 97. 06
1 >e 97. 94
* 97. 14
~<I 94.88
L 98
. 1 95. 04
\fl 96. 89
P 9. B4
I * 99. &7
1 - 98. 35
I * 101. 2
1 % 97.84
I 97. 92
x(_>¢ 99. 83
* 9. 9
I % 101.8
I /n/ 101. 14
I * 100. 83
* 97. 06
I * 99
/“‘I 96. 71
* I 93. 46
*< 1 91. 62
* I 94
* 1 93.9
T, I 95.73
o 1 95. 81
* 1 95. 26
.<'/ 1 92. 51
— 1 93. 28
. 1 95. 4
g/ I 94. 81
O\I 94. 89
. 97. 07
Y 97. 61
1 97.83
1T 99. 41
1// 99. 1
* 97.19
.<1 94. 3
* 97. 08
1\*\ 98. 16
I - 100. 6
1 [ 100. 42

-0--0--0--0-#-0--0--0--0--0--0--0-'0'-0--0--0--0-+-0-+-0--0--0--0--0--0--0--0-+-0--0--0--0--0--0--0-+4-+-0-+-0--0--0--0-4--0--0--0-

Figure 4.1 A simulated realization: example 1.
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stationary. The estimated acf will offer additional clues about the stationar-
ity of the mean of this realization. If the estimated acf drops quickly to zero,
this is evidence that the mean of the data is stationary; if the estimated acf
falls slowly to zero, the mean of the data is probably not stationary.

Even if the mean is not stationary it is still possible to calculate a single
sample mean (Z) for a given realization. The mean of our realization is
Z = 97.1893, shown in Figure 4.1 as the line running through the center of
the data. If the mean is stationary it is a fixed, nonstochastic element in the
data. Our next step is to remove this element temporarily by expressing the
data in deviations from the mean 7, = z, — Z. This allows us to focus on
the stochastic components of the data. We then employ equations (2.5) and
(2.9) to find the estimated autocorrelation and partial autocorrelation
coefficients 7, and ¢, .

The estimated acf and pacf are shown in Figure 4.2. The estimated
autocorrelations drop to zero fairly quickly; absolute z-values fall below 1.6
by lag 3. We conclude that the mean of the realization is stationary and we
do not difference the data.

At the identification stage our task is to compare the estimated acf and
pacf with some common theoretical acf’s and pacf’s. If we find a match
between the estimated and theoretical functions, we then select the process

4 4+ L+ 4+ 4+ AUTOCORRELATIONS + 4+ 4+ 4+ 4+ 4 4 4+ 4+ 4+ 4+ + +

+ FOR DATA SERIES: SIMULATED DATA +
+ DIFFERENCING: O MEAN = 97.1893 +
+ DATA COUNT = &0 STD DEV = 2 26619 +
COEF T-VAL LAG (]
0. 61 4. 75 1 L QOO23330I0D035050200>
0. 40 2. 33 2 € Q5522502002512
0. 19 1. 04 3 £ Q>>o55> 3
0 12 0. 65 4 L a>o>>> 1
0. 06 0.32 S L 0>> 1
0.05 0.25 6 L 0>> 1
0. 04 0. 21 7 L o> 1
-0.07 ~0.39 8 9 <<0 b]
~0.08 -0.42 9 L <<<0 1
-0.10 -0.55 10 C <<<0 1
CHI-SQUARED#» = 39.54 FOR DF = 10

+ 4+ + 4+ e+ ++ + PARTIAL AUTOCORRELATIONS + + + 4+ + 4+ + + 4+ + +
COEF T-VAL LAG 0

0. 61 4.75 1 € Q3255225 1250020000000
0.03 0. 26 2 3 o> k|
-0.10 -0.80 3 L <<<0 1
0. 06 0. 43 4 C a>> ]
~0.02 -0.13 5 L <0 b]
0. 02 0. 14 3 C o> ]
0.02 0.12 7 S a> 1
-0.18 -1.38 8 [ <K<KLLKo b
0.04 0. 35 9 L 0> b]
-0.03 -0.22 10 C <0 J

Figure 4.2 Estimated acf and pacf calculated from the realization in Figure 4.1.
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associated with the matching theoretical functions as a tentative model for
the available data. Keep in mind that we want a parsimonious as well as a
statistically adequate model. That is, we want a model that fits the data
adequately and requires the smallest possible number of estimated parame-
ters.

The only theoretical acf’s and pacf’s we have seen so far are those for the
AR(1) and MA(1) processes shown in Figures 3.4 and 3.5. Can you find a
theoretical acf and pacf that match the estimated functions in Figure 4.27?

The closest match is an AR(1) with ¢, > 0. As shown in Figure 3.4, the
theoretical acf for this process decays toward zero on the positive side, while
the theoretical pacf has a single positive spike at lag 1. This is similar to the
estimated acf and pacf in Figure 4.2. Therefore, we tentatively select this
AR(1) model for our data:

2,=C+é¢,z,_, +a, (4.1)

We now move to the estimation stage. Model (4.1) has two parameters, C
and ¢,, requiring estimation. At the estimation stage we obtain accurate
estimates of these parameters. We now make better use of the available data
than we did at the identification stage since we estimate only two parame-
ters. At the identification stage, by contrast, we estimated 21 values (the
mean plus 10 autocorrelation coefficients plus 10 partial autocorrelation
coefficients).

Figure 4.3 shows the results of fitting model (4.1) to the realization in
Figure 4.1. We get these estimates:

¢, =0.635
C = 35444
+ 4+ + + + + + + + +ECOSTAT UNIVARIATE B-J RESULTS+ + + + + + + + + +
+ FOR DATA SERIES: SIMULATED DATA +
+ DIFFERENCING: [¢) DF = 57 +
+ AVAILABLE: DATA = 60 BACKCASTS = 0 TOTAL = &0 +
+ USED TO FIND SSR: DATA = 59 BACKCASTS = O TOTAL = 59 +
+ (LOST DUE TO PRESENCE OF AUTORECRESSIVE TERMS: 1) +
COEFFICIENT ESTIMATE STD ERROR T-VALUE
PHI 1 0. 635 0. 104 6. 09
CONSTANT 35. 444 10. 1338 3. 49762
MEAN 97. 1978 . 632506 151. 279
ADJUSTED RMSE = 1. 79903 MEAN ABS % ERR = 1. 45
CORRELATIONS
1 2
1 1. 00

2 0.03 1.00
Figure 4.3 Estimation results for model (4.1).
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It happens that Cis equal to (1 — <1‘>,) = 97.1978(1 — 0.635), where 4 is
found simultaneously along with ¢, by the computer estimation routine.*
The relationship between the constant term and the mean is discussed in
more detail in Chapter 5.

Because the absolute value of ¢, is less than 1.0, we conclude the model is
stationary. (This topic is discussed further in Chapter 6.) The absolute
t-values (3.49 and 6.09) attached to ¢ and ¢, are greater than 2.0, so we
conclude that these estimates are different from zero at better than the 5%
significance level.

Next, we subject our tentative model to some diagnostic checks to see if it
fits the data adequately. Diagnostic checking is related primarily to the
assumption that the random shocks (a,) are independent. If the shocks in a
given model are correlated, the model must be reformulated because it does
not fully capture the statistical relationship among the z’s. That is, the
shocks are part of the z’s; if the shocks of a model are significantly
correlated, then there is an important correlation among the z's that is not
adequately explained by the model.

In practice we cannot observe the random shocks. But the residuals (4,)
of an estimated model are estimates of the random shocks. To see how the
residuals are calculated, solve (4.1) for a,, that is, @, =z, — C — ¢,z,_,.
Although the z values are known, C and ¢, are unknown; substitute the
estimates C = 35.444 and ¢, = 0.635. The resulting equation gives estimates
of the random shocks based on the known z’s and the estimated parame-
ters: 4, = z, — C — ¢,z,_,. For t = 1, we cannot find 4, since there is no
2., =2 avallable But for 7 = 2 and 1 = 3, we get the following results:

é2=zz—é—q3,z,
= 99.08 — 35.444 — 0.635(99.06)
= 0.733

‘33"23'6";’122
= 98.27 — 35.444 — 0.635(99.08)
= —0.090

Other residuals are calculated in a similar manner.

In diagnostic checking we construct an acf, called a residual acf, using
the residuals (4,) of the model as observations. This estimated acf is used to
test the hypothesis that the random shocks (a,) are independent. Figure 4.4

*Some programs first estimate u with the realization mean 7 and then estimate the ¢ and ¢
coefficients.
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shows the residual acf for model (4.1). Because the absolute ¢-values and the
chi-squared statistic are all relatively small (none are significant at the 5%
level), we conclude that the random shocks are independent and that model
(4.1) is statistically adequate. The diagnostic-checking stage is discussed
more fully in Chapter 9.

The preceding three-stage procedure is potentially iterative because the
diagnostic checks might suggest a return to the identification stage and the
tentative selection of a different model. In this introductory example our
first try produced an adequate model. Examples of the repetitive application
of these stages are presented in the case studies in Part II. Case 2 illustrates
very well how diagnostic-checking results can send us back to the identifica-
tion stage to choose an alternative model. When all diagnostic checks are
satisfied the model is used for forecasting. In Chapter 10 and in several of
the case studies we show how forecasts are produced.

Example 2. Consider the data in Figure 4.5. As with the previous
example, these data were simulated using a computer. Inspection of the data
indicates that this series has a constant mean and variance.

Figure 4.6 shows the estimated acf and pacf for this realization. We
conclude that the mean of the realization is stationary because the estimated
acf falls off quickly to zero. At the identification stage we tentatively choose
a model whose theoretical acf and pacf look like the estimated acf and pacf
calculated from the data. The estimated acf and pacf (in Figure 4.6) are
similar to the theoretical acf and pacf (in Figure 3.5) associated with an
MA(1) process where 8, > 0. The estimated acf cuts off to virtually zero
after lag 1 while the estimated pacf decays toward zero. Therefore, we
tentatively choose an MA(1) model to represent this realization. This model
is written as

z,=C-40a,_, +a, (4.2)
++RESIDUAL ACF++
COEF T-VAL LAG 0
-0.04 -0.31 1 <30
0.11 084 2 D>>>5>5>33>>
-0.09 -0.66 3 €<CLLLLL<D
0.04 0.31 4 0>>>>
-0.06 -0.44 5 €<<<<<0
0.00 000 & 0
0.12 o0.e8 7 D>5>>3353>5>>
-0.11 -0.84 8 €CLLLLLLLLLD
0.05 033 © 0>>>>>
-0.01 -0.07 10 <0

CHI-SQUARED# = 3.71 FOR DF = 8
Figure 4.4 Residual acf for model (4.1).



SIMULATED DATA
--DIFFERENCING: O
--EACH VERTICAL AXIS INTERVAL = . 118542

LOW = MEAN = HIGH =

22. 34 25. 5205 28. 03
TIME I+44++t4ttttttttttttttetttsttss VALUVE
11 1 * 26. 18
21 .::” 25. 57
31 T 25. 94
41 ® 1 23. 84
51 * 26. 43
61 * 1 24. 23
71 * 1 24. 96
81 * 1 25. 11
91 T~ 25. 55

151 < 1 24.33
161 \_’Tf>» 2629
171 * 25. 06
181 < 1 24. 62
191 1 e 28, 03
201 T 24.17
211 I 24. 84
221 I~ 2s. 75
.

231 26. 44
241 l’<]——"’ e
25. 88

251 *
261 /,»——’%=’ 25. 08
271 * 1 24. 68
281 1 e 27.95
291+ 1 22.34
301 T * 27.95
311 1 25. 62
321 1 * 26. 56
331 * 24. 93
341 1 »* 27. 67
351 P 25. 44

361 1 2s. 21
371 .::::::::___1 24. 06
38l P 25.7

391 1 :::::::::=* 26.95
401 1 2s. 71

411 #emmm=—oT 1 22. 5

421 171» 26. 38
431 *::I 25. 24
441 t\ 25. 53
451 I = 25. 7%
461 1 +* 26. 96
471 * 24. 54
481 I » 26. 87
491 * 1 23. 34
501 I - 26.9

511 *<I—-—"—'s_ ca a3
s21 I**\ 25. 75
531 1 * 27. 05
541 x/,/ 2463

551 -1 25. 26
5;,1 p— ] 22.86
571 I »* 27. 6

s81 1 — 26.59
591 .-:::::::::T____——_. 24 1

601 I 25. 66

D Rt e o 2 o o b A

Figure 4.5 A simulated realization: example 2.



+ 4+ + 4+ 4+ 4+ 4+ 4+ 4+ 4+ + + + AUTOCORRELATIONS + + + 4+ 4+ 4+ 4+ 4+ + + + + +
+ FOR DATA SERIES: SIMULATED DATA +
+ DIFFERENCING: © MEAN = 25. 5205 +
+ DATA COUNT = 60 STD DEV = 1.28263 +
COEF T-VAL LAG 0
-0. 46 -3.53 1 LTI LI LCL<o ]
0.01 0. 06 2 L 0 ]
-0.05 -0 34 3 L <<<0 ]
0.16 1.01 4 L 02220050 ]
-0.13 -0.85 S L <LLCLLL0 ]
0.01 0. 06 & L 0 ]
0. 00 0.01 7 r 0 ]
0. 00 0. 00 8 8 0 ]
0. 06 0. 36 9 4 0>>> ]
-0.16 ~1.03 10 9 L0 ]
CHI-SQUARED# = 18. 30 FOR DF = 10
+ + 4+ + + + + 4+ + + + PARTIAL AUTOCORRELATIONS % + + + + + + + + + +
COEF T-VAL LAG 0
-0.46 -3 53 1 LI LT LLICLCCLLLo ]
-0.25 -1 94 2 CLCLLLLLLLLLKLo ]
~-0.22 -1.67 3 LLLTILCLLLo ]
0. 04 0. 32 4 r 0>> ]
-0.05 -0.39 S t <<<0 b ]
-0.07 -0.53 & 9 <<<0 ]
-0. 05 <-0.41 7 L <<<0 ]
~0.07 -0.56 ] [ <L<<0 ]
0. 05 0. .41 9 4 0>>> 1
-0.15 =-1.18 10 9 Lo ]

Figure 4.6 Estimated acf and pacf calculated from the realization in Figure 4.5.

+ + 4+ + + ¢+ + + + +ECOSTAT UNIVARIATE B-J RESULTS+ + + + + + + + + +

+ FOR DATA SERIES: SIMULATED DATA +
+ DIFFERENCING: ) OF = sg .
+ AVAILABLE: DATA = 60 BACKCASTS = 0 TOTAL = &0 +
+ USED TO FIND SSR: DATA = 40 BACKCASTS = 0 TOTAL = 40 +
+ (LOST DUE TO PRESENCE OF AUTOREGRESSIVE TERMS: o +
COEFFICIENT  ESTIMATE STD ERROR T-VALUE
THETA 1 0. 631 0. 101 6.27
CONSTANT 25. 5194 . 537192E-01 475, 053
MEAN 25. 5194 . 537192E-01  475. 053
ADJUSTED RMSE = 1.10313 MEAN ABS % ERR = 3. 59
CORRELAT 1ONS
1 2
1 100

2 000 1 GO
Figure 4.7 Estimation results for model (4.2).
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++RESIDUAL ACF++
COEF T-VAL LAG ]

0. 00 0. 00 1 0
0. 01 0. 06 2 a>
0. 00 0.01 3 0
0. 11 0. 83 4 03535555555>
~0.11 -0.88 S CLLLKCLLLLKO
-0.06 -0.45 6 <Ko
-0.04 -0.29 7 <<<<0
-0.03 -0.24 8 <<<0
-0.03 -0.26 9 <<<0
-0.17 -1.28 10 LLLLLLLLLCLLLLKLKLKLOo
CHI-SQUARED* = 4.32 FOR DF = 8

Figure 4.8 Residual acf for model (4.2).

Now we are ready for the estimation stage, where we reuse the realization
to estimate C and §,. Estimation results appear in Figure 4.7. The estimated
parameters are

6, = 0.631

¢ =25.519%

In this case, € is equal to ji, the estimated mean of the realization.

Because the absolute value of 9 is less than one, we conclude that this
model is invertible. (The concept of invertibility is explained in Chapter 6.)
The r-values of 475.05 for € and 6.27 for 0 indicate that these estimates are
significantly different from zero at better than the 5% level. Thus far the
model is acceptable.

Next, we do some diagnostic checking. As in the previous example we
test the hypothesis that the shocks (a,) are statistically independent by
constructing an acf using the model’s residuals (4,). The residual acf is
shown in Figure 4.8. The r-values and the chi-squared statistic are all
relatively small, allowing us to conclude that the random shocks of model
(4.2) are independent. We have found a satisfactory model—one that is
both parsimonious and statistically adequate.

You should now be able to read the first several case studies in Part 11,
although some of the points will not be clear until you have read Chapters
5-12.

Summary

1. A model is an imitation of the underlying process derived from
analysis of the available data.
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2. A good ARIMA model

(a)
(b)
(c)
()]
(e)
®
(@

is parsimonious;

is stationary;

1s invertible;

has high-quality estimated coefficients;
has statistically independent residuals;
fits the available data satisfactorily; and
forecasts the future satisfactorily.

Questions and Problems

4.1 State the principle of parsimony.

4.2 Why is the principle of parsimony considered important?

4.3 How do we test whether the random shocks of a tentatively selected
model are statistically independent?

4.4 Construct an ARIMA model for the following three realizations by
subjecting them to the UBJ procedure of identification, estimation, and
diagnostic checking. Defend your final model in terms of the characteristics
of a good model (see Table 4.1). You may find this to be a difficult exercise
since we have not yet discussed all the relevant details. Nevertheless,
analyzing these realizations should help you develop a better understanding
of the three stages in the UBJ method.

Realization 1

! z, t z, t z, ! z,
1 0.61 16 -145 31 -042 46 0.10
2 0.85 17 =277 32 -064 47 0.01
3 041 18 -1.19 33 -—1.58 48 0.24
4 1.24 19 0.17 3 -074 49 -146
5 0.95 20 -043 35 0.77 50 -085
6 0.94 21 -1.82 36 0.17 51 -128
7 0.65 22 -047 37 0.75 52 -092
8 -004 23 0.5 33 -0.18 53 0.96
9 0.76 24 -0.33 39 -034 54 1.24

10 1.47 25 —-1.33 40 1.29 55 0.17
11 1.39 26 0.46 4] 1.01 56 0.20
12 0.66 27 043 42 -0.23 57 0.92
13 0.17 28 -0.36 43 =212 58 0.86
14 -0.73 29 -142 44 048 59 —0.56
15 -0.52 30 -1.65 45 0.59 60 0.12
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Realization I1

! Z, t Z, 1 z, t z,
1 1.36 16 -054 31 1.10 46 -—-2.62
2 —-0.19 17 0.49 32 -0.16 47 2.61
3 0.52 18 —-0.31 33 —-049 48 0
4 -0.07 19 0.30 34 -0.33 49 1.67
5 -=0.17 20 -2.02 35 —-062 50 —1.68
6 —0.58 21 1.58 36 1.68 51 1.78
7 1.58 22 -0.16 37 -—-154 52 -0.53
8 —046 23 —-0.68 38 0.75 53 -=0.21
9 0.33 24 -0.12 39 -0.10 54 0.76
10 -0.76 25 -041 40 -0.99 55 =225
11 0.71 26 0.37 41 1.38 56 2.47
12 -0.03 27 -—1.75 42 —-149 57 -0.93
13 1.23 28 0.04 43 0.50 58 0.50
14 -1.19 29 -1.31 4 -0.65 59 1.26
15 1.37 30 1.03 45 0.79 60 —0.16
Realization 111
t z, t z, t 2, t z,
1 —-036 16 -249 31 0.04 46 1.78
2 0.55 17 =257 32 1.08 47 3.24
3 0.13 18 -1.63 33 1.23 43 2.29
4 -127 19 -2.03 34 0.13 49 0.52
5 1.36 20 -1.10 35 -0.50 50 222
6 ~0.18 21 —-1.09 36 2.19 51 1.34
7 0.11 22 -042 37 0.99 52 1.35
8 -0.79 23 -2.13 38 0.72 53 0.17
9 -0.11 24 -0.25 39 1.35 54 1.59
10 0.53 25 1.58 40 -~054 55 -104
11 0.39 26 0.29 41 1.24 56 1.21
12 0.47 27 1.20 42 0.57 57 0.06
13 -130 28 0.78 43 1.35 58 —0.26
14 -238 29 0.29 4 0.30 59 -0.66

15 ~-231 30 -109 45 1.13 60 -024
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X

NOTATION AND
THE INTERPRETATION
OF ARIMA MODELS

In Chapters 1-4 we introduced the basic definitions, statistical concepts,
and modeling procedures of the UBJ~ARIMA forecasting method.

In the present chapter we first discuss some of the terminology and
notation associated with ARIMA models. You must become familiar with
this notation in order to read UBJ-ARIMA literature with ease. If you are
famuliar with basic high school algebra you should not have serious diffi-
culty understanding and using ARIMA notation. The only requirement is
that you perform the indicated algebraic manipulations yourself. This takes
time, but it is necessary and not difficult.

Next, we consider how ARIMA models can be interpreted in common-
sense ways. This is especially important for the practicing forecaster who
must give managers an intuitive explanation of ARIMA models.

In discussing the interpretation of ARIMA models, we demonstrate a
very important result—AR terms and MA terms are algebraically inter-
changeable (though not on a simple one-for-one basis). In Section 5.3 we
show that an MA(1) process is equivalent to an AR process of infinitely
high order; in Section 5.4 we show that an AR(1) process is equivalent to an
MA process of infinitely high order. This interchangeability of AR and MA
terms is important in practice since our objective is to find the most
parsimonious model that adequately represents a data series. If we can
substitute a few AR terms for many MA terms, or a few MA terms for
many AR terms, we satisfy the principle of parsimony.

94
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In Chapter 6 we return to a discussion of the concepts underlying the
identification stage of the UBJ method.

5.1 Three processes and ARIMA( p, d,q) notation

In Chapter 3 we presented the ordinary algebraic form of two common
ARIMA processes, the AR(1) and the MA(1):

z,=C+¢z,_, +a, (5.1)
z,=C—46,a,_, +a, (5.2)

Here are three additional processes to consider:

2, =C+ ¢z, +¢,2,_,+a, (5.3)
z,=C~- 0|al—| - 0201—2 +a, (54)
z,=C+ ¢z,_,—0,a,_, +aq, (5.5)

Equation (5.3) is called an AR(2) process because it contains only AR
terms (in addition to the constant term and the current random shock), and
the maximum time lag on the AR terms is two. Process (5.4) is called an
MA(2) since it has only MA terms, with a maximum time lag on the MA
terms of two. Equation (5.5) is an example of a mixed process—it contains
both AR and MA terms. It is an ARMAC(1, 1) process because the AR order
is one and the MA order is also one.

We may generalize from these examples. Let the AR order of a process
be designated p, where p is some non-negative integer. Let g, also a
non-negative integer, be the MA order of a process. Let 4, another non-
negative integer, stand for the number of times a realization must be
differenced to achieve a stationary mean.* After a differenced series has
been modeled, it is integrated d times to return the data to the appropriate
overall level. (Integration is discussed in Chapter 7.) The letter “I”” in the
acronym ARIMA refers to this integration step, and it corresponds to the
number of times (d) the original series has been differenced; if a series has
been differenced 4 times, it must subsequently be integrated 4 times to
return it to its original overall level.

*Stationarity and differencing were discussed in Chapters 1-3.
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ARIMA processes are characterized by the values of p, d, and ¢ in this
manner: ARIMA( p, d, ¢). For example, equation (5.3) is an ARIMA(2, 0, 0)
process, or simply an AR(2). Equation (5.4) is an ARIMA(O0, 0, 2) process,
or an MA(2). And (5.5) is an ARIMA(1,0,1) or an ARMA(1,1). This
notation becomes more complicated when we deal with a certain type of
seasonal process; but as we will see in Chapter 11 the basic idea remains the
same for seasonal models also.

Some coefficients with lags less than the order of a process could be zero.
For example, if 8, in process (5.4) is zero, that process is written more
simply as

z,=C—tbya,_, +a,. (5.6)

Equation (5.6) is still an MA(2) process because the maximum lag on past
random shock terms is two.

5.2 Backshift notation

ARIMA models are often written in backshift notation. You must become
familiar with this notation if you want to thoroughly understand time-series
literature.

Some students find backshift notation difficult at first. However, with a
little patience and some practice you should find backshift notation rela-
tively easy to understand and convenient to use. The important thing is to
practice translating ARIMA models written in backshift form into both
ARIMA( p, d, q) form and common algebraic form. (Take out a pencil and
some scratch paper. You will need them as you read this chapter.)

Keep in mind that backshift notation involves no new statistical con-
cepts. It is merely a convenient way of writing ARIMA processes and
models.

We utilize the backshift operator B, which operates in this way: if we
multiply z, by B, we get z,_,. That is,

Bz, =z,_, (5.7

The operator may be unlike any other you have seen in algebra. You will
avoid confusion if you do nor think of B as a number. Although we treat B
like other algebraic terms (e.g., we may raise it to a power), it does not stand
for a number.

To make common sense of the B symbol, recall equation (5.7). It states B
is meaningful because it shifts time subscripts. When you see B in an
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algebraic expression, remember that B must be multiplied by some other
variable, such as z, or a,. B is meaningful, then, because it alters the time
subscript on the variable by which it is multiplied, as stated in (5.7).*

In equation (5.7) the exponent of B is one. Since any number raised to
the power one is that same number, we need not explicitly write the
exponent when it is one. But the exponent of B might be two, for example.
Multiplying z, by B? gives

Bz, =z, (5-8)

The same pattern holds for other exponents of B. In general, multiplying
z, by B* gives z,_,. Thus, by definition,
Bfz,=z,_, (5.9)

Multiplying a constant by B* does not affect the constant, regardless of
the value of k, because constants lack time subscripts. For example, let C be
a constant. Then

BC=C
B C=C
B‘C=C (5.10)

We can extend the above definitions of how B operates to write the
differencing operator (1 — B). (Recall that some data series must be dif-
ferenced to induce a stationary mean before being modeled with the
UBJ-ARIMA method.) Multiplying z, by (1 — B) produces the first dif-
ferences of z;:

(1-B)z,=z,-z,_, (5.11)

There is really nothing new in equation (5.11). It is merely an extension of
equation (5.7). If we expand the LHS of (5.11) and recall from (5.7) that
Bz, = z,_,, we get

(1 -B)z, =z — Bz,
=z, -z, (5.12)

thus showing that (5.11) is indeed correct.

*Note that B may not operate on a function of :, or a,. such as z7.



98 Notation and the interpretation of ARIMA models

Again, you should not think of B as a number. Thus (1 — B) is not a
numerical value; it is an operator. (1 ~ B) has a common-sense meaning
only when it is multiplied by a variable. When you see the operator (1 — B),
recall equation (5.11). It shows that (1 — B) multiplied by a time-sequenced
variable is just another way of writing the first differences of that variable.

In (5.11) the differencing operator (1 — B) is raised to the power one.
Multiplying z, by (1 — B)? would produce the second differences of z,. In
general, multiplying z, by (1 — B)? gives the dth differences of z,. Of
course, if d = 0, then (1 — B)? is equal to one. In that case we need not
explicitly multiply z, by the differencing operator.

Let us demonstrate that (1 — B)?z, is the same as the second differences
of z, (designated w,). The first differences of z, are z, — z,_,. The second
differences of z, are the first differences of the first differences; that is,
subtract from any given first difference (z, ~ z,_,) the previous first dif-
ference (z,., — z,_,):

w, = (zl - zl-—l) - (zr-l - 21—2)
=z, -2z, +2_, (5.13)

To show that (1 — B)?z, is identical to (5.13) expand the operator (1 — B)?
and apply definition (5.9):

(1 - B)’z,= (1 - 2B + B?)z,
=z, ~ 2Bz, + B’z,

=z, -2z,_,+2z_, (5.14)

t
We see that (1 — B)?z, is a compact and convenient way of writing the
second differences of z,.

In Chapter 2 we introduced the idea of expressing data in deviations
from the realization mean (2), defining #, = z, — Z. When writing a process
in backshift form we write the random variable z, in deviations from the
process mean (u), defining 7, = z, — p. Thus the symbol 7, does double
duty. When referring to a realization or a model based on a realization, %,
stands for deviations from the realization mean Z. When referring to a
process, 7, stands for deviations from the process mean p.

We are now ready to write some nonseasonal processes in backshift form.
The procedure is given by these six steps:

1. Start with a variable z, that has been transformed (if necessary) so it
has a constant variance.
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2. Write z, in deviations from its mean: 7, = z, — p.
3. Multiply Z, by the differencing operator (1 — B)“ to ensure that we
have a variable whose mean is stationary.

4. Multiply the result from step 3 by the AR operator whose general
form is (1 — ¢,B — ¢,B2 — --- — $,B7). For a specific process,
assign the appropriate numerical value to p, the order of the AR part
of the process. If any ¢ coefficients with subscripts less than p are
zero, exclude those terms from the AR operator.

5. Multiply the random shock a, by the MA operator whose general
formis (1 — 6,B — 6,B> — --- - 6,B%). For a specific process, as-
sign the appropriate numerical value to g, the order of the MA
portion of the process. If any 8 coefficients at lags less than ¢ are
zero, exclude them from the MA operator.

6. Equate the results from steps 4 and 5.

Combining the above six steps, a nonseasonal process in backshift
notation has this general form (numbers in parentheses represent steps):

(1-¢,B-¢,B>~--- —¢,8%) (1-B)s,
| ) TTH Mm
(5.15)
:r-/\(l —0,3—023;— —ﬂqua,
(6) (5)

Equation (5.15) can be written in a compact form that often appears in
time-series literature. Define the following symbois:

v?¢=(1-B)*
$(B)=(1-¢,B~ ¢,B>—--- — ¢,B)
0(B)=(1-6,B—6,B*—--- — 6,B9)

Substituting each of these definitions into (5.15) we get
¢(B)v9, = 0(B)a, (5.16)

Although we do not use this compact notation very often in this book (it is
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useful in Chapter 11), you may see similar notation in other texts or in
professional journal articles dealing with ARIMA models. Remember that
(5.16) is merely a compact way of saying that the random variable z, evolves
according to an ARIMA( p, d, q) process.

We now consider some examples of models in backshift form. We first
show the common algebraic form of a process, and then we follow the six
steps to write the process in backshift notation. We then apply rules (5.9)
and (5.10) to demonstrate that the backshift form and the common alge-
braic form are identical.

Example 1. Consider an AR(2) process. Let z, have a constant mean
and vanance so no transformations are necessary. The common algebraic
form of a stationary AR(2) process, seen earlier in (5.3), is

Z = C+ ¢|zl—| + ¢221—2 + a, (517)

To write this in backshift notation, follow the six steps. Step 1 is satisfied
by assumption. At step 2, express z, in deviations from the mean 7, = z, — p.
At step 3, multiply this result by the differencing operator (1 — B)“.
Because z, already has a constant mean, no differencing is required, so
d = 0. Therefore, (1 — B)*=1 and we need not write out this term
explicitly. Now multiply Z, by the appropriate AR operator (step 4). For an
AR(2) process, p = 2. Therefore, the required AR operator is (1 — ¢, B —
¢, B?). Next, multiply a, by the appropriate MA operator (step 5). Since
q = 0 for an AR(2), the MA operator collapses to 1. Finally (step 6), equate
the results from steps 4 and 5 to obtain

(1 -¢,B-¢,B%)z, =a, (5.18)

We want to show that (5.17), the common algebraic form. and (5.18), the
backshift form, are identical. First, expand the LHS of (5.18) and move all
terms except Z, to the RHS to obtain

f,=¢,Bi, + $,B*, + a, (5.19)
Next, apply rule (5.9) to get

=¢Z,_, + ¢,2,_, + a, (5.20)

Ny

!

The only difference between (5.20) and (5.17) is that in (5.20) z, is
expressed in deviations from the mean. Substituting (z, — ) for Z, in (5.20)
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and rearranging terms we get
z=p(l — ¢, —¢,)) + 92,0, + ¢,2,_, + q,

Now let C = p(l - ¢, — ¢,) and we have (5.17).

In this example the constant term is not the same as the mean, but it is
related to the mean. This is true for all processes containing AR terms. The
constant term of an ARIMA process is equal to the mean times the quantity
one minus the sum of the AR coefficients: *

C=p(l-0 == ~¢)

1=

- ,;(1 - i¢,) (5.21)

According to (5.21) if no AR terms are present the constant term C is
equal to the mean p. This is true for all pure MA processes.

Example 2. Consider a process for a variable (z,) which must be
differenced once because its mean is not constant. Suppose the first dif-
ferences of z, are a series of independent random shocks. That is,

(5.22)

To write this in backshift form, begin by expressing z, in deviations from
the mean. Then, to account for the differencing, multiply Z, by the backshift
operator with 4 = 1. Both the AR and MA operators collapse to one in this
example because p = ¢ = 0, so we may ignore them. Equating terms (step 6)

(1-B)z =a, (5.23)

To show that (5.22) and (5.23) are identical, substitute z, — p for 7, and
expand the LHS of (5.23):

2, - Bz,—p+ Bu=a, (5.24)
Apply (5.9) and (5.10) to (5.24). The g terms add to zero so

. (5.25)
which is identical to (5.22).

*As noted in Chapter 11. for certain kinds of scasonal models the constant term is somewhat
different from (5.21). but the basic idea remains the same.
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Note that u dropped out when the differencing operator was applied to
(z, — p). This happens with any process when d > 0. This result for
processes parallels an earlier statement in Chapter 2 that differencing a
realization usually produces a new series with a mean that is not statistically
different from zero.

If (5.25) were intended to represent a data series whose first differences
had a mean significantly different from zero, we could insert a constant
term on the RHS of (5.25). This point is discussed more fully in Chapter 7.
For now, we emphasize this point: in practice, differencing a realization
often induces a mean of zero so that insertion of a constant term in the
model after differencing is not needed. This result is especially common for
data in business, economics, and other social science disciplines. The
corresponding algebraic result for processes, as shown in equations
(5.23)-(5.25), is that the p terms add to zero (and the constant term is
therefore zero) when 4 > 0.

Example 3. Consider an ARIMA(I, 1.1) process. Let the variable z,
have a constant variance. Because d = 1, the AR terms apply to the first
differences of z, rather than to z, itself. Therefore, this process is written in
common algebra as

Z, =% = C+¢,(Z,_| —21—2)_0|a!—| + a, (526)
Because d = 1, the LHS variable is not z, but the first differences of z,.
Likewise, the AR coefficient is attached to the first differences of z,_, rather
than to z,_,.

To write the ARIMAC(I, 1, 1) in backshift notation, follow the same six
steps defined earlier. Work through those steps yourself to see if you arrive
at the following result:

(1 - ¢,B)(1 - B)z, = (1 - 6,B)q, (5.27)

Start with the deviations of z, from p (step 2). Multiplying 7, by (1 — B)
gives the first differences of z, (step 3). Apply the AR operator to this result
(step 4) and multiply a, by the MA operator (step 5). Step 6 gives (5.27).

To show that (5.26) and (5.27) are identical, substitute z, — p for 7, and
expand both sides of (5.27) to get

z,— Bz, + Bu— p—~ ¢,Bz, + $,B*2, + ¢,Bp — ¢, B’p=a, ~ \a,_,

(5.28)
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Apply rules (5.9) and (5.10) to (5.28). The pu terms add to zero. Rearrange
and collect terms to get (5.26).

Note that C = 0, implying from equation (5.21) that the first differences
have a mean of zero. This is the same result we obtained in Example 2. If
this result were not true for a data series whose behavior is otherwise
well-represented by (5.27), we could insert a nonzero constant term on the
RHS of that model to reflect the nonzero mean of the differenced data.

You should check your understanding of ARIMA( p, d, g) and backshift
notation by doing the exercises at the end of this chapter.

5.3 Interpreting ARIMA models I: optimal extrapolation of
past values of a single series

In this section and the next two sections we discuss the interpretation of
ARIMA models. This is important since many analysts and managers who
use statistical forecasts prefer techniques that can be interpreted in a
common-sense Or intuitive way.

There is no general, definitive interpretation of ARIMA models. How-
ever, we will discuss some ideas to help you see that many ARIMA models
can be rationalized.

We discuss how ARIMA forecasts can be interpreted as optimal extrapo-
lations of past values of the given series. “Optimal” refers to the fact that a
properly constructed ARIMA model has a smaller forecast-error variance
than any other linear univariate model. This optimal quality of ARIMA
forecasts is discussed further in Chapter 10.

In this section we assume that we have a properly constructed ARIMA
model (one that is parsimonious and statistically adequate). We want to
show that all three major components of such a model—the constant term,
the AR terms, and the MA terms—represent past z values with certain
weights attached. Therefore, we may interpret ARIMA forecasts as optimal
extrapolations of past values of the series.

This point is most easily demonstrated for the AR terms. We have
already seen that the AR portion of an ARIMA model is simply the sum of
selected past z values, each with a weight (a ¢ coefficient) assigned to it. In
practice we must use estimated ¢’s (designated ¢) found at the estimation
stage, so we have the AR part of a model equal to

D1z TPzt Tz,

Clearly, a forecast of z, based on this portion of an ARIMA model involves
the extrapolation of past z’s (z,_,, z,_,,. .., 2z,_,) into the future.
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It is also easy to show that the constant term reflects only past z's. From
(5.21) we know that (for a2 nonseasonal process) the constant term is

P
C=41—Z@)
i=)
In practice we have only an estimated mean g and we replace each ¢ with
its estimated value (¢). Therefore, the estimated constant term is

[
C=41—2@)
1=

An estimated mean j is clearly a combination of past z’s. The quantity
(1 — X¢,) is simply a weight assigned to fi. Therefore, a forecast of z, based
on the constant term in an ARIMA model also represents an extrapolation
of past z’s into the future.

It is more difficult to show that MA terms represent past z’s. Rather than
prove it rigorously for the general case, we demonstrate it for the MA(1).
We will find that the MA(1) process can be interpreted as an AR process of
infinitely high order. (We show this result using a theorem about geometric
series, but 1t can also be shown using ordinary algebraic substitution. See
problem 5.3 at the end of the chapter.)

Start with an MA(1) process. In backshift form this is

z,=(1-6,B)a, (5.29)
Dividing both sides of (5.29) by (1 — 6, B) gives
(1-6,B) '%,=a, (5.30)

Now, a theorem about geometric series states that if |6, < 1, then (I —
6,B)~ " is the sum of a convergent infinite series:

(1-6,B)'=(1+6,B+06B>+60B>+---), if(6]<1 (531)
Substituting (5.31) into (5.30), we get
(1+6,B+6:B*+6}B>+---)z =aq, (5.32)

You should be able to see that (5.32) is an AR process of infinitely high
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order with the ¢ coefficients following this pattern:

¢ = -6,
= —@?
¢ = "013

In practice we have only an estimate of 8, (designated 6,), and estimates
of the a, series (designated 4,). Furthermore, we would use the more
compact MA form (5.29) rather than the expanded AR form (5.32) to
produce forecasts because the principle of parsimony dictates that we use a
few MA terms in place of many AR terms whenever possible. Nevertheless,
we see from (5.32) that an MA(1) model can be interpreted as an AR model
of infinitely high order. The same is true for any pure MA model, and for
the MA portion of any ixed ARIMA model. Therefore, we can interpret
the MA portion of a properly constructed ARIMA model as representing a
large number of past z’s with certain weights attached. Thus all three parts
of a properly constructed ARIMA model—the AR terms, the constant
term, and the MA terms—taken together, can be interpreted as providing
an optimal extrapolation of past values of the given series.

5.4 Interpreting ARIMA models II: rationalizing them from
their context

The emphasis in ARIMA forecasting tends to be on finding statistical
patterns regardless of the reason for those patterns. But it is also true that
ARIMA models can often provide a reasonable representation of the
behavior of a data series; that is, they can be interpreted in a common-sense
way based on insight into the nature of the data. In this section we present
some examples to show how ARIMA models can sometimes be rationalized
from their context.

Example 1. Suppose there are hundreds of financial analysts studying a
corporation. They decide to buy or sell shares of this company by compar-
ing it with the alternatives. These analysts attempt to use all available
information (as long as the expected benefits exceed the expected costs of
acquiring the information) as they monitor the price of the company’s stock
and try to estimate the size and stability of future earnings. News about
events affecting this firm is disseminated quickly and at low cost to all
interested parties. The shares are traded continuously in a market with low
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transaction costs. Under these conditions, it is reasonable to suppose that
new information will be reflected in the price of the shares quite rapidly.

These circumstances imply that past prices contain virtually no informa-
tion that would allow an analyst to forecast future price changes so as to
regularly make above-normal trading profits. After all, if past price patterns
could be exploited in this way, people watching this stock would learn about
the patterns and try to take advantage of them. This collective action would
quickly raise or lower the stock price to a level where the chance for unusual
gain would disappear. Therefore, past prices would cease to show patterns
that could be exploited with any consistency.

From the preceding argument, a stock-price forecasting model based only
on past prices would state that the change in price (z, — z,_,) is independent
of past prices; the model would consist of a series of independent random
shocks. Price changes would reflect only things other than past prices, plus
the current irregular errors of judgment that the market participants cannot
avoid entirely. We are not saying that all information about this firm is
useless; rather, we are saying that knowledge of past prices would not help
in forecasting future price changes. In backshift form this model is

(1 - B)Z, =g, (5.33)

Expanding the LHS and applying the rules for the backshift operator
gives the following common algebraic form for this model:

LT, =a,

or

z,=2z,_,+a (5.34)
! -1 t

(What happened to the g term implicit in Z,?) Equation (5.34) is the famous
random-walk model implied by the efficient-markets hypothesis. It has been
found to be a good model for many stock-price series (see Part 11, Case 6).

The concept of a random walk plays an important role in the analysis of
nonstationary data series, discussed further in Chapter 7. According to
(5.33), the series z, is differenced once: the exponent d of the differencing
operator (1 — B)“ is one. In Chapter 2 we noted that many series without a
fixed mean can be transformed into stationary series by differencing.
Equation (5.34) describes a series z, that requires differencing because it
does not have a fixed mean. It says that z, moves at random starting from
the immediately prior value (z,_,) rather than starting from a fixed central
value.
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Example 2.* A national computer-dating service has a pool of clients.
The list is updated each week. The number in each week’s pool (z,) is
composed of several parts. We begin with a constant fraction (¢,) of last
week’s pool (z,_;) that remains in the pool this week. The fraction of last
week’s pool no longer in the pool this week is therefore (I — ¢,). Thus
¢,2,_, represents the number of people from last week remaining in the
pool, and (1 — ¢,)z,_, represents the sum of those who cancel their
registration plus those who are successfully matched with someone else by
the computer.

Next, we add a number (C’) of new clients registering each week. The
number of new clients fluctuates randomly about a fixed central value. That
is, C’ has a fixed component C and an additive white-noise (Normal
random-shock) element a,, and is defined as C' = C + a,.

Let the fixed number C added each week be equal to the overall mean of
the weekly pool (u) times the fraction (I — ¢,) lost each week due to
cancellation or a successful match, C = u(l — ¢,). In other words. we let
the series mean be stationary; the fixed number added each week (C) is just
enough to keep the mean level of the pool (1) constant through time. But
because g, is part of C’, z, will fluctuate randomly around p.

Combining the above elements, we get the following AR(1) model:

z,=p(l - @)+ oz, +a, (5.35)
which in backshift form is
(1 _¢|B)Zl=al (536)

Example 3. A chemical process generates an hourly yield (z,) of an
output. The yield is fixed at a certain level (¢) if the two input chemicals are
combined in a 3:1 ratio. But z, varies around u because the input ratio varies
randomly around 3:1 due to measurement error. Furthermore, when the
input ratio is not 3:1, there are several trace by-products left in the
processing tank that are dispersed gradually over many hours. The exact
combination of by-products depends on the input ratio. Some of the
by-products raise future hourly yields, while other by-products lower future
yields.

Any trace by-products are effectively dispersed after ¢ hours. Then the
hourly yield follows an MA(g) process:

zy=p—6a,_,—6a_,—----—0a,_, +a,

*The next two examples are adapted from Granger and Newbold [17. pp. 15 and 23-24].
Adapted by permission of the authors and publisher.
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or
z,=(1-6B-6,B~-.. - 4,B)a, (5.37)

If the input ratio is always exactly 3:1, all the random shocks are zero
and z, = p. When the input ratio varies around 3:1, it causes the yield to
deviate from u by amount a,. The resulting by-products cause further
deviations from p for up to ¢ hours.

We have rationalized the use of an MA(q) process to represent the above
situation. But in practice it might be possible to represent realizations
generated by (5.37) more parsimoniously with an AR model. In order to see
how this is possible, write the AR(]) in backshift form:

(1 -¢,B)z, =a, (5.38)
Divide both sides of (5.38) by (1 — ¢,B):
Z,=(1-¢,B)"'q, (5.39)

Now apply a mathematical theorem about geometric series, which states
that if |¢,] < 1, then (1 — ¢,B)™" is equivalent to a convergent infinite
series, that is,

(1-¢,B) ' '=(1+¢,B+¢*B*+¢B +---), if|g,l <1 (540)

Substitute (5.40) into (5.39) to get an MA process of infinitely high order:

Z=(1+¢,B+¢?B +¢B>+ - )a, (5.41)
where
0, = -9,
0, = ~¢]
0, = — ¢
(5.42)

Therefore, if g in process (5.37) is large, and if (5.42) is a reasonable
representation of the pattern of the @ coefficients in (5.37), an AR(1) model
will fit the data generated by (5.37) about as well as an MA(q) model even
though (5.37) is, strictly speaking, an MA(q) process. In fact, the AR(1)
model would likely produce more accurate forecasts because it is more
parsimonious.

Example 3 illustrates two important points. First, any pure MA process
can be written as an AR process of infinitely high order. Second, our
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objective in UBJ modeling is not necessarily to find the true process that has
generated the data, but rather to find a good model (a parsimonious and
statistically adequate imitation of the process) as discussed in Chapter 4.

5.5 Interpreting ARIMA Models III: ARIMA(0, d,q) models
as exponentially weighted moving averages

Many practicing forecasters are famliar with a univariate method called the
exponentially weighted moving average, abbreviated EWMA. This method is
often used in business planning, especially when forecasts are needed for
hundreds or thousands of inventory items. It is relatively easy to use and is
intuitively appealing. But the method is sometimes used largely out of habit,
with little consideration given to whether an EWMA model is appropriate
for the data. In this section we explain the idea behind the simplest kind of
EWMA and show that the ARIMA(0, 1, 1) model can be interpreted as an
EWMA.

The EWMA model involves a certain kind of averaging of past observa-
tions. It may be helpful if we start with a simpler, more familiar averaging
procedure that could be used for forecasting— the ordinary arithmetic mean
Z. As usual, 7 is formed by summing n available observations on z, and
dividing by the number of observations:

z= %( i z,) (5.43)
1=

Table 5.1 Calculation of the arithmetic
mean for a short realization

-
)
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“Tz, = 100; 7 = 100/10 = 10.
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Table 5.1 illustrates these calculations with a short data series. Figure 5.1
shows a graph of the data. The ten available observations sum to 100.
Dividing this sum by the number of observations (ten) gives an arithmetic
mean of 10. It appears that the data are stationary (see Figure 5.1); in
particular, they seem to move about a constant mean, estimated from the
available data to be 10.

Using this method, the forecast for period 11 is the previously calculated
mean (10). The intuitive idea behind this type of forecast is that the future
values of z, may be something like the past values. If the data tend to
fluctuate around a fixed central value, perhaps the arithmetic mean will give
fairly good forecasts. (Recall that the mean appears in an ARIMA model as
part of the constant term.)

The arithmetic mean is a specific case of a more general idea, the
weighted mean. In a weighted mean (Z,), each observation is multiphed by a
weight (c,). Then the weighted observations are summed, and this sum is
divided by the sum of the weights:

= ZC,Z,
Lo T T(T (544)

In the special case of the ordinary arithmetic mean, each weight is equal to
one and there are n weights; the weights sum to 7.
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Figure 5.1 Plot of the realization shown in Table 5.1 and a forecast based on the
arithmetic mean 2.
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Now consider the EWMA. Forecasting with an EWMA model also
involves averaging past observations, but the weights are not all equal to
one. Instead, the weights applied to recent observations are larger than the
weights applied to earlier observations. This weighting structure has a
common-sense appeal; it seems reasonable that the recent past would be a
better guide to the immediate future than would the distant past. Forecast-
ing with an EWMA model allows for this possibility. Such an emphasis on
the recent past is especially appealing if a data series does not fluctuate
around a fixed central value. For this type of data, a forecast emphasizing
the last few observations seems more sensible than a forecast emphasizing
all past observations equally. That is, if the data show little tendency to
return to the level of earlier observations, then we should not use a forecast
(such as the arithmetic mean) that gives much weight to early values.

A common form of the EWMA expresses the forecast for time r (desig-
nated Z,) as a weighted mean of the latest observation (z,_,) and the last
forecast (Z,_,):

;=01 ~60))z,_,+8,:_, (5.45)
where

0<6, <1

6, is a positive fraction. It is the weight applied to the last forecast Z,_,.
(1 — 8,), also a positive fraction, is the weight applied to the last observa-
tion z,_,. These weights sum to one, so we need not divide explicitly by the
sum of the weights on the RHS of (5.45) to find our weighted average, since
dividing by one would not alter the result.

Equation (5.45) is a computationally convenient form of the EWMA
because it requires knowledge of only three items: the weight @,, the last
observation z,_,, and the last forecast Z,_,. By making some algebraic
substitutions, we can express z, in a form less computationally convenient,
but which shows that the EWMA is, in fact, a weighted average of all past
observations.* The result is the following infinite series:

Z.I = (] - 0!)21-—1 + 0!(1 - 01)21—2 + 012(1 - 01)21—3

+63(1 = 8))z,_o+ - (5.46)

*Consider that (5.45) implies

3!—‘ = (l - 0!)21—;’ + 012-1—2
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As long as |0,] < 1, it can be shown that the weights it (5.46) decline
geometrically and sum to one. As an example, suppose 8, = 0.6." Then the
weights, rounded to two decimals, are

(1-8,) = (I - 0.6) = 040
6,(1 - 6,) = 0.6(0.4) = 0.24
62(1 - 6,) = (0.6)’(0.4) = 0.14
83(1 - 6,) = (0.6)°(0.4) = 0.09
8} (1 — 6,) = (0.6)*(0.4) = 0.05
83(1 — 8,) = (0.6)°(0.4) = 0.03
8°5(1 - 6,) = (0.6)°(0.4) = 0.02
87(1 - 6,) = (0.6)'(0.4) = 0.01

831 - 8,) = (0.6)°(0.4) = 0.01

All subsequent weights round to zero.

Substitute this into (5.45) to obtain
L= (1 -0z, +0,(1-0,)z_,+ 0%,
(5.45) also implies
oa= (L~ 8))z 5+ 0,7,
Substituting this into the previous result, we get
=0 -0)z2, , +0,(1 -8z, + 0 (1-6)z_ 3+ 63:,_5

Continue altering the time subscripts on (5.45) and substituting as above to get the infinite

series (5.46).
TWe have selected this value arbitrarily. In practice various values of 8, are tried and the one
which best fits the available data, according to some criterion. is selected.
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Figure 5.2 is a graph of these weights. The weights give the appearance of
an exponential decay as the time lag increases, which is why this model is
said to be “exponentially weighted.” The *“moving-average” part of the
name reflects the idea that a new weighted average is calculated as each new
observation becomes available.

Table 5.2 shows how these weights could be used to forecast the data in
Table 5.1 using an EWMA. These are the calculations needed to find Z,
from equation (5.46). Columns | and 2 are a reproduction of Table 5.1.
Column 3 is the set of EWMA weights calculated previously. (These weights
sum to 0.99 instead of 1.0 because weights after lag 9 are rounded to zero.)
Column 4 is each weight times each z,_, observation, fori = 1,2,..., 10. At
the bottom of the table is the sum of the weighted past z’s, Z, = Z,,. which is
the EWMA forecast for z,,; as stated in equation (5.46).

We now show that the EWMA in equation (5.45) is an ARIMA(O, 1, 1)
model. To do this, first consider an ARIMA(O, 1, 1) in common algebraic
form:

z,=z2,_,—6,a,_, +aq, (5.47)

1

For simplicity, let 8, be known. Since g, is not known when a forecast of z,
is formed at time r — 1, assign a, its expected value of zero. Then the
forecast of z, based on (5.47) is

2, =2,_y—ba,_, (5.48)

Weight =8%-t(1-9,)

0O 1 2 3 4 5§ 6 7 8 9 10N

i=
Time lag
on z term

Figure 52 The weights on past z’s for an EWMA with 8, = 0.6.
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Table 5.2 An EWMA forecast for the data in Table 5.1,

with 8, = 0.6°
! z, Weight Weight Multiplied by z,
1 10 0.00 0.00
2 9 0.01 0.09
3 9 0.01 0.09
4 12 0.02 0.24
5 9 0.03 0.27
6 11 0.05 0.55
7 9 0.09 0.81
8 8 0.14 1.12
9 11 0.24 2.64

10 12 0.40 480

“The EWMA forecast is equal to the summation of the weighted
2’s which is equai to 10.61.

Subtracting (5.48) from (5.47), we see that an observed z value minus a
forecast z value is simply the random shock for that period:
z, - z"' = gq, (549)

Now return to the EWMA in (5.45). Expand the RHS and rearrange
terms to get

21=zl—| -0|(Zl—| —Zr—l) (550)
Using (5.49), substitute a,_, into (5.50) for (z,_, — Z,_,). The result shows
that a forecast from the EWMA (5.50) is identical to a forecast from the
ARIMAC(O, 1, 1) in equation (5.48).

Thus the EWMA in (5.45) may be interpreted as an ARIMA(O, 1, 1) and
vice versa.* This fact may be useful to practicing forecasters who must
interpret ARIMA models for managers. (See Part II, Case 9 for an example
of an ARIMA model that is a combination of two EWMA’s, one explaining
the seasonal part of the data and the other explaining the nonseasonal part.)

EWMA models are sometimes used simply by habit. When using the

UBJ method, we attempt to find one or more ARIMA models that are
appropnate in light of the data. This procedure may or may not lead us to

*There are other types of EWMA forecasting models which are ARIMA(O. 4. g) models of
various orders. as discussed by Cogger [18].
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an EWMA. A clear strength of the UBJ method is that models are not
chosen arbitrarily. Instead, the UBJ method guides the forecaster to a
proper model based on some classical statistical estimation procedures
applied to the available data. The present drawback of the UBJ-ARIMA
method is that its proper use requires more experience and computer time
than the habitual application of the EWMA to a forecasting problem.
However, advances in computer technology tend to reduce that particular
cost element associated with UBJ-ARIMA modeling. Furthermore, a thor-
ough reading of this book and practice with numerous data sets should
make one skilled at building proper UBJ-ARIMA models.

Summary

1. Three common ARIMA processes, in addition to the AR(1) and
MAC(]) are

AR(2):z,= C + ¢yz,_, + &,2,_, + q,
MA(2):z,=C—-6,a,_, — b,a,_, + a,
ARMA(1,1): z,=C + ¢,z,_, — b,a,_, + q,

2. ARIMA models may be characterized this way: ARIMA(p, d. ¢),

where p is the AR order; d is the number of times the data series must be
differenced to induce a stationary mean; and g is the MA order.

3. [Itis convenient to write ARIMA models in backshift notation using
the multiplicative backshift operator B. B is defined such that any variable
which it multiplies has its time subscript shifted back by the power of B:

ko, —
B 2, = 2k

A constant is unaffected when multiplied by B since a constant has no time
subscript:

B*C=C

4. It can be shown that (1 — B)z, represents the first differences of z,;
(1 ~ B)?z, represents the second differences of z,; generally, (1 — B)“z,
represents the dth differences of z,.
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5. A nonseasonal ARIMA process in backshift notation has this general
form:

(1 - $,B — $,B2 — --- — ¢,B?)(1 - B)%,

=(1-6,B-6,B>—--- —§,B%a,

6. To write an ARIMA model in backshift notation,
(a) transform z, so it has a constant variance;
(b) write 2, in deviations from the mean, Z, -
(c) mult1ply z, by the differencing operator (l — B)4 with d as-
signed the appropriate value;
(d) multiply the last result by the AR operator (1 — ¢,B — ¢,B?
— --- — ¢,B”), with p assigned the proper value;
(e) multlply a, by the MA operator (1 — ¢,B— 6,B> — --- —
GqB") with ¢q a551gned an appropriate value;
() equate the results of the last two steps.

7. The constant term in a nonseasonal ARIMA process is related to the
mean p of the process and the AR coefficients in this way:

C=#(l— EP:qb,-)

i=1

For a pure MA model, p = 0 and C = p.

8. Differencing (d > 0) causes the mean p to drop out of an ARIMA
process. The process will therefore have a constant term of zero unless the
differenced variable is assumed to have a nonzero mean.

9. The constant term, AR terms, and MA terms all represent weighted
past z values. Thus ARIMA processes are univariate, and a forecast from an
ARIMA model may be interpreted as an extrapolation of past observations
into the future.

10. Any MA process is algebraically equivalent to an AR process of
infinitely high order. Any AR process is algebraically equivalent to an MA
process of infinitely high order.

11. ARIMA models can sometimes be rationalized (interpreted in a

common-sense way) through insight into the nature of the situation that has
produced the data.
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12. A commonly used univariate forecasting technique, the exponen-
tially weighted moving average (EWMA), is algebraically equivalent to an
ARIMAC(O, 1,1) model. An advantage of the UBJ method is that we are
guided to a proper model through analysis of the available data. The
appropriate model may, or may not, be an ARIMA(O. 1. 1).

Questions and Problems

5.1 Write the following in both ARIMA(p, d. g) notation and common
algebraic form:

@ (1-¢,B)1~ B), =a,

(b) (1 - B)*,=(1-6,B)a,

(© (1-¢,B),=(1-8,B)a,

@ (1 -B):;,=(1—-0,B~08,B)aq,

(e) %, =(1-6,BY)aq,

5.2 Write the following in backshift notation:
(a) ARIMA(1, L. 1)
() ARIMA(0.2,1)
(c) ARIMA(2,0,2)
(d) Zl=#(l - ¢ —¢2)+¢|zl-| + ¢z, t+ a,
€ z,=p(l-¢)+¢2,_,-0a,_, +aq

(f) 2, =4 +¢|(Zl“| _ZI-Z)+¢2(21—2-21—-3)+01
(g) 5L =2~ olal—'| - 02“1—2 + a,
(h) Zl=221-—l _zl—z-olal—l + aq,

53 Show that an MA(1) process is equivalent to an AR process of
infinitely high order in the following way: (i) write the MA(1) in common
algebraic form; (ii) solve this form for a,: (ii1) use the expression for a, to
write expressions for a,_,, a,_5., a,_s. . ..; (V) substitute the expressions for
a,_y,a,_,, ... into the original MA(1) model one at a time.

5.4 Consider the AR form of the MA(l). How is ¢, related to 6,?

S§.5 Is an EWMA an AR model or an MA model? How does the principle
of parsimony influence your answer?

5.6 Suppose an analyst presents this AR(4) model for a given realization:

(1 +0.488 + 0.22B% + 0.14B° + 0.05B*)z, = a,
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In this model,

¢, = —048
¢ = -022
¢, = —0.14
¢, = —0.05

Can you suggest an alternative, more parsimonious model? Explain.
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IDENTIFICATION:
STATIONARY MODELS

In Chapters 1-4 we introduced the fundamental statistical concepts and
modeling procedures of UBJ-ARIMA forecasting. In Chapter 5 we ex-
amined the special notation used for ARIMA models and considered how
ARIMA models can be interpreted.

In this chapter we return to a discussion of the iterative, three—stage UBJ
modeling procedure (identification, estimation, and diagnostic checking).
Our emphasis in this chapter is on the identification of models for sta-
tionary realizations. Until Chapter 11 we will focus on models that do not
have a seasonal component.

Before getting into the detail of this chapter, it may help to review some
of the basic ideas presented in Chapters 1-4.

1. We begin with a set of n time-sequenced observations on a single

variable (z,, z,, z;,..., z,). Ideally, we have at least 50 observations.
The realization is assumed to have been generated by an unknown
ARIMA process.

2. We suppose the observations might be autocorrelated. We measure
the statistical relationship between pairs of observations separated by
various time spans (z,, z,,,), kK = 1,2,3,... by calculating estimated
autocorrelation and partial autocorrelation coefficients. These coeffi-
cients are displayed graphically in an estimated autocorrelation func-
tion (acf) and partial autocorrelation function (pacf).

119
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3. The UBJ-ARIMA method is appropriate only for a data series that
is stationary. A stationary series has a mean, variance, and autocorre-
lation coefficients that are essentially constant through time. Often, a
nonstationary series can be made stationary with appropriate trans-
formations. The most common type of nonstationarity occurs when
the mean of a realization changes over time. A nonstationary series
of this type can frequently be rendered stationary by differencing.

4. Our goal is to find a good model. That is, we want a statistically
adequate and parsimonious representation of the given realization.
(The major characteristics of a good model are introduced in Chapter
4)

5. At the identification stage we compare the estimated acf and pacf
with various theoretical acf’s and pacf’s to find a.match. We choose,
as a tentative model, the ARIMA process whose theoretical acf and
pacf best match the estimated acf and pacf. In choosing a tentative
model, we keep in mind the principle of parsimony: we want a model
that fits the given realization with the smallest number of estimated
parameters.

6. At the estimation stage we fit the model to the data to get precise
estimates of its parameters. We examine these coefficients for
stationarity, invertibility, statistical significance, and other indicators
of their quality.

7. At the diagnostic-checking stage we examine the residuals of the
estimated model to see if they are independent. If they are not, we
return to the identification stage to tentatively select another model.

Identification is clearly a critical stage in UBJ~-ARIMA modeling,. and a
thorough knowledge of the most common theoretical acf’s and pacf’s is
required for effective identification. Knowing the association between the
common theoretical acf’s and pacf’s and their corresponding processes does
not guarantee that we will identify the best model for any given realization,
especially not at the first try. But familiarity with the common theoretical
acf’s and pacf’s greatly improves our chances of finding a good model
quickly.

There is an infinite number of possible processes within the family of
ARIMA models proposed by Box and Jenkins. Fortunately, however, there
also seems to be a relatively small number of models that occur commonly
in practice. Furthermore, studying the common processes carries a substan-
tial spillover benefit: uncommon ARIMA processes display certain char-
acteristics broadly similar to those of the more ordinary ones. Thus we need
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to examine the properties of only a few common processes to be able to
intelligently identify even unusual models.

In this chapter we first present and discuss the theoretical acf’s and pacf’s
for these five common models: AR(1), AR(2), MA(l), MA(2), and
ARMAC(], 1). Next, we discuss the ideas of stationarity and invertibility. We
then derive the theoretical acf’s for the MA(1) and AR(1).

6.1 Theoretical acf’s and pacf’s for five common processes

We have already encountered five common ARIMA models for stationary,
nonseasonal data. In Chapter 3 we introduced the AR(l) and MA(])
models. Then in Chapter 5 we introduced the AR(2), MA(2), and
ARMAC(], 1) models. In backshift form these five models are written as
follows:*

AR(l): (1 — ¢,B)z, = q, (6.1)
ARQ): (1 — ¢,B — ¢,B*)Z, = q, (6.2)
MA(l): z, = (1 — 8,B)a, (6.3)
MA(Q2): z,=(1 — 6,B — 6,B%)aq, (6.4)
ARMA(1,1): (1 — ¢,B), = (1 — 6,B)a, (6.5)

In this section we examine the theoretical acf’s and pacf’s associated with
each of these processes. We discussed the acfs and pacf’s associated with
the AR(1) and MA(1) in Chapter 3, but we present them again for
convenience.

Keep in mind that in this section we are looking at rheoretical acf’s and
pacf’s derived from processes. Estimated acf’s and pacf’s calculated from
realizations never match theoretical acf’s and pacf’s in every detail because
of sampling error.

Table 6.1 states the major characteristics of theoretical acf’s and pacf’s
for stationary AR, MA, and mixed (ARMA) processes. As we proceed we
will discuss the acf’s and pacf’s of the above five processes in greater detail.
In practice, however, a UBJ analyst must sometimes temporarily ignore the
details and focus on the broader characteristics of an estimated acf and

*Z, is z, expressed in deviations from the mean: Z, = z, — p.
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Table 6.1 Primary distinguishing characteristics of theoretical acf’s
and pacf’s for stationary processes

Process acf pacf

AR Tails off toward zero Cuts off to zero
(exponential decay or (after lag p)
damped sine wave)

MA Cuts off to zero Tails off toward zero
(after lag q) (exponential decay or

damped sine wave)
ARMA Tails off toward zero Tails off toward zero

pacf. As Table 6.1 shows, the three major types of ARIMA models have
some primary distinguishing characteristics:

1.

Stationary AR processes have theoretical acf’s that decay toward
zero rather than cut off to zero. (The words “decay”, “die out”,
“damp out”, and “tail off” are used interchangeably.) The autocorre-
lation coefficients may alternate in sign frequently, or show a wave-
like pattern, but in all cases they tail off toward zero. By contrast,
AR processes have theoretical pacf’s that cut off to zero after lag p,
the AR order of the process.

The theoretical acf’s of MA processes cut off to zero after lag g, the
MA order of the process. However, their theoretical pacf’s tail off
toward zero.

Stationary mixed (ARMA) processes show a mixture of AR and MA
characteristics. Both the theoretical acf and the pacf of a mixed
process tail off toward zero.

Now we consider each of the three major process types in greater detail.
Table 6.2 summarizes the detailed characteristics of the five common
processes we are considering in this chapter.

AR processes. All AR processes have theoretical acf’s which tail off
toward zero. This tailing off might follow a simple exponential decay
pattern, a damped sine wave, or more complicated decay or wave patterns.
But in all cases, there is a damping out toward zero.

An AR theoretical pacf has spikes up to lag p followed by a cutoff to
zero. (Recall that p is the maximum lag length for the AR terms in a
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Table 6.2 Detailed characteristics of five common stationary processes

Process acf pacf
AR() Exponential decay: (i) on the posi- Spike at lag 1, then cuts off to
tive side if ¢, > 0; (ii) alternating zero; (i) spike is positive if ¢, > 0:
in sign starting on the negative side (i) spike is negative if ¢, < 0.
ifp, <0
AR(2) A mixture of exponential decays or Spikes at lags 1 and 2. then cuts off
a damped sine wave. The exact to zero.
pattern depends on the signs and
sizes of ¢, and ¢,.
MA(1) Spike at lag 1. then cuts off to Damps out exponentially: (1) alter-
zero: (i) spike is positive if 8, < 0; nating in sign, starting on the posi-
(ii) spike is negative if 8, > 0. tive side, if 6, < 0; (i) on the
negative side, if 8, > 0.
MA(2) Spikes at lags | and 2. then cuts off A mixture of exponential decays or
to zero. a damped sine wave. The exact
pattern depends on the signs and
sizes of 8, and 6,.
ARMAC(1. 1) Exponential decay from lag |: (i) Exponential decay from lag 1: (i)

sign of p, = sign of (¢, — 6,); (ii)

&, = p,: (i) all one sign if 8, > O,

all one sign if ¢, > 0: (iii) alternat-
ing in sign if ¢, < 0.

(iii) alternating in sign if 8, < 0.

process; it is also called the AR order of a process.) In practice, p is usually
not larger than two or three for nonseasonal models.

Figure 6.1 shows the theoretical acf’s and pacf's for two types of
stationary AR(1) processes. The key point to remember is that any sta-
tionary AR(1) process has a theoretical acf showing exponential decay and a
pacf with a spike at lag 1. If ¢, is positive, the acf decays on the positive side
and the pacf spike is positive. This is illustrated by Example I at the top of
Figure 6.1. If ¢, is negative, the AR(1) acf decays with alternating signs,
starting from the negative side, while the pacf spike is negative. This is
illustrated at the bottom of Figure 6.1 by Example I, (See Part II, Case 1,
for an example of an estimated acf and pacf that resemble the theoretical
ones in Figure 6.1 with ¢, > 0.)

The exact numerical values of the coefficients in both the theoretical acf
and pacf of an AR(1) are determined by the value of ¢,. At lag 1, both the
autocorrelation coefficient (p,) and the partial autocorrelation coefficient
(¢,,) are equal to ¢,. All other theoretical partial autocorrelations are zero,
The theoretical autocorrelations at subsequent lags are equal to ¢, raised to
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Example I: ¢, >0

1.07 107

-
acf pacf
! 'Illll... 1

k

= Lag

'él

-1.04+ -1.04
Example iI: ¢, <0
1.0'( 1.01

T l acf | f pacf

k= Lag

- 1.0-l- -1.0+

Figure 6.1 Examples of theoretical acfs and pacfs for two stationary AR(l)
processes.

the power k, where k is the lag length. For example, if ¢, = 0.8, then
p, = ¢, =08, p, =(0.8)> = 0.64, p, = (0.8)> = 0.51, p, = (0.8)* = 0.41,
and so on. In general, p, = ¢*. This particular process is written in
backshift form as

(1-0.8B)z, =a, (6.6)

A greater variety of patterns is possible with AR(2) processes than with
AR(1) processes. Figure 6.2 shows the theoretical acf’s and pacf’s for four
types of AR(2) processes. In general, a stationary AR(2) process has an acf
with either a mixture of exponential decays or a damped sine wave, and a
pacf with spikes at lags 1 and 2. The exact pattern depends on the signs and
sizes of ¢, and ¢,.* (See Part II, Case 3, for an example of an estimated acf
and pacf resembling the theoretical ones in Figure 6.2.)

*For the mathematically inclined: to determine the general nature of these patterns. use the
AR(2) operator to create the characteristic equation (1 — ¢, B — ¢, B?%) = 0, where B is now
treated as an ordinary vanable. Then the following can be shown for the acf of the AR(2):
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Note that some AR(2) acf’s are roughly similar in appearance to AR(1)
acf’s. In particular, the first two AR(2) acf’s at the top of Figure 6.2 look
much like the two AR(1) acf’s in Figure 6.1. These broad similarities
between AR(1) and AR(2) acf’s can cause difficulties at the identification
stage: we may not be able to tell from an estimated acf whether to consider
an AR(1) or an AR(2) model. This is where the estimated pacf is especially
useful: an AR(1) process is associated with only one spike in the pacf, while
an AR(2) has two pacf spikes. In general. the lag length of the last pacf
spike is equal to the order ( p) of an AR process. In practice, p is usually not
larger than two for nonseasonal data.

MA processes. An MA process has a theoretical acf with spikes up to
lag g followed by a cutoff to zero. (Recall that ¢ is the maximum MA lag,
also called the MA order of the process.) Furthermore, an MA process has a
theoretical pacf which tails off to zero after lag ¢. This tailing off may be
either some kind of exponential decay or some type of damped wave
pattern. In practice, ¢ is usually not larger than two for nonseasonal data.

Figure 6.3 shows two MA(1) theoretical acf’s and pacf’s. They illustrate
the rule that any MA(1) process has a theoretical acf with a spike at lag 1
followed by a cutoff to zero, and a theoretical pacf which tails off toward
zero. If 8, is negative, the spike in the acf is positive, whereas the pacf
decays exponentially, with alternating sign, starting on the positive side.
This is illustrated by Example I at the top of Figure 6.3. Alternatively, if 6,
is positive, the acf spike is negative, while the pacf decays exponentially on
the negative side. This is illustrated at the bottom of Figure 6.3. [Cases 7-9
in Part II show estimated acf’s and pacf’s similar to the MA(1) theoretical
acf’s and pacf’s in Figure 6.3.]

The exact numerical values of the coefficients in the theoretical acf and
pacf of the MA(1) depend on the value of ;. Unlike the AR(1) process,
which has p, = ¢,, the absolute value of p, for the MA(1) is not equal to 4,.

In Figure 6.4 we have examples of theoretical acf’s and pacf’s for MA(2)
processes. All illustrate the rule that an MA(qg) acf has spikes up to lag ¢
(g = 2 in these examples) followed by a cutoff to zero, while the pacf tails

(i) If the roots of (1 ~ ¢, B — ¢, B%) = 0 are real. so that $} + 4¢, > 0. and the dominant
root is positive. then the acf decays toward zero from the positive side.

(11) If the roots are real. but the dominant root is negative. the acf decays toward zero while
alternating in sign.

(iii) If the roots are complex, so that ¢3 + 4¢, < 0, and ¢, is positive. the acf has the
appearance of a damped sine wave starting from the positive side.

(iv) If the roots are complex, but ¢, is negative, the acf has the appearance of a damped sine
wave starting from the negative side.
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off toward zero. [Case 11 in Part Il shows an estimated acf and pacf
suggestive of an MA(2) process.}

ARMA processes. Mixed processes have theoretical acf’s with both AR
and MA characteristics. The acf tails off toward zero after the first ¢ — p
lags with either exponential decay or a damped sine wave. The theoretical
pacf tails off to zero after the first p — g lags. In practice, p and ¢ are
usually not larger than two in a mixed model for nonseasonal data.

Figure 6.5 shows theoretical acf’s and pacf’s for six types of ARMA(I, 1)
processes. The important thing to note is that both the acf and pacf tail off
toward zero (rather than cut off to zero) in all cases. The acf and pacf may
alternate in sign.

Because ¢ = 1 and p = 1 for these examples, ¢ — p = 0, and each acf in
Figure 6.5 tails off toward zero starting from lag 1. Likewise,p — ¢ = 0 in
these examples, so each pacf in Figure 6.5 also tails off toward zero starting
from lag 1.

Example |: 6,<0

acf pacf
L b

Pr > Prk T
| k= Lag | | k= Lag
—-1.0+ -1.0-
Example H: 6,>0

101 1.0+
f acf T pacf
Pk ¢, L ——
‘ l k = Lag r I ‘ I | k=Lag
—10 .‘. -1.0+

Figure 63 Examples of theoretical acfs and pacf’s for two MA(1) processes.
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Figure 6.5 (Continued).

6.2 Stationarity

In Chapter 2 we stated that the UBJ method applies only to stationary
realizations, or to those which can be made stationary by suitable transfor-
mation. In this section we discuss the conditions that AR coefficients must
satisfy for an ARIMA model to be stationary, reasons for the stationarity
requirement, and how to determine if a realization or model is stationary in
practice.

Table 6.3 Summary of stationarity conditions
for AR coefficients

Model Type Stationarity Conditions
ARMA(O, q) Always stationary
AR(1) or ARMA(l, q) [¢if <1
AR(2) or ARMA(2, q) |$,] <1

o, + ¢, <1

¢z—¢|<l
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Conditions on the AR coefficients. Stationarity implies that the AR
coefficients must satisfy certain conditions. These conditions, summarized
in Table 6.3, are of great practical importance in UBJ modeling. You should
regularly check the estimated AR coefficients (at the estimation stage) to see
if they satisfy the appropriate stationarity conditions.

If p = 0, we have either a pure MA model or a white-noise series. All
pure MA models and white noise are stationary, so there are no stationarity
conditions to check.

For an AR(1) or ARMAC(I, ¢g) process, the stationarnty requirement is
that the absolute value of ¢, must be less than one:

1, <1 (6.7)

In practice we do not know ¢,. Instead, we find an estimate of it, designated
¢,, at the estimation stage. Therefore, in practice we apply condition (6.7) to
, rather than to ¢,. [Case 1 in Part II is an example of a model where é
satisfies condition (6.7). Case 5 shows a model where ¢, meets condition
(6.7), but it is not significantly different from 1.0, so the data are dif-
ferenced.]

For an AR(2) or ARMA(2, ¢) process, the stationarity requirement is a
set of three conditions:

Il <1
o, + ¢, <1 (6.8)
¢2"¢1 <1

All three conditions must be satisfied for an AR(2) or ARMA(2, ¢) model
to be stationary. Again, in practice we apply conditions (6.8) to the
estimates of ¢, and ¢, (¢, and ¢,) obtained at the estimation stage. [Cases 3
and 13 in Part II contain models satisfying the AR(2) stationarity condi-
tions. Case 15 shows an AR(2) model that fails to meet these conditions.]

The stationarity conditions become complicated when p > 2. For-
tunately, ARIMA models with p > 2 do not occur often in practice. When p
exceeds 2 we can at least check this necessary (but not sufficient) stationar-
ity condition:

G+t + e, <1 (6.9)

{See Appendix 6A for a discussion of the formal mathematical requirements
for stationarity for any value of p.)
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Now consider an ARMA(1, 1) model: (1 — ¢,8)Z, = (1 — 6,B)a,. Sup-
pose we fit this model to a realization and get these estimation results:
¢, = —0.6 and 6, = 0.5. Then the model can be written this way: (1 +
0.6B)z, = (1 — 0.5B)4,. Is this model stationary? The answer is yes, be-
cause |¢,| = 0.6 < 1, thus satisfying condition (6.7). We need not check
any conditions on 8, to ensure stationarity; stationarity conditions apply
only to AR coefficients. (However, we must check §, to see that it satisfies
the invertibility requirement. This is discussed in the next section.)

As another example, consider an AR(2) model: (1 - ¢,B — ¢,B2)7, = a,.
Fitting this model to a realization gives these estimation results: ¢, = 1.5
and ¢, = —0.4. Thus, our fitted model is (1 — 1.58 + 0.4B%)z, = 4,. In-
serting the estimated values of ¢, and ¢, into (6.8) gives

;] = 0.4 <1

S+ = —04+15=11>1

¢, — ¢, =-04-15=-19<1
This model is not stationary. Although the first and third conditions in (6.8)
are satisfied, the second condition is not met since the sum of ¢, and ¢, is
greater than |.

Reasons for the stationarity requirement. There is a common-sense
reason for requiring stationarity: we could not get useful estimates of the
parameters of a process otherwise. For example, suppose a process has a
mean that is different each time period. How could we estimate these
means? As usual, we must use sample information. But typically we have
only one observation per time period for time-series data. Therefore, we
have only one observation at time ¢ to estimate the mean at time ¢, one
observation at time ¢ + 1 to estimate the mean at time ¢ + 1, and so forth.
An estimate of a mean based on only one observation is not useful.

The situation becomes even worse if the variance also is not constant
through time. In this case we would have to estimate up to 2n parameters (n
means and »n variances) with only »n observations.*

It can also be shown that a model which violates the stationarity

*If the mean and variance are changing according to a known pattern. then it might be possible
to get useful estimates of the n means and n variances from only n observations. This leads to
the idea of variable-parameter ARIMA models, an area of research beyond the scope of this
text.
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restrictions will produce forecasts whose variance increases without limit. an
undesirable result. .

Checking for stationarity in practice. Suppose we have a realization in
hand and we want to develop an ARIMA model to forecast future values of
this variable. We have three ways to determine if the stationarity require-
ment is met:

(1) Examine the realization visually to see if either the mean or the
variance appears to be changing over time.

(1) Examine the estimated acf to see if the autocorrelations move rapidly
toward zero. In practice, “rapidly” means that the absolute -values of the
estimated autocorrelations should fall below roughly 1.6 by about lag 5 or 6.
These numbers are only guidelines, not absolute rules. If the acf does not
fall rapidly to zero, we should suspect a nonstationary mean and consider
differencing the data.

(iii) Examine any estimated AR coefficients to see if they satisfy the
stationarity conditions (6.7), (6.8), and (6.9).

You should rely most heavily on the appearance of the estimated acf and
on the values of any estimated AR coefficients in deciding if the mean of a
series is stationary. The only exception is when p > 2, so that the set of
stationarity conditions on the AR coefficients becomes complicated. In that
case, rely more on visual inspection of the data and the estimated acf, while
also checking the necessary condition on the AR coefficients (6.9). Visual
inspection of the data is perhaps the most practical way of gauging
stationarity of the variance. The identification of models for nonstationary
realizations is discussed more fully in Chapter 7.

6.3 Invertibility

Conditions on the MA coefficients. There is another condition that
ARIMA models must satisfy called invertibility. This requirement implies
that the MA coefficients must satisfy certain conditions. These conditions,
summarized in Table 6.4, are algebraically identical to the stationarity
requirements on AR coefficients.

If g = 0, we have a pure AR process or a white-noise series. All pure AR
processes (or white noise) are invertible, and no further checks are required.

For an MA(1) or ARMA(p, 1) process, invertibility requires that the
absolute value of 8, be less than one:

16,] <1 6.10
1
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Table 6.4 Summary of invertibility conditions
for MA coefficients

Model Type Invertibility Conditions
ARMA(p.0) Always invertible
MA(1) or ARMA( p, 1) 16,] <1
MA(2) or ARMA( p,2) 18;] <1

6,+6, <1
#,-6,<1

For an MA(2) or ARMA( p, 2) process the invertibility requirement is a
set of conditions on 8, and §,:

16,1 <1
6,+6,<1 (6.11)
0,—-6,<1

All three of the conditions in (6.11) must be met for an MA(2) or
ARMAC( p, 2) process to be invertible.

In practice the invertibility conditions are applied to the estimates of 8,
and 6, (4, and 6,) obtained at the estimation stage because 6, and 8, are
unknown. (See Cases 5, 7-9, and 11 in Part II for examples.) The invertibil-
ity conditions become complicated when g > 2, but ARIMA models with
g > 2 do not occur frequently in practice. If ¢ > 2, we can at least check
this necessary (but not sufficient) condition for invertibility:

6,+6,+---+6,<1 (6.12)

(See Appendix 6A for a discussion of the formal mathematical conditions
for invertibility for any value of q.)

Suppose we estimate an ARMAC(], 2) model, (1 — ¢,B)Z, = (1 — ;B —
6,B%)a,. Fitting this model to a realization produces these results at the
estimation stage: ¢, = 0.4, §, = 0.8, and 4, = —0.5. It is easy to show that
this model is stationary since |<f>,| = 0.4 < 1; thus condition (6.7) is satis-
fied. As with all ARIMA models, the stationarity conditions apply only to
the AR coefficients.

To check this model for invertibility, we must apply the three conditions
in (6.11) to the estimated MA coefficients; invertibility conditions apply
only to MA coefficients, not AR coefficients. We find that all three
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conditions are met, and hence the model is invertible:

16, =05 <1
b,+6,=-05+08=03<1
b~ 6,=-05-08=-13<1

A reason for invertibility. There is a common-sense reason for the
invertibility condition: a noninvertible ARIMA model implies that the
weights placed on past z observations do not decline as we move further
into the past; but common sense says that larger weights should be attached
to more recent observations. Invertibility ensures that this result holds.”

It is easy to see the common sense of the invertibility condition as it
applies to the MA(1). In Chapter 5 we showed how the MA(1) could be
written as an AR process of infinitely high order:

(1+6,B+6B>+60}B*+---);,=a

f

or
2, =C—6z_, - 01221-2 - 0321-3 - (6.13)

The @ coefficients in (6.13) are weights attached to the lagged z terms. If
condition (6.10) for the MA(]) is not met, then the weights implicitly
assigned to the z’s in (6.13) get larger as the lag length increases. For
example, for 6, = 2, the weights (6{) have the following values (k is lag
length):

k 6k

1 0, =2

2 67 =2)*=4
3 6 =Q)> =28
4

0} =(@2)* =16
On the other hand, suppose condition (6.10) is satisfied. For example, let

6, = 0.8. Then the weights on the time-lagged z’s in (6.13) decline as we

*Invertibility also ensures a unique association between processes and theoretical acf’s. See
Appendix 6B for a discussion of this point.
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move further into the past:

k 6k

1 8, =038

2 0% = (0.8)? = 0.64
3 6} = (0.8)° = 0.51
4

82 = (0.8)* = 0.41

We could show the same result for any MA process that we have shown
here for the MA(1). First, we could write it as an AR process of infinitely
high order. Then, we could show that the coefficients on the past z’s will not
decline as we move further into the past unless the invertibility conditions
are met.

6.4 Deriving theoretical acf’s for the MA(1) process

We saw in Chapter 2 how estimated acf’s are calculated from realizations
using equation (2.5). In the next two sections we derive the theoretical acf’s
for the MA(1) and AR(1) processes. These derivations require numerous
algebraic manipulations. We will explain the derivations in detail, but you
should write out each step to make sure you understand it.

Throughout these two sections we apply certain rules about mathematical
expectations stated earlier, in Appendix 3A. Since we make extensive use of
three of them, we repeat them here for convenience:

Rule II-E: expected value of a constant
E(C)=C
where C is a constant.

Rule III-E: expected value of a finite linear combination of random
variables. If m is a finite integer,

E(Cix, + Gx,+ -+ + C,x,,) = C,E(x,)
+GE(x;)+ -+ + C,E(x,),

where C,, G,,..., C,, are constants; x,, X,,..., X, are random variables.
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Rule IV-E: expected value of an infinite linear combination of random
variables. If m = oo, Rule III-E holds only if ¥% ,C; (where C, = 1)
converges (is equal to a finite number).

We also make extensive use of the assumptions about the random shocks
stated in Chapter 3. We repeat them more formally for convenience:

Ia: The a, are Normally distributed.

Ha: E(a,) = 0.
Illa: cov(a,, a,_,) = 0; that is E(a,a,_,) = 0.
IVa: E(a,)* = o2 (a finite constant for all 7).

First, consider the MA(l) process with a constant term C and a 6,
coefficient that are each a finite constant and with random shocks satisfying
Assumptions Ia-IVa above. In backshift notation this process is

z,=(1-6,B)a, (6.14)

Using the rules for backshift notation stated in Chapter 5 and replacing ?,
with z, — p, we can write this process in common algebraic form as

Z, = C - 0‘{1,-‘ + a’ (6.15)

where the constant term (C) is equal to p.

Recall that (6.15) is a population function: it is a process which is the true
mechanism generating observations of z,. Therefore, (6.15) is the source
from which we can derive the theoretical acf for the MA(1).

We begin by finding the mean and the variance of the MA(1). Then we
find its autocorrelation function. We expect to find that the MA(]) has a
theoretical acf with a spike at lag 1 followed by a cutoff to zero. All pure
MA processes have theoretical acf’s described by the following equations:

pk=—0k+0,0k+,+...+0q_k0q, k=12 .4
(1+62+67+ - +86?) (6.16)

P =0, k>gq

As we will see, the MA(1) acf is described by these equations when g = 1.
We also show that the MA(1) process is stationary if its mean, variance, and
MA coefficient (§,) are finite constants. This result holds for all MA
processes.

Mean. We have assumed that process (6.15) has a finite constant term
C. Therefore, it seems we already know the mean of the process, C = u, and
we seem to have guaranteed that this mean will be stationary since C is a
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finite constant. However, it will be an instructive exercise to show that C is,
indeed, the mean of the process by finding the mathematical expectation (p)
of (6.15). We can do this in a straightforward way, without imposing any
special conditions on 8, beyond the assumption that it is a finite constant.

We find the mathematical expectation (p) of (6.15) by applying the
expected value operator to both sides of the equation. Because the RHS
terms are additive, the operator is applied separately to each term according
to Rule III-E:

E(z,)=p,=E(C)—0lE(a,_|)+E(a,) (617)

Because C is fixed, £(C) = C from Rule II-E. Applying Assumption Ila,
that E(a,) = 0 for all ¢, the last two RHS terms in (6.17) are zero and we
are left with

E(z)=p=C (6.18)

Since C is by assumption a finite constant, (6.18) states that the mathe-
matical expectation (u) of process (6.14), which is the mean, exists and does
not change over time. This is a necessary condition for stationarity.

Variance and autocovariances. Next, we find the variance and autoco-
variances of process (6.14). We need them to derive the theoretical acf, and
we want to determine the conditions under which the variance and autoco-
variances of the MA(I) are stationary.

For convenience we work with z, expressed in deviations from u: 7, = z,
— u. The process generating 7, is identical to the process generating z,,
except that the mean of the Z, process is zero. To see this, write (6.14) in
common algebraic form:

2,=a,~0a,_, (6.19)
Inspection shows that (6.19) is identical to (6.15) except that the mean (i.e.,
the constant term) of (6.19) is zero. Therefore, (6.19) and (6.15) have
identical variances, autocovariances, and autocorrelations since these mea-
sures depend on the size of deviations from the mean and not on the size of
the mean itself.

To find the variance and autocovariances of (6.19), use Rules V-E and
VI-E (stated in Appendix 3A), to write the variance-covariance function for
-

I

Y = E{[fr - E(fr)][fr—k - E(fr—k)]) (620)
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We know that E(Z,) = 0, and since we have just shown that (6.19) has a
stationary mean, this condition holds for all 1. Thus (6.20) simplifies to

v =E(3z,._,) (6.21)

Now use (6.19) to substitute a, — 8,a,_, for %, and a,_, ~ 0,a,_,_, for
Z,_4 and apply Rule HI-E:

Yo T E[(“: ~6,a,_,)a,_, - olal—l—k)]
= E(a,a:-k ~6a,_a,_,-baa,_,_, + 012‘1:—1“:—1-/()
= E(a,a,_;) - elE(al—lal—k) - olE(alal—l-k) + 0125(‘11—1“:—1—/()
(6.22)

To find the variance of (6.19), let k = 0. Applying Assumptions IIla and
IVa to (6.22) gives

— w2 2 2.2
Yo =0, = 0, +0loa

=62(1 + 87) (6.23)

Note from (6.23) that the variance (y, = ¢?) of 7, depends on the
variance (6?) of a,. This is not surprising since it is the presence of the
random-shock component that makes z, stochastic in the first place. Note
also that o? exists and is constant through time because both ¢ and 8, are
finite constants by assumption. So (6.23) says that an MA(1) process
satisfies a necessary condition for stationarity—the variance is a finite
constant.

Next, we find the autocovariances of (6.19). Let k = 1,2, ... and apply
Assumptions [lla and IVa to (6.22) to find that all the autocovariances
except v, are zero:

Y, = —60; (6.24a)
Y, =0, k>1 (6.24b)

Note that all the autocovariances are finite constants (since 8, and o? are
finite constants). Thus the MA(]) satisfies a necessary condition for
stationarity.*

*Equations (6.23) and (6.24) give the elements in the variance—covariance matrix of the MA(1).
We have the variance (0.2) which is a constant on the main diagonal. There is one autocovari-

ance (y,) which is a constant on the first diagonal, both above and below the main diagonal.
All other elements in the MA(1) variance—covariance matrix are zero.
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Autocorrelations. Dividing the variance (6.23) and the autocovariances
(6.24) by the variance (6.23) translates the y,’s into autocorrelation coeffi-
cients:

Yo

=—=]

Po Yo
Y -0,

=== 6.25

Y% T 1ve2 (6.25)
Yk

=—==0, k>1

Pi Yo

We see that the theoretical acf for an MA(1) process has a distinct
pattern: the autocorrelation at lag zero (p,) is always one; p, is nonzero
because vy, is nonzero; all other autocorrelations are zero because the
relevant vy, are zero.

Consider an MA(1) process with §, = —0.8. In backshift form this
process is

7 =(1+08B)a, (6.26)

Although 8, is negative, it appears in (6.26) with a positive sign since we
follow the convention of writing MA coefficients with negative signs. Thus
the negative of our negative coefficient is positive.

Use (6.25) to calculate the theoretical autocorrelations for process (6.26):

P =1

=2 049
1 + 6} 1.64

p, =

p, =0, k>1

These values are graphed in an acf in Example I at the top of Figure 6.6.
Note that this theoretical acf looks like the MA(1) theoretical acf’s pre-
sented in Chapter 3 and earlier in this chapter. They all have a spike at lag 1
followed by a cutoff to zero.

As another example consider an MA(1) process with 8, = 0.5:

z,= (1 - 0.5B)a, (6.27)
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Figure 6.6 Theoretical acf’s for two MA(1) processes.

From (6.25) we find these theoretical autocorrelation coefficients for process
(6.27):

fo =1

-6, —0.5
STy P

P =0, k>1

These values are plotted in Example II at the bottom of Figure 6.6. Once
again, we see that the theoretical acf for an MA(1) process has a single spike
at lag 1.

{Note: Estimated acf’s never match theoretical acf’s exactly because of
sampling error. We saw examples of this in Chapter 3 where we simulated
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some realizations. However, if we see an estimated acf with a spike at lag 1
followed by statistically insignificant autocorrelations at the remaining lags,
we should consider representing the available data with an MA(1) model.
See Part I1, Cases 5 and 7-9 for examples.]

6.5 Deriving theoretical acf’s for the AR(1) process

In this section we consider a stationary AR(1) process with a mean g and ¢,
coefficient that are each a finite constant, and with a random-shock term
satisfying Assumptions Ia-IVa. This process is sometimes referred to as a
Markov process. In backshift notation the process is

(1 - ¢,B)z, = q, (6.28)

Applying the rules for backshift notation, we can also write the process
as

7,=C+¢z,_, +q, (6.29)
where

C=u(l-9¢)

As we did with the MA(]) generating mechanism in the last section, we
derive the mean, variance, autocovariances, and acf of the AR(1).

Mean. In the last section we demonstrated rather easily that the ex-
pected value (u) of z, for the MA(1) process was the finite constant (C). In
particular, we did not have to impose any special conditions on 8, except
that it be a finite constant. By contrast, the expected value of the AR(l) is
equal to C/(1 — ¢,) rather than C. Furthermore, the AR coefficient ¢,
must meet an additional condition or the assumption that u is a finite
constant (i.e., stationary) becomes untenable. In fact, we have already seen
in Section 6.2 that ¢, must satisfy this condition for stationarity:

¢, <1 (6.30)

We can justify condition (6.30) intuitively with an example. Consider
process (6.29). Suppose ¢, = 2 and p = 0, and suppose the initial value for
z is zo = 1. With |¢,| > 1, the subsequent values of z, tend to “explode”
away from the initial value; realizations generated by this process will not
return to a fixed central value, and the assumption that the mean u is fixed
at zero is contradicted.
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To show this, suppose the first six random shocks have these values:
@,—1,1, -3, ~1, —5). Process (6.29) along with the above conditions
would produce this realization:

zo=1
z;=2(1)+4=6
2,=26)-1=1
z;=2(11) +1=23
24=2(23) -3 =43
z,=2(43) - 1= 285
zg = 2(85) — 5 = 165

This realization is moving further and further away from zero, suggesting
that it was generated by a nonstationary process. In this section we show
formally that the mean of an AR(l) process is not stationary unless
condition (6.30) is met.

To find the mean u of the AR(l), find the mathematical expectation of
(6.29). In doing this we encounter a problem we did not meet when finding
the mean of the MA(1): one of the terms to be evaluated on the RHS of
(6.29), E(z,_,), is unknown. To solve the problem, use (6.29) to write
expressions for z,_|, z,_;.... and substitute these back recursively into
(6.29). Rearrange terms to arrive at this infinite series:

z,=C(l+¢|+¢21+¢3,+---)+a,+¢,a,_,+¢2,a,_2+---
(6.31)

We can find the expected value of an infinite series by taking the
expected value of each term separately only if the sum of the coefficients in
that series converges. From Rule 1V-E, we require that

Y ¢, =K (6.32)
i=0

where K is a finite constant.
If condition (6.32) does not hold, then (6.31) is an explosive (divergent)
infinite series; its sum does not exist and we cannot find its mathematical
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expectation. It can be shown that if the stationarity condition (6.30) holds,
then condition (6.32) also holds. Then the first term in (6.31) converges to
C/(1 — ¢,), and we may apply Assumption 1la separately to each remain-
ing term. By doing so we find*

C
E(21)=#=1_—¢|, ¢, <1 (6.33)

From (6.33) we find C = p(1 — ¢,). This is a specific case of the more
general result, shown in Chapter 5, that C = p(1 - ¢,).

We began by writing a supposedly stationary AR(1) process. A stationary
process has, among other things, a finite, constant mean. We have shown
that this supposition is contradicted unless |[¢,| < 1, so (6.30) is a condition
for stationarity of an AR(1). Similar restrictions on 8, are not necessary to
ensure that the mean of the MA(1) is stationary.

Variance and autocovariances. Next, we derive the variance and autoco-
variances of the AR(1) to see if they are stationary. We also need them to
find the theoretical acf of the AR(1). We find the variance and autocovari-
ances simultaneously. The variance y, = 0?2 and first autocovariance v, are
found by solving two simultaneous equations; the remaining autocovari-
ances are then found recursively.

These derivations are easier if we work with the deviations of z, from g,
that is, 7, = z, — p. The process generating Z, is identical to the process
generating z,, except the mean and constant term of the Z, process are zero:

Z=¢y%,_, t+a, (634)

Since the two processes are identical except for the means, the variances and
autocovariances for the two processes are identical because the variances
and the autocovariances depend on deviations from the mean rather than
the value of the mean.

We now use (6.34) to find the variance and autocovariances of the AR(1).
As we did in the last section, use Rules V-E and VI-E (from Appendix 3A)
and the fact that the expected value of Z, is zero to write the variance-
covariance function for Z,:

Yo = E(Z-lzl—k) (635)

*A faster way to arrive at (6.33) is to find the mathematical expectation of (6.29) and substitute
E(z,) for E(z,_,) on the assumption that these must be equal if the process is stationary. The
result is easily solved to arrive at (6.33). Our purpose above. however. was not only to find
(6.33) but also to demonstrate that (6.30) is required for stationarity.
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To evaluate (6.35), multiply both sides of (6.34) by 7,_, and find the
expected value of the result using Rule II-E:

Y« = E(Z-,Z,_k)
= E(¢|z-l—|z.l~k + arft—k)
= ¢1E(fl—lz.l~k) + E(al":l-k) (6’36)

Letting k = 0, 1,2,..., (6.36) yields the following sequence:

Yo=0l=¢y, + 0} (6.37a)
Y =% (6.37b)
Y2 = Y, (6.37¢)
Y5 = ¢, (6.37d)

To see how we arrive at equations (6.37), recall from Chapter 5 that the
AR(]) can be written in MA form. Thus, each of the following is an
acceptable way of writing (6.34):

21 =a,t+ ¢4, + ¢2101—2 + - (6.383)
L =a,_,+¢a,_,tela, s+ - (6.38b)
Z!~2 =a,,+ ¢|al-3 + ¢2lal—4 + - (638C)

These equations differ only in their time subscripts.

To find the variance of (6.34) let k = 0. Then the first term in (6.36) is
,E(2,%,_,) = ¢,v,- Making this substitution, and substituting the MA
form of 7, using (6.38a) in the second RHS term in (6.36) gives

Yo =7 + E[a,(a, +¢ia,_, + ¢2|al—2 + - )]
=¢v + E(alal t+¢aa,_, + ¢zlalal—2 + - ) (639)
By Assumption Illa, all expectations except E(a,a,) in the second RHS

term in (6.39) are zero; E(a,a,) is o} by Assumption 1Va. Thus we have
arrived at (6.37a).



146 Identification: stationary models

To find v, let k = 1. Then the first term in (6.36) is ¢, E(Z,_,2,_,) = ¢,Y,
= ¢,07. Making this substitution, and substituting the MA form of 7,_,
using (6.38b) in the second RHS term in (6.36) gives

Y1 =¢1% t E[a,(a,_l +¢a,_,+ 4’21‘11—3 + .. )]
= ¢|‘YO + E(alal-l + ¢la{a{-2 + ¢2lala{—3 + .- ) (640)

By Assumption IIla, all expectations in the second RHS term are zero and
we have arrived at (6.37b).

Letting k = 2,3, ... and following similar reasoning leads to the expres-
sions for the remaining autocovariances in (6.37).

Now solve (6.37a) and (6.37b) simultaneously for the variance y,:

02

= 0.2 - C 6-41
‘YO =z l _ ¢2] ( )

From (6.41), ¢, and o2 must both be finite constants, as we assume they
are, if the variance of the AR(1) process is to exist and be stationary. In
addition, the stationarity condition |¢,] < | must be satisfied if v, is to
exist. That is, if |¢,| = 1, the denominator of (6.41) is zero and the variance
is undefined. If |¢,| > 1, the denominator of (6.41) is negative and there-
fore v, is negative—an impossible result for a variance.

All autocovariances v,, Y, ... are now found recursively. Having found
Y, we substitute it into (6.37b) to find y,. This result is substituted into
(6.37¢) to find y,, which is then substituted into (6.37d) to find v;, and so
forth. Thus the variance and all autocovariances for the AR(1) can be
written compactly as a function of ¢, and y,:

Ne=e¢{v, k=012 (6.42)

Since y, does not exist if |¢,| = 1, then from (6.42) none of the
autocovariances exist if the stationarity condition |¢,| < 1 is violated
because they all depend on y,. And just as with y,, all autocovariances are
stationary only if o? and ¢, are finite constants. Again we see the impor-
tance of our assumptions about the properties of the random shocks and the
constancy of parameters in UBJ-ARIMA models.

Autocorrelations. Dividing (6.42) by y, = o2 yields a compact autocor-
relation function for the AR(1):

p,=¢% k=0,1,2,... (6.43)
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If |¢,] < 1, the autocorrelation coefficients for an AR(1) decline exponen-
tially as k increases. This important result states that the theoretical acf for
a suationary AR(1) process has a pattern of exponential decay as the
autocorrelation lag length (k) grows. Figure 6.7 shows two examples of this.
In Example I at the top of the figure, ¢, = 0.7. From (6.43), the autocorre-
lations for this AR(1) process have these values:

=43 =(0.7)° =1
oy = ¢\ =(0.7) =07
p, = ¢2 = (0.7)° = 0.49

ps = ¢ =(0.7)’ =034

Example |: (1-0.7B)z,=a,
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S o
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Example I1: (1+0.5B)z, =a,
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Figure 6.7 Theoretical acf’s for two AR(1) processes.
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In Example II at the bottom of Figure 6.7, ¢, = —0.5. Using (6.43) we find

[e—

po =9 = (-05)° =
py=¢\ =(-05)' = ~05
p, =2 = (-0.5)" =025

py=¢ = (—-05)° = —0.125

Note that if ¢, is positive, all decay is on the positive side of the acf. But
if ¢, is negative the autocorrelation coefficients alternate in sign, while their
absolute values decay exponentially. Thus if we see an estimated acf that
decays exponentially, either from the positive side or with alternating signs
starting from the negative side, we may make an educated guess that a
stationary AR(1) is a good model to represent the data. (See Part II, Case 1
for an example.)

Equation (6.43) also suggests that a nonstationary AR(1) process will
produce a theoretical acf which does not damp out. For example, if ¢, = 1,
the p, follow the pattern 1,1, 1, ... Thus if we see an estimated acf whose
autocorrelations die out slowly at higher lags, this is a clue that the underly-
ing process may be nonstationary. Note that the estimated autocorrelations
need not all be near 1.0 to suggest nonstationarity; they need merely damp
out slowly. (Case 8 in Part II shows an example of an estimated acf which
decays slowly from relatively small values.)

Summary

1. Stationary AR processes have
(a) theoretical acf’s that tail off toward zero with either some type
of exponential decay or a damped sine wave pattern; and
(b) theoretical pacf’s that cut off to zero after lag p (the AR order
of the process).

2. MA processes have
(a) theoretical acf’s that cut off to zero after lag g (the MA order of
the process); and
() theoretical pacf’s that tail off toward zero with either some type
of exponential decay or a damped sine wave pattern.
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3. Stationary mixed (ARMA) processes have
(a) theoretical acf’s that tail off toward zero after the first g-p lags;
and
(b) theoretical pacf’s that tail off toward zero after the first p-q lags.

4. An AR(1) or ARMAC(I, gq) process must meet the following condition
to be stationary: |¢,] < L.

5. An AR(2) or ARMA(2, g) process must meet the following three
conditions to be stationary:

l$} <1
o, + 0, <1
¢ — ¢ <1

6. The stationarity requirement ensures that we can obtain useful
estimates of the mean, variance, and acf from a sample. If a process mean
were different each time period, we could not obtain useful estimates since
we typically have only one observation available per time period.

7. To check for stationarity in practice:

(a) examine the realization visually to see if the mean and variance
appear to be constant;

(b) examine the estimated acf to see if it drops to zero rapidly; if it
does not, the mean may-not be stationary and differencing may be
needed; and

(c) check any estimated AR coefficients to see that they meet the
relevant stationarity conditions.

8. The stationarity conditions on the ¢ coefficients are complicated

when p > 2. We can at least use this necessary (but not sufficient) condition
to check for stationarity when p > 2:

¢+t o+, <1

9. If p > 2, we rely primarily on visual inspection of the data and the
behavior of the estimated acf to check for stationarity. If the estimated acf
does not fall rapidly to zero at longer lags, we suspect nonstationarity.

10. An MA(1) or ARMA( p, 1) process must meet the following condi-
tion to be invertible: |8, < 1.
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11. An MA(2) or ARMA( p, 2) process must meet the following three
conditions to be invertible:

16,] <1
0,+6, <1
6,-6 <1

12. The invertibility requirement produces the common-sense implica-
tion that smaller weights are attached to observations further in the past.

13. Theoretical acf’s and pacf’s are derived from processes by applying
expected value rules and the assumptions about the random shocks.

14. The autocorrelation function for a pure MA process is

—0,+0,6,.,+ - +6,_8,
(1+62+062+ - +862)

I
il
—
)
£y

P

)

P =0, k>gq
15. The autocorrelation function for an AR(1) process is

p=¢k,  k=0,1,2,...

Appendix 6A: The formal conditions for stationarity and
invertibility

In this appendix we discuss the formal mathematical conditions for
stationarity and invertibility of any ARIMA process.

Stationarity. Use the AR operator to form the characteristic equation
(1-6¢,B—¢,B*—---—¢,B?)=0 (6A.1)

where B is now treated as an ordinary algebraic variable. Stationarity
requires that all roots of (6A.1) lie outside the unit circle (in the complex
plane).

Although this formal condition for stationarity is conceptually clear, the
implied restrictions on the AR coefficients may not be easy to find in
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practice. For the AR(]), it is easy to show that |¢,| < I must hold if B is to
lie outside the unit circle. For the AR(2), we may apply the standard
quadratic formula to (6A.1) to denive the conditions on ¢, and ¢, shown in
equation (6.8) and Table 6.2.

For p =3 or 4 there are general solutions for the roots of (6A.1), but
they are cumbersome. There are no general solutions for polynomials of
degree five or higher. In these cases, the range of root values of (6A.1)
satisfying stationarity may be found numericaily. Then the implied range of
acceptable values for the ¢ coefficients may be found. This procedure is
relatively difficult and time-consuming and is often not done.

Occasionally, some analysts express ARIMA models in a multiplicative
rather than additive form to ease examination of stationarity and invertibil-
ity conditions. Writing the AR operator in multiplicative form gives this
charactenistic equation:

(1 -¢,B)(1 —¢,B)(1 —¢;B%)--- (1-9,B°)=0 (6A2)
In this case, the set of stationarity conditions on the coefficients reduces to
fo;] <1, foralli (6A.3)

In Chapter 11 we discuss a common type of multiplicative ARIMA model
containing both seasonal and nonseasonal elements.

Invertibility. The formal mathematical requirements for invertibility are
tdentical to those for stationarity except we begin with the MA operator to
form this characteristic equation:

(1-6B-6,B>~----§B9)=0 (6A.4)

Invertibility requires that all roots of (6A.4) lie outside the unit circle (in the

complex plane). All earlier comments about the ease or difficulty of finding

the restrictions on ¢ coefficients apply here, but in this case they pertain to §

coefficients. Likewise, the MA operator may be expressed in multiplicative
form:

(1-6,B)(1-6,B*)--- (1-6,B9)=0 (6A.5)

where the set of invertibility conditions becomes

16} <1, foralli (6A.6)
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Appendix 6B: Invertibility, uniqueness, and forecast
performance

In Section 6.3 we emphasized the common-sense appeal of the invertibility
requirement. Some further comments about this requirement are in order,
though they involve mathematical proofs beyond the scope of this book.

Invertibility guarantees that, for stationary processes, any given theoreti-
cal acf will correspond uniquely to some ARIMA generating mechanism.
(This result holds only up to a multiplicative factor—a point discussed
further under the topic of parameter redundancy in Chapter 8.) This unique
correspondence increases the attractiveness of the Box-Jenkins identifica-
tion procedure: there is only one stationary ARIMA process consistent with
any particular theoretical acf. Of course, uniqueness does not ensure that
correctly choosing the theoretical acf corresponding to an estimated acf will
be easy in practice.

An example may help to clarify the idea of uniqueness. Suppose we have
an MA(]) theoretical acf with p, = 0.4 and p, = 0 for k > 1. We see from
(6.25) that these autocorrelations are consistent with either 8, = 0.5 or
8, = 2. Restricting 8, to satisfy the invertibility condition |8,| < 1 provides
a unique correspondence between the autocorrelations and the value of 4,.
The same conclusion holds for any MA process: the p, may give multiple
solutions for MA coefficients, but a unique correspondence between the
theoretical acf structure and the process is assured if the invertibility
conditions are satisfied. The problem of multiple solutions does not arise
with AR models. It can be proven that the coefficients of a pure AR process
are uniquely determined by the corresponding theoretical acf.

Achieving uniqueness by restricting our analysis to invertible processes
may seem arbitrary. In particular, perhaps we should consider dropping the
invertibility requirement whenever a noninvertible form produces better
forecasts than the invertible one. It turns out, however, that this cannot
happen. There is a theorem, proven elsewhere, which states the following: in
practice, the noninvertible form of a model cannot produce better forecasts
than the invertible form based on a minimum mean-squared forecast-error
criterion.

Questions and Problems

6.1 Consider the following pairs of theoretical acf’s and pacf’s. Indicate
whether each pair is associated with an AR, MA, or ARMA process, and
state the orders of each process. Explain your reasoning in each case.



(a)

b)

{c)

(d)

0N

®

acf

pacf

| 4
T

hll..

“ll.

“llu
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6.2 Consider this AR(1) process with ¢, = 0.8:

(1 -08B)z, = aq,
where

=1

(@) What are the numerical values of the first five autocovariances?
(b) What are the numerical values of the first five theoretical autocor-
relation coefficients?

(c) What are the numerical values of the first five theoretical partial
autocorrelation coefficients?

(d) Sketch the theoretical acf and pacf of this process.

6.3 Which of the following processes are stationary and invertible? Ex-
plain.

(@ (1 — 1.0SB + 0.4B%);, = a,

(M) (1 - 1.05B);, = a,

(¢©) (1+08B):,= (1 —025B)a,

d) 7, =(l + 0.7B — 0.5B%)a,

() z,= (1 — 08B)a,

H (1-04B%)z, =a,

(® (1+0.6B):, =(1+09B%)a,

6.4 Calculate and plot in an acf the first five theoretical autocorrelation
coefficients for this MA(1) process:

z,=(1+ 0.6B)a,

6.5 Show that C = p for the MA(2) process.

6.6 Show that C = p(l — ¢, — ¢,) for a stationary AR(2) process. Use
the faster method referred to in the footnote in Section 6.5.

6.7 Derive the theoretical acf for the MA(2) process. Calculate and plot in
an acf the first five theoretical autocorrelations for this MA(2) process:

z,=(1 + 088 — 0.4B%)a,
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IDENTIFICATION:
NONSTATIONARY MODELS

In Chapter | we said that a data series had to be stationary before we could
properly apply the UBJ modeling strategy, and till now we have focused on
stationary models. Stationary realizations are generated by stationary
processes. If the random shocks (a,) in a process are Normally distributed,
then the process will be stationary if its mean, variance, and (theoretical)
autocorrelation function are constant through time. Thus, if we consider
segments of a realization generated by a stationary process (the first and
second halves, for example), the different segments will typically have
means, variances, and autocorrelation coefficients that do not differ signifi-
cantly.

In practice, however, many realizations are nonstationary. In this chapter
we consider how we can (often, but not always) transform a nonstationary
realization into a stationary one. If such transformations can be found, we
may then apply the three-stage UBJ strategy of identification, estimation,
and diagnostic checking to the transformed, stationary series. After model-
ing the transformed series, we may reverse the transformation procedure to
obtain forecasts of the original, nonstationary series.

7.1 Nonstationary mean

The most common type of nonstationarity is when the mean of a series is
not constant. Figures 7.1, 7.2, and 7.3 are examples of three such realiza-
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291 %1 57. 25
301 p 3 57. 375
311 %1 57.125
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361 ¥ 1 56. 25
371 * 1 56. 25
381 ;"’ 1 55. 125
391 - 1 55
401 % 1 55. 125
a11 ,*"”'—'- 1 s3
421 o 1 52. 375
431 1 52875
aal Na 1 53. 5
4s1 ¢ 1 53. 375
451 * 1 $3. 375
471 3 1 53. 5
agl w 1 53. 75
49] . 1 54
501 * 1 53. 125
S11+= 1 51. 875
521 % 1 52. 25
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Figure 7.1 Example of a realization with a nonstationary mean: AT& T closing
stock prices.
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tions. Figure 7.1 shows weekly observations of the closing price of a stock
whose overall level (mean) is trending downward through time. Figure 7.2
shows the weekly availability of an industrial part. The level of this series
appears to rise and fall episodically rather than trending in one direction.
Figure 7.3 is a series of commercial bank real-estate loans. The level of this
series shows a trend, much like the stock-price series in Figure 7.1, but the
loan series is trending up rather than down. Note also that the loan series
changes both slope and level, whereas the stock-price series has a roughly
constant slope.

Homogeneous nonstationarity. Each of the above three realizations has
an important characteristic called homogeneous nonstationarity. That is,
different segments of each series behave much like the rest of the series afrer
we allow for changes in level and/or slope. This characteristic is important
because a homogeneously nonstationary realization can be transformed into
a stationary series simply by differencing.

We can visualize the idea of homogeneous nonstationarity by considering
the rectangular frames superimposed on the three series, shown in Figures
7.4, 7.5, and 7.6. In Figure 7.4 the observations in the left-hand frame trace
out a path very similar to the data path in the right-hand frame. The only
difference is that the two frames are drawn at different levels. The same is
true of the three frames superimposed on the data in Figure 7.5.

Likewise, the two frames in Figure 7.6 are drawn at different levels. But
we must also draw these frames at different angles to make the data paths
within each frame look similar. When these two frames are placed next to
each other, as shown in Figure 7.7, both segments of this realization appear
to have the same level and slope. The similar behavior of the data within the
two frames in Figure 7.7 suggests that the nonstationarity in the loans series
is of the homogeneous variety; different segments of this series are similar
after we remove the differences in level and slope.

Differencing. Realizations that are homogeneously nonstationary can
be rendered stationary by differencing. (Remember that differencing is a
procedure for dealing with a nonstationary mean, not a nonstationary
variance.) We introduced the mechanics of differencing in Chapter 2 and
the associated notation in Chapter 5. For convenience we review the
fundamental ideas here.

To difference a series once (d = 1), calculate the period-to-period changes.
To difference a series twice (d = 2), calculate the period-to-period changes
in the first-differenced series. For example, consider the short realization
(z,) shown in Table 7.1, column 2. The first differences of z, (designated
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Figure 7.2 Example of a realization with a nonstationary mean: parts availability.
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Figure 7.3 Example of a realization with a nonstationary mean: real-estate loans.
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Figure 7.6 Figure 7.3 with superimposed rectangular frames to illustrate homoge-
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Figure 7.7 Rectangular frames from Figure 7.6 placed side-by-side.

Vz,) are the changes in z,;: Vz,=2z,—~z,_,. Thus vz, =z, -z, =11 - 8
= 3. Other calculations of the first differences are shown in column 3.

The second differences of z, (designated v 2z,) are the changes in the first
differences: v?z, = vz, — Vz,_, = (2, — z,_) = (2,_, - £,_,). Thus
V2zy = Vz; — Vz; =4 — 3= 1. Further calculations of second dif-
ferences appear in column 4.

We lose one observation each time we difference a series. For example,
there is no observation z, to subtract from z,, so we have only nine first
differences in Table 7.1 although there are 10 original observations on z,.

Table 7.1 Numerical examples of first and second differencing

First Differences of - Second Differences of z,:
‘ E v=z-2z_ vl = vz, - vz, ¢
! =8  ©i,=:-2=na' Vi, = vz - Vi, =na
2 =1l L=, -5=11~- 8= Uiy = Vi, - Uz = na
3 =15 wn=5,-5=15-11=4 Vi = v -V, =4-3=1
4 =16 Wig=cz, -z =16-15=1 = V2, - V=1 —4=-3
5 2o=17 S =co-z,=17-16=1 Vi2g= Vs -V, =1-1=0
6 =19 O =z, - =19-17=2 V2= Vi —Vig=2~-1=1
7 2,=23 COi,=2I;-2,=23-19=4 V= V2, - Vig=4-2=2
8 =28 Ci=o -z, =28-23=5 Vi = Vig— Vi, =5-4=1|
9 2g=21 U=y - 5, =27-28= -1 ©l,= Uip- V= ~-1-5= -6
10 2,,=29 Ory=2,—24=29-237=2 T2 =V2,g~ V2g=2—(-1=3
“Mean = 18.3.
*Mean = 2.3.

‘n.a. = not available.
YMean = -0.13.
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Since there are only nine first differences, there are only eight second
differences. That is, there is no first difference vz, = (z; — z,) available at
t = 1 to subtract from the first difference vz, = (2, — z;) at 1 = 2, so we
cannot calculate a second difference for ¢ = 2.

Note that the means of the three series (z,, Vz,, V?%z,) get closer to zero
the more we difference. (The means are shown at the bottom of Table 7.1.)
This is a common result, especially for data in business, economics, and
other social sciences. We discuss this point further in Section 7.3.

Let w, stand for a differenced series. Although we may build an ARIMA
model for the differenced series (w,) when the original series (z,) is not
stationary, we are often interested in forecasting the undifferenced (z,)
series. While the w’s are differences of the z°’s, the z’s are sums of w’s. We
can obtain the z, series by integrating (summing) successive w, values.
Integration is discussed further in Appendix 7A.

Backshift notation for differencing. Backshift notation for differenced
variables is as follows: (I — B)z, or (1 — B):, represents the first dif-
ferences of z,. (1 — B)?z, or (1 — B)?Z, represents the second differences of
z,. In general, (1 — B)?, or (1 — B)?Z, represents the dth differences of z,.

It is easy to demonstrate these conclusions by applying the rules for the
backshift operator B stated in Chapter 5. For example, we can show that
(1 — B)Z, is the same as z, — z,_, by expanding the expression (1 — B)7,
and applying rules (5.9) and (5.10) from Chapter 5:

(1-B)z,=(1-B)z,~p)=2z2,~-2B-p+Bp
=z -z, —ptyp

The p terms add to zero when z, is differenced, so we could write the
differenced series as either (1 — B)“z, or (I — B)?,. This result is the
algebraic analog of our statement above that a differenced realization often
has a mean that is statistically zero. This topic is discussed further in Section
7.3.

Identification procedures. Let w, represent a differenced series:
w, = de,

= (1 - B)?s, (7.2)
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After a nonstationary series z, has been transformed into a differenced,
stationary series w,, then w, is modeled with the same UBJ-ARIMA
procedures that apply to any stationary series. For example, suppose the
estimated acf of the differenced series w, decays exponentially while the
estimated pacf has a spike at lag 1. According to our discussion of
theoretical acf’s and pacf’s in Chapters 3 and 6, we should then entertain an
AR(1) model for w;:

(I - ¢,B)w, = q, (7.3)

Since w, and z, are linked deterministically by definition (7.2), (7.3) also
implies a model for z,. Use (7.2) to substitute (1 — B)?, for w, in (7.3) to see
that (7.3) implies an ARIMA (1, 4,0) model for z,:

(1 - ¢,B)(1 - B)‘z,=gq, (1.4)

In general, any ARMA( p, ¢) model for a differenced series w, is also an
integrated ARIMA( p, d, g) model for the undifferenced or integrated series
z,, with p and g having the same values for both models. In fact, the AR and
MA coefficients are the same for the two models. The link between the two
models is definition (7.2), which states that the w’s are obtained from
differencing the z’s d times, and the z’s are obtained by integrating the w's
d times.

For any realization we must select an appropriate degree of differencing
(the value of d) before choosing the AR and MA terms to include in the
model. If the original senes z, is stationary, we do not difference, so d = 0.
When segments of a senes differ only in level, as with the stock-price series
in Figure 7.1 or the parts availability series in Figure 7.2, differencing once
is sufficient to induce a stationary mean, so d = }. When a series has a
time-varying level and slope, as with the loans series in Figure 7.3, differenc-
ing twice will induce a stationary mean, so d = 2.

In practice, first differencing is required frequently while second dif-
ferencing is needed only occasionally. Differencing more than twice is
virtually never needed. We must be careful not to difference a series more
than is needed to achieve stationarity. Unnecessary differencing creates
artificial patterns in a series and tends to reduce forecast accuracy. On the
other hand, Box and Jenkins suggest that, in a forecasting situation, a series
should be differenced if there is serious doubt as to whether the stationary
or nonstationary formulation is appropnate:

In doubtful cases there may be advantage in employing the nonsta-
tionary model rather than the stationary alternative (for example, in
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treating a ¢,, whose estimate is close to unity, as being equal to unity).
This is particularly true in forecasting and control problems. Where ¢,
is close to unity, we do not really know whether the mean of the series
has meaning or not. Therefore, it may be advantageous to employ the
nonstationary model which does not include a mean p. If we use such
a model, forecasts of future behavior will not in any way depend on an
estimated mean, calculated from a previous period, which may have
no relevance to the future level of the sernies. {1, p. 192, emphasis in
original. Quoted by permission.]

How do we choose the value of d? As noted in Chapter 6, there are three
complementary procedures:

1. Examine the data visually. This often gives a clue to the appropriate
degree of difierencing. For example, it is difficult to look at the
stock-price series in Figure 7.1 without seeing that the level of the
data is trending down. However, the slope of the series does not
appear to be changing through time. Therefore, setting d = 1 (dif-
ferencing once) would seem appropriate. While such visual analysis
can be helpful, we should not rely on it exclusively to determine the
degree of differencing.

2. [Examine the estimated acf’s of the original series and the differenced
series. The estimated acf of a nonstationary series will decay only
slowly. While the estimated acf for a series with a nonstationary mean
might decay slowly from a very high level, with r, close to 1.0, this is
not a necessary characteristic of such series. The estimated acf could
start out with rather small values of r, (less than 0.5, for example).
The critical point is that the estimated acf decays toward zero very
slowly.*

3. Check any estimated AR coefficients at the estimation stage to see if
they satisfy the stationarity conditions discussed in Chapter 6.

Example 1. The above modeling steps may be illustrated using the three
realizations in Figures 7.1, 7.2, and 7.3. Visual analysis of the stock-price
series suggests that its mean is nonstationary because the series trends down.
The estimated acf for this realization, shown in Figure 7.8, declines very
slowly. This behavior is consistent with the mean being nonstationary, and
differencing at least once is proper.

*See Box and Jenkins [1, p. 200-201} for an example of a nonstationary process whose
estimated acf’s decay slowly from approximately r, = 0.5.
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Figure 7.8 Estimated acf for the stock-price realization in Figure 7.1.

The first differences of the stock-price realization appear in Figure 7.9.
The differenced series no longer has a noticeable trend. Instead it fluctuates
around a fixed mean of nearly zero (the mean is —0.17). Differencing once
appears to have induced a stationary mean, so the nonstationarity in the
original series was apparently of the homogeneous variety.

The estimated acf of the differenced stock-price series is shown in Figure
7.10. It dies out to zero quickly, suggesting that the mean of the first
differences is stationary. It has no significant r-values; the acf shows neither
the decaying pattern suggestive of a pure AR or mixed ARMA model, nor
the spike and cutoff pattern associated with MA models. Therefore, the first
differences appear to be a white-noise series, suggesting the following
ARIMA model for the differenced data:

w,=a

(7.5)

t

Substituting w, = (1 — B)Z, into (7.5) leads to this model for the original
series:

(1 - B)z,=a, (7.6)

In Case 6 in Part II we see that estimation and diagnostic checking confirm
model (7.6) as appropriate for the stock-price series.

Example 2. We saw in Figure 7.2 that the parts-availability data also
appear to have a nonstationary mean. The estimated acf for this series,
shown in-Figure 7.11, is consistent with this conclusion. The estimated
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Figure 7.13 Estimated acf for the first differences of the parts-availability data in
Figure 7.12.

autocorrelation coefficients actually rise for the first few lags and remain
moderately large (absolute z-values > 1.6) until about lag 7.

After differencing once, the parts availability series appears to have a
stationary mean. The first differences (plotted in Figure 7.12) seem to
fluctuate around a fixed mean of about zero (the mean is 0.096). The
estimated acf of the first differences (Figure 7.13) dies out to zero quickly,
with only the autocorrelation at lag 1 being significant. This suggests an
MA(1) model for the first differences:

w,=(1~6,B)a, (7.7)

Since w, = (1 — B)Z,, (7.7) corresponds to an ARIMAC(0, 1, 1) model for the
original series z,:

(1-B):,=(1-46,B)a, (7.8)
Estimation and diagnostic checking of model (7.8), discussed in Case 8 in

Part 11, show that it provides a good representation of the parts-availability
data.
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Example 3. The real-estate-loans realization shown in Figure 7.3 ap-
pears to change both level and slope, suggesting that differencing twice is
needed. The estimated acf of the original data (Figure 7.14) fails to damp
out rapidly toward zero, thus confirming the nonstationary character of the
realization mean.

The first-differenced data appear in Figure 7.15. This differenced series
looks much like the onginal parts availability realization—1its level rises and
falls episodically. The estimated acf for the first-differenced data is shown in
Figure 7.16. It does not damp out toward zero rapidly, so further differenc-
ing seems appropriate.

The twice-differenced data are plotted in Figure 7.17. This series fluctuates
around a constant mean of approximately zero (the mean is 0.0176). In
Figure 7.18 we see that the estimated acf for this series moves quickly to
zero. The significant spike at lag 1, followed by the cutoff to zero, suggests
an MA(1) for the second differences:

w, = (l - 013)01 (79)

"

We know that w, stands for the second differences of z,: w, = (1 — B)*Z,.
Therefore, (7.9) 1mp11es that the onginal senes z, follows an ARIMA(O 2, 1.
That is. substitute (I — B)?%, into (7.9) for w, to get

2.
(1 - B)z,= (I - 6,B)a, (7.10)

B T AUTULORRELATIONS + 4+ + + + 4+ + 4+ 4+ + + + +
+ FOR DATA SERIES: REAL ESTATE LODANS +
+ DIFFERENCING: O MEAN = &2.7 +
+ DATA COUNT = 70 STD DEV = 9 42795 +
COEF T-VAL LAG

0 93 7.74 1 3

0. 85 4 33 2 s

g 78 3. 20 3 £

0 71 2. 57 4 4

0. 65 2 16 5 8

0. 59 1.85 6 4

0. 54 1 60 7 4

0. 49 1.40 ] t b]

0. 44 1 23 9 3 b]

0. 39 1.07 10 3 = ]

0. 35 0.93 11 t D))“) o> b]

0. 30 0.80 12 t [e i e Y b]

0. 26 0.69 13 t OD32030> ]

0. 22 0.57 14 3 o530 ]

0.18 0.48 15 3 05222 ]

0.15 0.39 16 4 052> P |

0 12 0.32 17 4 o>>> J

0. 10 0.26 1B 4 0> p]

CHI~SQUAREDs* = 370.57 FOR DF = 18
Figure 7.14 Estimated acf for the loans realization in Figure 7.3.
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Figure 7.15 First differences of the loans realization in Figure 7.3.
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+ + + + + + + + + + + + + AUTOCORRELATIONS + + + + + + + + + + + + +
+ FOR DATA SERIES: REAL. ESTATE LOANS +
+ DIFFERENCING: 1 MEAN = 595652 +
+ DATA COUNT = 69 STD DEV = . 525973 +

COEF T-VAL LAG

0.80 6. 65 1 €

0.73 4. 03 2 C

0. 65 2 94 3 L

0. 50 2. 03 4 C

0. 44 1. 67 S C

0.35 1. 30 & 4

0.34 1. 24 7 4

0. 31 1 08 8 C

0. 32 111 9 L

0. 37 1.25 10 C

0.33 111 1t € b

0. .29 0.96 12 € ]

0. 26 0.85 13 C ]

0. 18 0.58 14 C b

0. 11 0.37 15 C b

0. 05 0.14 16 € ]
-0.05 -0.t6 17 C b
-0.12 -0.37 18 C ]

CHI-SQUARED* = 224 76 FOR DF = 18

Figure 7.16 Estimated acf for the first differences of the loans data in Figure 7.15.

Estimation and diagnostic-checking results in Part I, Case 7, confirm that
(7.10) is an acceptable model for the loans data.

7.2 Nonstationary variance

Some realizations have a variance that changes through time. This occurs
most frequently with business and economic data covening a long time span.
especially when there is a seasonal element in the data. Such series must be
transformed to induce a constant variance before being modeled with the
UBJ-ARIMA method. It is possible that no suitable transformation will be
found.

Series with a nonstationary variance often have a nonstationary mean
also. A sernies of this type must be transformed to induce a constant variance
and differenced to induce a fixed mean before being modeled further.

Figure 7.19 is an example of a series whose mean and variance are both
nonstationary. These data, which are analyzed in Part II, Case 11, are
monthly armed robberies in Boston from 1966 to 1975. The rising trend
suggests that the mean is nonstationary, and the variance also seems to get
larger as the overall level rises.

The first differences of the original data are shown in Figure 7.20. The
first differences appear to fluctuate about a fixed mean which is close to
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TIME
73

74

7%

76

77

78

REAL ESTATE LOANS
-~DIFFERENCING: 1 1

~-EACH VERTICAL AXIS INTERVAL = .2914667E~01
LOW = MEAN = HIGH =

-6 . 176471E-01 )

1 POGY VALUE
31 - o]
a1 1 * 3
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61 1 . 2
71 /-/ o
81 i -1
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61 " . 177636E-14
71 1 .8
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91 - 1 -3
101 T 2
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Figure 7.17 Second differences of the loans realization in Figure 7.3.
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+ 4+ 4+ + + + 4+ 4+ ¢+ 4+ + 4+ + AUTOCORRELATIONS + + + + 4+ + + 4+ + + + &+ +
+ FOR DATA SERIES: REAL ESTATE LDANS *
+ DIFFERENCING: 1 1 MEAN = 176471E-01 +
+ DATA COUNT = 68 STD DEV = . 305797 -
COEF T-VAL LAG 0

~0.3&6 -2.98 1 LKA TICCKD ]

-0.01 -0.04 2 0

0. 14 1.02 3 (9 e e

-0.11 -0.77 4 <L

0.05 0. 34 S 0>>

-0.16 -1.17 [ CLLLLL<0

0. 08 0. 54 7 0>>>0>

-0.10 -0.71% 8 <KD

-0.09 -0 62 9 <C<O

0. 05 0.37 11 0>>>
-0.07 -0.48 12 <<{<<0

0. 11 0.74 13 055553
0. 02 0.16 14 0>
-0.05 -0.31 15 <<0

0. 06 0.38 16 0>>>
0. 00 0.03 17 0
CHI-SQUARED* = 19.74 FOR DF = 17
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€
{
L
C
{
C
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Figure 7.18 Estimated acf for the second differences of the loans data in Figure
7.17.

zero. However, the variance of the differenced data still seems to be
increasing over time.

Logarithmic transformation. Often a series with a nonstationary vari-
ance will be stationary in the natural logarithms. This transformation is
appropriate if the standard deviation of the original series is proportional to
the mean, so that the percent fluctuations are constant through time.

The natural logarithms of the armed-robbery realization are plotted in
Figure 7.21. This transformation appears to have made the variance of the
series stationary. The first differences of the natural logarithms, plotted in
Figure 7.22, confirm this conclusion. (Note that we calculated the natural
logarithms before differencing the data. Differencing first would have caused
problems because the differenced series has some negative values, and the
natural logarithm of a negative number is undefined.)

We have created a new series, w,, which is the first differences of the
natural logarithms of the original series:

w,= (1 — B}Inz,) (7.11)

We may now model the series w, using the standard UBJ method. However,
our real interest may be in forecasting the original series z,, not the natural
logarithms of z,. It might seem that we could forecast z, by merely finding
the antilogarithms of forecasts of the logged series. However, there are some
complications in this procedure, as discussed in Chapter 10.



BOSTON ARMED ROBBERIES
—~DIFFERENCING: O

--EACH VERTICAL AXIS INTERVAL = 9. 8125
LOW = MEAN = HIGH =
29 196. 288 500
TIME I+4+44++4++tttttttttttttttttrbttrtttrtttrbttbttrrdsss+ VALUE
b6 11 * I 41
21 % I 39
31 e I 50
41 # 1 40
SI 1 43
61 * I 38
71 ’* I 44
8I * I 35
91 * I 39
101 P I 35
111 I 29
121 ¢ I 49
67 11 l-\ I 50
21 ¥ I 59
31 * I 63
a1s” 1 32
51 * I 39
61 L4 1 47
71 . I 53
8I » I 60
91 ; 1 57
101 *\ I 52
111 ~ I 70
121 * 1 90
8 11 4 1 74
21 H I 62
31 *, 1 55
41 \i\ I 84
51 s I 94
61 i\\\ 1 70
71 *\\ I 108
81 P I 139
91 /* I 120
101 *\ I 97
111 *« I 126
121 * I 149
69 11 /,* 1 158
21 Y I 124
31 * I 140
at ' 1 109
51 * I 114
61 *< 1 77
71 ll'\ I 120
81 o I 133
{1 /* I 110
101 - I 92
111 /* I 97
121 i\ 1 78
70 11 Y I 99
el * 1 107
31 /i- I 112
41 « 1 90
51 * I 98
61 \*\ I 125
71 #\ 1 155
(=] «] 190
91 T~ 236

Figure 7.19 Example of a realization with a nonstationary mean and variance:
Boston armed robberies.
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BOSTON ARMED ROBBERIES
-~DIFFERENCING: 1

-~EACH VERTICAL AXIS INTERVAL = 4. 5625
LOW = MEAN = HIGH =
-96 3. 33333 123
TIME J4+++ 444ttt r bt bttt bttt trttr bttt rr et r bttt rrrrr+++ VALUE
b6 21 t% -2
31 - 11
41 *<:I -10
51 P 3
61 *\I -5
71 /,* [
81 t\\l -9
21 /l 4
101 H I -4
111 * -6
121 ~§:>* 20
67 11 L4 1
21 f Q
31 * 4
al *<1 -31
51 b 4 7
61 I 8
71 * [
81 T 7
91 1 -3
101 * -5
111 ‘§\‘7 18
121 - 20
68 I g/xx’ -16
21 t\ I =12
31 ] -7
at 1= 29
P
51 I 10
61 * -24
71 I Fa 38
81 -_—_l____-e 31
91 Pl 1 -19
101 *-.__L___‘ ~-23
111 I P 29
121 I /u- 23
69 11 I# 9
21 =1 -34
31 = 16
41 * 1 -31
51 L S
61 & 1 -37
71 1 - 43
81 g 13
91 1 -23
101 * I -18
111 - 5
121 #—._~1‘~‘ -19
70 11 I /,é 21
21 Ef 8
31 * S
a1 a<z -22
S1 T+ e
61 I \*\ 27
71 1 by 30
34 I * 35
91 B SN 46

Figure 7.20 First differences of Boston armed-robberies realization in Figure 7.1¢
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Figure 7.20 (Continued)
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LOG(e) BOSTON ARMED ROBBERIES
—-~DIFFERENCING: ©

--EACH VERTICAL AXIS INTERVAL = 059319
LOW = MEAN = HIGH =
3. 3673 5 01457 &6 21461
TIME I+++++++ L T FH+Fr bttt ettt ++ VALUE
66 11 » 1 3. 71357
21 Y 1 3. 66356
31 P 1 3. 91202
41 g 1 3. 68888
51 ot 1 3. 7612
61 4 1 3. 63759
71 _* 1 3.78419
81  #Z 1 3. 55535
91 ot 1 3. 66356
101« 1 3. 55535
111# 1 3.3673
121 s 1 3. 89182
67 11 N 1 3. 91202
21 . 1 4.07754
31 o — 1 4.14313
Al s 1 3. 46574
51 < 1 3. 66356
61 * 1 3. 85015
71 * 1 3. 97029
8l o 1 4.09434
91 > 1 4. 04305
101 * 1 3.95123
111 \\ 1 4. 2485
121 > 1 4. 49981
68 11 P 1 4. 30407
21 P 1 4. 12713
31 * 1 4. 00733
a1 \«\ 1 4 43082
51 " 1 4 54329
61 e 1 4 2485
71 ~ ! 4 68213
81 S 1 4.93447
91 P 4.78749
101 L ! 4.57471
111 U 4. 83628
121 " 5. 00395
69 11 I» 5. 0626
21 .\/ 1 4. 82028
31 e 4.93164
a1 * 1 4. 69135
51 * I 4. 7362
61 .< 1 4.34381
71 ! 4. 78749
81 . 1 4.89035
91 /./ 1 4. 70048
101 « 1 4, 52179
111 o 1 4.57471
121 T 1 4. 35671
70 11 - 1 4. 59512
21 * 1 4, 67323
31 » 1 4. 71
41 u\/ 1 4. 49981
51 '~ ! 4. 58497
61 U 4. 82831
71 * 5.04343
81 x\\ 5. 24702
91 1 Sa S. 46383
Figure 7.21 Natural Jogarithms of Boston armed-robberies realization in Figure
7.19.
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LOG(e) BOSTON ARMED ROBBERIES
-=~DIFFERENCING: 1
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IR T Y Y R R R T T Y SO AR vVaLUE
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71 M . 146603
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121 I . 524524
11 T . 202027E-01
21 I s . 165514
31 I+ . 655973E~01
4l 1 -. 677399
s1 1 . 197826
61 1 > . 186586
71 1w . 120144
81 I . 124053
91 /'1/' ~. $12933E-01
101 —_— -. 918075E-01
111 1 » . 297252
121 R SE——— . 251314
11 » 1 -. 195745
21 N 1 ~. 176931
31 * e - 119801
41 I>' . 4.3484
sI I—s 112478
61 r— | -. 2948
71 1 . 433636
81 1 . 252343
91 /'-—-"‘"1'"- - 146982
101 ¥ I -. 212781
111 \' . 261571
121 I 167664
11 1 . 586487E~01
a1 w1 - 242313
31 T 121361
a1 ’<x -. 250295
sI % . 44B506E-01
61 1 -. 392393
71 O —— L . 443686
BI I—* . 102857
91 1 -. 189869
101 * 1 - 178692
111 i . 529224E-01
121 ‘% -. 218002
11 T » . 238411
21 I p . 077709
3l P . 04567
a1 » I -. 218689
51 I~ . 851578€-01
61 I o~ . 243346
71 I 215111
81 I : . 203599
91 S S . 216808

Figure 7.22  First differences of the natural logarithms of Boston armed-robberies

data
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Other transformations. Sometimes a logarithmic transformation will not
induce a stationary variance—it may overtransform or undertransform a
series. Many analysts rely on visual inspection of the transformed data to
decide whether the logarithmic transformation is adequate. Some other
transformations, such as calculating the square roots of the onginal data,
may be appropriate instead.

There is another approach, known as the Box-Cox transformation,
which involves estimating an appropnate transformation from the data. This
procedure is beyond the scope of this text, but the interested reader may
consult Box and Jenkins [1, p. 328] for a brief introduction, or Box and Cox
[19] for a fuller discussion.

7.3 Differencing and deterministic trends

When the mean ji of an onginal data series z, is stationary so that
differencing is not required, 4 will generally not be zero. Therefore, a model
representing such an undifferenced series will generally have a nonzero
estimated constant term (C). As shown in Chapter 5, ¢= iaQa- ):43,.).
Thus, if  is not statistically zero, then € will typically be nonzero.*

Suppose instead that z, must be differenced (d > 0) to achieve a sta-
tionary mean. The resulting series w, often has a mean (4, ) that is not
statistically different from zero. A model representing a differenced series
therefore often has a constant term of zero. That is, if the estimate of g,
() is statistically zero, then € = ji, (1 — £¢,) will typically also not differ
significantly from zero.

But occasionally when d > 0 the resuiting differenced series w, has a
mean that is significantly different from zero. Then it may be proper to
assume that p, = 0. The resulting model for w, will therefore usually have a
constant term that is different from zero. The corresponding model for the
integrated series z, then has a deterministic trend element.

To illustrate this idea, start with a process with no deterministic trend.
(For simplicity we refer to processes rather than estimated models.) Let w,
be the first differences of z,: w, = (1 — B)Z,. Suppose initially that p,, = 0.
For simplicity, let w, consist of white noise. Then the ARIMA process for w,

*It is possible for Clobe insignificantly different from zero even though g differs significantly
from zero. This is because the variance of C depends not only on the variance of g but also on
the variances and covariances of the estimated ¢ coefficients. In practice, however. if B is
significantly different from zero. C is nearly always significant also.
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w,=a, (7.12)

Substituting (1 — B)Z, for w, in (7.12). we see that z, follows a random walk
without a constant term:

(1 - B):, = a,
or

zl = zl—l + al (713)

As a random walk, z, in (7.13) shows no affinity for a fixed central value.
Furthermore, because (7.13) has no constant term, z, does not move
persistently in any particular direction. Instead, z, moves at random. as
dictated by the random shock a,, starting from the previous value (z,_ ).

Now suppose instead that p . = 0. Then it is proper to write (7.12) with
w, in deviations from its mean:

(w,—pn,)=a, (7.14)

Substituting (1 — B)Z, for w, shows that z, still follows a random walk, but
with a constant term:

(u'l—l"'n')=al
(1 —B)Z-I_P'w=al
2,=C+2z,_,+a, (7.15)

where C = p .

As a random walk (7.15) states that z, does not tend toward a fixed
central value. But unlike (7.13), process (7.15) states that z, will move
persistently in a particular direction starting from z,_,. That is, starting
from z,_,, z, will trend upward each time period by amount C if C > 0, or
downward each period by amount C if C < 0. Because C is a constant. this
trend component is deterministic.

For models with higher degrees of differencing (d > 1) and additional
AR and MA terms, the algebraic manipulation and the mathematical nature
of the deterministic trend become more complicated than in the preceding
example, but the basic conclusions, stated below, remain the same:

1. When the mean of a differenced variable w, is zero (g, = 0), the
processes for both w, and z, have constant terms of zero. In such
cases, any trend element present in forecasts of z, is stochastic; that
is, the trend element depends only on past z values that appear in the
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equation because of the differencing and subsequent integration
steps. For example, model (7.13) results from integrating model
(7.12); neither of these models has a constant term because p,, = 0.
Any trend element in forecasts of z, depends on the behavior of z,_,
on the RHS of (7.13), and z,_, is a stochastic variable.

2. When the mean of a differenced variable is nonzero (u,, = 0), the
resulting processes for both w, and z, have a nonzero constant term.
Forecasts of z, then have a deterministic trend component in addi-
tion to whatever stochastic trend is introduced by the differencing
and integration procedures. Thus (7.15) contains a deterministic
trend component because C (equal to p, in this case) is nonzero.
These forecasts may also display a stochastic trend because z,_,
appears on the RHS of (7.15).

In practice, when d > 0, the UBJ analyst must decide whether or not to
include a nonzero constant term (i.e., whether g, = 0). In business and in
economics and other social sciences, p,, = 0 is often the proper assumption.
However, there are several guidelines for making this decision.

1. The most reliable procedure is to include a nonzero mean (and
therefore a constant term) in the model at the estimation stage to see if they
are statistically nonzero. Some (but not all) computer programs estimate p
simultaneously along with the AR and MA coefficients. These programs
usually also provide ¢-statistics indicating whether 4 and C are significantly
different from zero. If the absolute z-value of the estimated constant term is
large (e.g., |t| > 2.0), an estimated mean (and therefore a constant term)
might be included in this model.

2. Consider the nature of the data. The analyst may know from
experience, or from a theoretical understanding of the data source, that the
data have a deterministic trend component so that p,. = 0 i1s a proper
assumption. This approach is especially helpful in the physical and engineer-
ing sciences where one might conclude that a deterministic element is
present from knowledge of the physical or mathematical structure underly-
ing the data.

3. Use a preliminary statistical test (before the estimation stage) to see
if p,, = 0 is a proper assumption. Some computer programs provide rough
preliminary tests of the hypothesis H: . = 0 based on the sample statistic
w and its approximate standard error.* If W is large compared to its
standard error (e.g., |Z| > 2.0), a nonzero mean might be included in the
model.

*Box and Jenkins discuss the approximate standard error of % in {1, pp. 193-195].



Differencing and deterministic trends 189

4. Estimate two models, one with a nonzero mean (and constant) and
one without, and check the forecasting accuracy of both models.

Finally, however, it is important to remember that models with determin-
istic trends are relatively uncommon outside the physical sciences. Accord-
ing to Box and Jenkins,

In many applications, where no physical reason for a deterministic
component exists, the mean of w can be assumed to be zero unless
such an assumption proves contrary to facts presented by the data. It
is clear that, for many applications, the assumption of a stochastic
trend is often more realistic than the assumption of a deterministic
trend. This is of special importance in forecasting a time series, since a
stochastic trend does not necessitate the series to follow the identical
pattern which it has developed in the past. [1, pp. 92-93. Quoted by
permission.]

(Case 2 in Part II has an example of a model with a statistically
significant deterministic trend; this model is rejected because the nature of
the data suggests that a deterministic trend makes no sense. Case 15
contains a model with a deterministic trend that can be rationalized.)

Summary

1. The UBJ method applies only to stationary realizations (i.e., those
with a mean, variance, and acf that are constant through time.)

2. In practice many realizations are nonstationary. Fortunately, nonsta-
tionary realizations can often be transformed into stationary data series.

3. The mean of a realization may change over time. If different parts of
a realization behave in a similar fashion except for changes in level and
slope, the realization is said to be homogeneously nonstationary.

4. A homogeneously nonstationary realization can be made stationary
by differencing. First differencing is needed if the level is changing over
time; second differencing is needed if the level and slope are changing over
time.

5. Avoid unnecessary differencing. It creates artificial patterns in a data
series and reduces forecast accuracy. However, Box and Jenkins suggest
differencing when there is a serious question as to whether a stationary or
nonstationary model is appropriate.

6. After differencing, we construct an ARMA( p, g) model for the
differenced series (w,).
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7. We may recover the original values (z,) by integrating a differenced
series. Integration involves summing successive values in a differenced
series.

8. An ARMA(p, q) model for a differenced series (w,) implies an
ARIMA( p. d. g) model for the integrated (original, undifferenced) series z,.
The AR and MA coefficients and the constant term are the same for the two
models.

9. The appropnate degree of differencing may be chosen by

(a) inspecting the realization visually;

(b) examining the estimated acf’s of the original realization and of
the differenced series; ]

(c) checking any estimated AR coefficients at the estimation stage
to see if they satisfy the stationarity conditions stated in Chapter 6.

10. Some realizations have a variance that changes over time. Such
realizations must be transformed to induce a constant vanance before the
UBJ method may be used. It is possible that no suitable transformation will
be found.

11. Some realizations have both a nonstationary mean and variance.
Such realizations must be transformed to induce a constant variance, then
differenced to induce a stationary mean.

12. A common transformation to induce a constant variance involves
taking the natural logarithms of the original realization. This is appropriate
if the variance of the original realization is proportional to the mean.

13. If the mean (g, ) of a differenced series (w,) is assumed to be zero,
the resulting ARIMA model for both w, and the integrated series z, has a
constant term of zero. Any trend element in forecasts from such a model is
stochastic, not deterministic.

14. If p is assumed to be nonzero. the resulting model for both w, and
z, has a nonzero constant term. Forecasts from such a model contain a
deterministic trend component in addition to any stochastic trend that may
be present.

15. ARIMA models with deterministic trend components are uncom-
mon outside the physical sciences.

Appendix 7A: Integration

A differenced variable w, is linked deterministically to the original variable
z, by the differencing operator (1 — B)%:

w, = (1 - B)’z, (7A.1)
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While w’s are differences of the z’s, the z’s are sums of the w’s. We may
therefore return to the z’s by integrating (summing) the w’s. Thus, an
ARMAC( p. g) model for w, is an integrated ARIMA( p, d, q) model for z,.
This is an important concept because after building an ARIMA model for
the stationary series w,, we often want to forecast the original nonstationary
series z,.

To show that the z’s are sums of the w’s, consider the case when d = 1.
Solving (7A.1) for z, gives

z,=(1-B)'w, (1A.2)

(1 — B)™' can be written as the infinite series (1 + B+ B>+ B> + --. ),
so we have

=(1+B+B*+B*+---)w

!

(33

Wt w tw ,tw g+

Z[: bt (7TA.3)

If z, is differenced 4 times, then the dth difference w, must be integrated
d times to obtain z,. In the example above, d = |, so z, results from

integrating w, once. Alternatively, if d = 2, w, is the second difference of z,
and we may solve (7A.1) for z, to obtain

z,= (1 - B) *w,
=(1-B)"'(1-B)"w (7TA.4)
To obtain z, from the second differences, (7A.4) says that we first
integrate the second differences w, 10 get the firs1 differences (designated
x,):
x,= {1 -B)w, (7A.5)

Substituting this into (7A.4), we then integrate the first differences x, to
obtain the original series z,:

z,=(1-B) 'x, (7A.6)
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ESTIMATION

Much of Chapters 1 through 7 deals with the first stage of the Box-Jenkins
methodology, identification. In this chapter we focus on the second stage,
estimation; in Chapter 9 we discuss the third stage, diagnostic checking; and
then in Chapter 10 we consider certain elements of forecasting.

Some aspects of ARIMA model estimation involve technical details.
Knowledge of these details is not essential for the reader whose primary
interest is in the practice of UBJ-ARIMA modeling. Some of these techni-
cal matters are treated in two appendixes at the end of this chapter. In the
main body of the chapter we focus on the fundamental elements of ARIMA
model estimation and on the practical question of how to use estimation
results to evaluate a model.

8.1 Principles of estimation

At the identification stage we tentatively select one or more models that
seem likely to provide parsimonious and statistically adequate representa-
tions of the available data. In making this tentative selection, we calculate a
rather large number of statistics (autocorrelation and partial autocorrelation
coefficients) to help us. For example, with n observations, we will often
estimate about n/4 autocorrelation and partial autocorrelation coefficients.
Estimating so many parameters is not really consistent with the principle of
parsimony. This nonparsimonious procedure is justifiable only as an initial,
rough step in analyzing a data series. Our hope is that the broad overview of
the data contained in the esimated acf and pacf will get us started in the
right direction as we try to identify one or more appropriate models.

192
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By contrast, at the estimation stage we get precise estimates of a small
number of parameters. For example, suppose we tentatively choose an
MA(2) model, 7, = (1 — 6,B ~ 6,B?)a,, at the identification stage based on
n/4 estimated autocorrelation and partial autocorrelation coefficients. Then
at the estimation stage we fit this model to the data to get precise estimates
of only three parameters: the process mean g and the two MA coefficients
@, and 6,.

Although we make more efficient use of the available data at the
estimation stage than at the identification stage by estimating fewer parame-
ters, we cannot bypass the identification stage. We need the somewhat crude
preliminary analysis at the identification stage to guide us in deciding which
model to estimate. But once we have a parsimonious model in mind, we
then want to make more efficient use of the available data. That is what we
do at the estimation stage: we get accurate estimates of a few parameters as
we fit our tentative model to the data.

ARIMA estimation is usually carried out on a computer using a nonlinear
least-squares (NLS) approach. In the next two sections we introduce the
most basic ideas about NLS estimation, bypassing many technical matters.
The reader interested in these technical aspects may consult the appendixes
at the end of this chapter.*

Maximum likelihood and least-squares estimates. At the estimation stage
the coefficient values must be chosen according to some criterion. Box and
Jenkins [1] favor estimates chosen according to the maximum likelihood
(ML) criterion. Mathematical statisticians frequently prefer the ML ap-
proach to estimation problems because the resulting estimates often have
attractive statistical properties. It can be shown that the likelihood function
(of a correct ARIMA model) from which ML estimates are derived reflects
all useful information about the parameters contained in the data.’

However, finding exact ML estimates of ARIMA models can be
cumbersome and may require relatively large amounts of computer time.
For this reason, Box and Jenkins suggest using the least-squares (LS)
criterion. It can be shown that if the random shocks are Normally distrib-
uted (as we suppose they are) then LS estimates are either exactly or very
nearly ML estimates.*

*Box and Jenkins {1, Chapter 7 and pp. 500-505] provide examples and the estimation
algorithm.

tSee Box and Jenkins' comments on the *likelihood principle” and their references on this
matter {1, p. 209].

*If we begin with the conditional likelihood function and the a, are Normal. the LS method
gives exact ML estimates. If we start with the unconditional likelihood function, then the LS
method gives very nearly ML estimates if the a, are Normal and if the sample size is fairly
large.
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“Least squares” refers to parameter estimates associated with the smal-
lest sum of squared residuals. To explain this idea we first show what is
meant by the term residuals. Then we illustrate the calculation of the sum of
squared residuals (SSR). Finally, we consider how we can find the smallest
SSR.

We will use an AR(1) model to illustrate these ideas, but the same
concepts apply to the estimation of any ARIMA model. The AR(1) model
we will use is

(1-¢,B);, = aq,
or
21=P'(l _¢l)+¢lzl—l+al (81)

where p(1 — ¢,) is the constant term.

Residuals. Suppose for simplicity that we know the parameters (g, ¢,)
of model (8.1), and suppose we are located at time ¢ — 1. Consider how we
could predict z, using our knowledge of the RHS variables in equation (8.1).
We cannot observe the random shock a, during period ¢ — 1, but we do
know p, ¢,, and z,_, at time 7 — 1. Assign a, its expected value of zero and
use g, ¢,, and z,_, to find the calculated value of z,, designated Z,:

21 = ”’(l - ¢l) + ¢z, (82)

Later, at time 7, we can observe z,. We can then find the random shock a,
by subtracting the calculated value Z, [calculated from known parameters,
equation (8.2)] from the observed value z, [equation (8.1)}:

z,—%=a (8.3)
{ { {

So far we have assumed that p and ¢, are known. In practice we do not
know the parameters of ARIMA models; instead, we must estimate them
from the data. Designate these estimates in the present case as ji and é,.
Modifying (8.2) accordingly, the calculated value Z, now is:

z‘,=ﬁ(l "‘i’l) +4;l21—l (8.4)

When £, is calculated from estimates of parameters rather than known
parameters, (8.3) does not give the exact value of the random shock a,.
Instead, when we subtract (8.4) from (8.1) we get only an estimate of the
random shock a,, denoted 4, and called a residual:

z, - %, =4, (8.5)

t t
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Table 8.1 Calculation of a sum of squared residuals for an AR(1), with
&, =05

{ = 21=zl—zh L=¢ . a,=:%-: ,3’21
0 —_ — — — J—
1 80 20 - —_ —
2 60 0 10 -10 100
3 30 -30 0 ~30 900
4 40 -20 -15 -5 25
5 70 10 -10 20 400
6 80 20 5 15 225

‘Lz, =360 i=Z= %(ZZ,) = $(360) = 60
"Ti, =0
‘Ta} = 1650.

Equation (8.5) is the definition of a residual for any ARIMA model. In
general, Z, depends on j and the estimated AR and MA coefficients (along
with thenr corresponding past z’s and past residuals, whxch are estimated
random shocks). Thus our example above was an AR(1), so Z, depends on p.
and 4>,, along with z,_,, as shown m equatlon (8.4). For an MA(1), Z,
depends on 4 and 01, along witha,_,: 2, = i — 6,4,_,. For an ARMAC(L, 1),
#, depends on i, ¢,, and 4, along with z,_,and 4,_: £, = (1l — ¢,) +
¢z, — 0,4,_,.

Sum of squared residuals. Next consider the idea of the sum of squared
residuals (SSR). Table 8.1 illustrates the calculation of an SSR.

Suppose we have the realization shown in column 2 of Table 8.1. (A
realization with n = 6 is much too small to use in practice; we use it only
for illustration.) We have tentatively identified an AR(1) model as shown in
(8.1) to represent this realization.

We want to find estimates (i and 43,) of the two unknown parameters (u
and ¢,). We could estimate p and ¢, simultaneously; however, with a large
sample it is acceptable to first use the realization mean 7 as an estimate of p
and then proceed to estimate the remaining AR and MA coefficients.* In

*When p and the ¢'s and @ s are estimated simultaneously. the resulting estimate g is usually
very close to 7. The advantage of estimating u and the ¢'s and 8 ’s simultaneously is that we can
then test both g and the estimated constant C to see if they are significantly different from
zero. All examples and cases in this text are based on simultaneous estimation of p with the ¢'s
and @°s. The only exception is in this chapter where we first use 7 to estimate p to simplify the
numerical examples.
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this example, we find 7 = 60 as shown at the bottom of column 2 in Table
8.1.*

Having settled on Z as our estimate of u, we remove this element
temporanly by expressing the data in deviations from the mean, that is,
£, =z, — 7. Recall that the Z, series has the same stochastic properties as z,;
we have merely shifted the series so its mean is identically zero. Thus in
column 3 of Table 8.1 we calculate 7, = z, — 7. As expected the Z, series
adds to zero and thus has a mean of zero. Therefore, if we rewrite model
(8.1) in terms of 7, we have a model with a constant term of zero:

Z., = ¢lzl-| + a, (86)
Now we want to find a set of residuals for this model using the
realization in column 3 of Table 8.1. Following our earlier discussion,

replace ¢, in (8.6) with its estimated value ¢,. and replace a, with its
expected value of zero to obtain this equation for the calculated Z’s:

z:l = <if’lfl—l (8-7)

Subtracting (8.7) from (8.6) we obtain this equation for the residual 4,
(column 5 1n Table 8.1):

: (8.8)

L TH

a-l = zl -
where 7, is observed (column 3 in Table 8.1) and Z, is calculated using ¢,
(column 4 in Table 8.1).

To illustrate the calculation of the SSR, suppose we arbitrarily choose
¢';, = (0.5. Later we consider whether this is the best (i.e., least-squares)
estimate of ¢,. Column 4 in Table 8.1 shows the calculated values 7, based
on ¢, = 0.5. For example,

£, = ¢,5 = (0.5)(20) = 10

2:3 = é’xfz =(05)0)=0

*If the data are differenced (d > 0). setting the estimated mean i of the differenced series w,
equal to zero is often appropriate. Setting W equal to a nonzero value introduces a deterministic
trend into the model. This topic is discussed in Chapter 7.
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In column 5 of Table 8.1 we find the residuals as shown in equation (8.8)
by subtracting each 7, from each Z,:

Fmally, summing column 6 we obtain the sum of squared residuals
Sa4? = 1650. This is the SSR given the estimates i = 60 and ¢, = 0.5. If 4
and ¢, were different, we would get a different SSR. To get LS estimates of
our parameters, we need to find the values of £ and ¢, that give the smallest
SSR. In the present example our task is to find the value of ¢, that
minimizes the SSR given i = 7 = 60.

8.2 Nonlinear least-squares estimation

In general, least-squares estimation of ARIMA models requires the use of a
nonlinear least-squares method. Readers may be familiar with the linear
least-squares (LLS) method (also known as ordinary least squares or classi-
cal least squares) since this is the estimation method applied to regression
models encountered in introductory statistics texts. The LLS estimator is
derived by applying the calculus to the sum of squared residuals function.*
This produces a set of linear equations which may be solved simultaneously
rather easily. But proceeding in the same fashion with an ARIMA SSR
function produces a set of equations which are, in general. highly nonlinear
and solvable only with a nonlinear, iterative search technique.*

*Wonnacott and Wonnacott [9. Chapter 12] show how this is done.
' The only exception is a pure AR model with no multiplicative seasonal AR terms. (Multiplica-
tive seasonal models are discussed in Chapter 11.)
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Grid search. One search technique is the grid-search method. This
method is not often used, but we present the idea because it provides a
simple illustration of an iterative search procedure.

Some computer programs for estimating ARIMA-model parameters pro-
ceed as we have by first using Z to estimate p; the remaining parameters are
then estimated. In the case of the AR(1) model in the last section, for
z = 60, each possible ¢, produces a different SSR since each ¢‘>, gives a
different set of Z, values (column 4, Table 8.1) and therefore a different set
of 4, values (column 5, Table 8.1). According to the LS criterion, we want to
choose the value of ¢, that gives the smallest SSR. We can imagine trying all
possible values of ¢, between — 1 and + 1 (the values of ¢, permitted by the
stationarity condition |¢,| < 1) and comparing the resulting SSR’s. This is
the grid-search method.

For example, suppose we arbitrarily choose the series of values ci», = ~0.9,
-0.8,...,0,...,0.8, 0.9. Performing the same sequence of caiculations
shown in Table 8.1 with each of these 43, values produces the results shown
in Table 8.2. Figure 8.1 is a plot of the pairs of numbers in Table 8.2. The
vertical axis in Figure 8.1 shows the SSR corresponding to the values of ¢,
shown on the horizontal axis. To read this graph, first find a value of ¢, on
the horizontal axis; then find the corresponding SSR on the vertical axis by
reading from the SSR function drawn on the graph.* It appears that the
smallest SSR occurs somewhere between ¢, = 0.2 and ¢, = 0.5. Further
calculations are required to find a more accurate value of ¢,. For example,
we could now apply the grid-search method to the values 0.20, 0.21,...,
0.49, 0.50. (In fact, the LS estimate of ¢, turns out to be (0.3333.)

The grid-search procedure can be time-consuming because there are so
many possible values for ¢,. This problem becomes worse when more than
one parameter is estimated. For example, estimating an AR(2) model
requires considering all possible combinations of ¢, and 432, not just the
possible values of each coefficient separately.

Algorithmic nonlinear least squares. The grid-search method is a nonlin-
ear least-squares (NLS) method but it is rarely used. The commonly used
NLS method is similar to the grid-search approach because both involve a
trial-and-error search for the least-squares estimates. However, the com-
monly used NLS method follows an algorithm to converge quickly to the
least-squares estimates using a computer.

*This function depends on the value of . If we had used some value other than g = 7 = 60. we
would get a different SSR function in Figure 8.1.



Table 8.2 Schedule of sum of squared residuals for various
values of ¢, applied to the realization in Table 8.1

é, SSR
-09 4338
-0.38 3912
-0.7 3522
-0.6 3168
-05 2850
-04 2568
-03 2322
-0.2 2112
-0.1 1938
0 1800
0.1 1698
0.2 1632
0.3 1602
04 1608
0.5 1650
0.6 1728
0.7 1842
0.8 1992
0.9 2178
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Figure 8.1 Sum of squared residuals as a function of ¢, for the realization in Table
8.1.
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The NLS technique most commonly used is a combination of two NLS
procedures, Gauss—Newton linearization and the gradient method. This
combination is often referred to as “Marquardt’s compromise.”* The basic
idea is that given some initial “guess” values for the coefficients, Marquardt’s
method selects new coefficients which (i) produce a smaller SSR and which
(ii) usually are much closer to the minimum SSR coefficient values. In other
words, in choosing new coefficients, this method not only moves in the right
direction (moves toward a smaller SSR), it also chooses a good coefficient
correction size (moves rapidly to a minimum SSR). Unlike the grid-search
method which involves an arbitrary search, Marquardt’s method uses a
systematic search procedure that makes efficient use of the computer and
usually converges quickly to the least-squares estimates. (The reader inter-
ested in the details of this method should consult Appendix 8A.)

8.3 Estimation-stage results: have we found a good model?

In Chapter 4 we introduced the following characteristics of a good model:

it is parsimonious;

it is stationary;

it is invertible;

it has estimated coefficients of high quality;
it has statistically independent residuals;

it fits the available data satisfactorily; and
it produces sufficiently accurate forecasts.

Mo

.

Nowaw

The typical computer printout of estimation-stage results provides the
information needed to evaluate items (2), (3), (4), and (6). In this section we
discuss how estimation-stage results are used to evaluate a model according
to these four criteria. [We consider item (5) in Chapter 9 where we examine
the third stage of UBJ modeling, diagnostic checking. Item (7), forecast
accuracy, can be evaluated only by using a model to produce real forecasts.
Item (1), parsimony, is an overriding principle in UBJ-ARIMA modeling
whose role is illustrated in the case studies.]

As an example to illustrate the use of criteria (2), (3), (4), and (6),
consider the estimation results for an ARMA(1, 1) model, shown in Figure
8.2.

*This combination is named after Donald W. Marquardt who developed the algorithm for an
optimal interpolation between the Gauss—Newton method and the gradient method in {20).
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+ + + + + + + + + +ECOSTAT UNIVARIATE B-J RESULTS+ + + + + + + + + +
+ FOR DATA SERIES: SIMULATED DATA +
+ DIFFERENCING: o DF = 56 +
+ AVAILABLE: DATA = 60 BACKCASTS = O TOTAL = 60 +
+ USED TO FIND SSR: DATA = 59 BACKCASTS = O TOTAL = 59 +
+ (LOST DUE TO PRESENCE OF AUTOREGRESSIVE TERMS: 1) +
COEFFICIENT ESTIMATE STD ERROR T-VALUE
PHI 1 0. 208 0. 070 13. 04
THETA 1 0. 605 0. 145 4. 18
CONSTANT 9. 1%733
ADJUSTED RMSE = . 92857 MEAN ABS % ERR = 0.71
CORRELATIONS
1 2
1 1. 00

2 068 1.00
Figure 8.2 Estimation results for an ARMAC(I, 1) model.

Checking coefficients for stationarity and invertibility. The most obvious
items included in estimation-stage output are the estimated coefficients. In
Figure 8.2 we see that the estimate of ¢, is ¢, = 0.908 and the estimate of 6,
is 6, = 0.605. Thus the model may be written in backshift form as (1 —
0.908B)z, = (1 — 0.605B)d,.

The mean of the data series used in this example is 7 = 99.44, so our
estimate of p is fi = Z = 99.44. We know from Chapter 5 that the estimated
constant term (C) for this model is fi(1 — ¢,). Therefore, the printed
constant term in Figure 82 is € = 99.44 (1 — 0.908) = 9.15733. (Hand
calculations give slightly different results because of rounding.)

The estimated coefficients can be used to check for both stationarity and
invertibility. The stationarity requirement applies only to the autoregressive
portion of a model; therefore, the relevant condition for an ARMA(1, 1) is
the same as that for an AR(1): |¢;]| < 1. Since ¢, is unknown, we examine
¢, instead. We find the stationarity condition is satisfied since |¢,] = 0.908
< 1. However, we must be careful in reaching this conclusion. Although
|¢,] is less than 1, it is fairly close to 1. In fact, it is only about 1.31
standard errors below 1.* This makes the AR operator for this model,
(1 — 0.908B), almost identical to the differencing operator (1 — B). As
pointed out in Chapter 7, it is good practice to difference a realization if
there is serious doubt about its mean being stationary. We will not pursue
the matter further in this case, but this example illustrates how estimation-
stage results provide clues about stationarity and how a model might be
reformulated.

*This number is obtained by dividing the difference between «f». and | by the estimated
standard error of the coefficient, printed in Figure 8.2 as 0.070: (0.908 - 1)/0.070 = - 1.31.
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The invertibility requirement applies only to the moving-average part of
a model. The requirement for an ARMA(], 1) is the same as that for an

MAC(1): |8,] < 1. The estimated coefficient §, = 0.605, shown in Figure 8.2,
clearly satisfies this requirement.

Coefficient quality: statistical significance. Included in Figure 8.2 along
with each estimated coefficient is its standard error and r-value. Each
estimated coefficient has a standard error because it is a statistic based on
sample information. A different sample would presumably give different
estimates of ¢, and 8,. Thus each estimated coefficient has a sampling
distribution with a certain standard error that is estimated by the computer
program.* Most ARIMA estimation routines automatically test the hy-
pothesis that the true coefficient is zero. An approximate f-value to test this
hypothesis for each coefficient is calculated in this way:

[ = (estimated coefficient) ~ (hypothesized coefficient value)
estimated standard error of the coefficient

In our example, these calculations are

= 0.908 — 0
il 0.070
= 13.04
and
. 0.605 - 0
4 0.145
=418

As a practical rule we should consider excluding any coefficient with an
absolute r-value less than 2.0. Any coefficient whose absolute #-value is 2.0
or larger is significantly different from zero at roughly the 5% level.
Including coefficients with absolute z-values substantially less than 2.0 tends
to produce nonparsimonious models and less accurate forecasts.!

Coefficient quality: correlation matrix. Most ARIMA estimation pro-
grams print the correlations between the estimated coefficients. We cannot

*It must be emphasized that the estimated standard errors are only approximations. The
manner in which these approximations are found is discussed in Appendix 8A.

'Applying t-tests to one coefficient at a time is a very approximate way of gauging the precision
of the estimates. The coefficients may also be tested jointly using a chi-squared or F-test. See
Box and Jenkins {1, pp. 224231} discussion of approximate confidence regions for parame-
ters.
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avoid getting estimates that are correlated, but very high correlations
between estimated coefficients suggest that the estimates may be of poor
quality. When coefficients are highly correlated, a change in one coefficient
can easily be offset by a corresponding change in another coefficient with
little impact on the SSR. Thus if estimated coefficients are highly correlated,
the final coefficient estimates depend heavily on the particular realization
used; a slightly different realization could easily produce quite different
estimated coefficients. If different realizations from the same process could
easily give widely different estimated coefficients, the resulting estimates are
of rather poor quality. Under these conditions, estimates based on a given
realization could be inappropriate for future time periods unless the behav-
ior of future observations matches the behavior of the given reahization very
closely.

As a practical rule, one should suspect that the estimates are somewhat
unstable when the absolute correlation coefficient between any two esti-
mated ARIMA coefficients is 0.9 or larger. When this happens we should
consider whether some alternative models are justified by the estimated acf
and pacf. One of these alternatives might provide an adequate fit with more
stable parameter estimates. Figure 8.2 shows that the correlation between é,
and 6, is 0.68 in the present example. Therefore, the estimated model is
satisfactory in this regard.

Coefficient quality: coefficient near-redundancy. Mixed (ARMA) mod-
els are frequently useful, but they sometimes present a problem known as
coefficient near-redundancy. A model with near-redundant coefficients pre-
sents two problems: it tends to be nonparsimonious, and it is difficult to
estimate accurately. The resulting estimated coefficients are typically of low
quality.

To understand the idea of coefficient near-redundancy, consider first an
ARMAC(1, 1) process with ¢, = 0.6 and §, = 0.6:

(1 -06B)z,= (1 — 0.68)a, (8.9)

There is nothing theoretically unacceptable about process (8.9), but note
that the AR operator on the LHS (1 — 0.6B) exactly cancels the MA
operator on the RHS (1 — 0.6B) leaving Z, as a white-noise process, 7, = a,.
The parameters ¢, and 8, are perfectly redundant. Thus we could not
distinguish (8.9) from a white-noise process based on estimated acf’s since
they would, on average, yield no significant autocorrelations. This is not a
problem in and of itself since the model Z, = a, requires the estimation of
fewer parameters than an ARMA(1, 1) model, yet it should fit a typical
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realization generated by (8.9) just as well as a less parsimonious ARMA(I, 1)

model.
But now consider an ARMA(1, 1) process with ¢, = 0.6 and 8, = 0.5:

(1 -0.6B)z, = (1 — 0.5B)a, (8.10)

The term (1 — 0.6B) nearly cancels (1 — 0.5B). The AR and MA coeffi-
cients are not perfectly redundant, but they are nearly so. Therefore,
estimated acf’s based on process (8.10) will, on average, be close to (though
not identical to) white-noise acf’s. How closely they would approximate
white noise would depend on the number of observations. With a relatively
large sample size, estimated acf’s based on (8.10) would more frequently
provide evidence about the existence of an ARMA(1, 1) process.
Unfortunately, if we did identify an ARMAC(], 1) from a realization
generated by (8.10) it would be difficult to get good estimates of ¢, and 8,
with the least-squares method. The reason is there would be a set of
near-minimum points on the sum-of-squares surface rather than a clear,
well-defined minimum. Figure 8.3 shows an example of this for an
ARMAC(], 1) model. The numbers recorded on the contours are the SSR’s

1.0

0.0
0.0

%
Figure 83 Residual sum-of-squares contours for an ARMA(I, 1) with near-redun-
dant coefficients.
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associated with the various combinations of 43, and 8,. We see that a large
number of ¢, and 8, values have nearly identical SSR’s in the neighborhood
of the minimum SSR. Estimation results in a case like this are quite
unstable, heavily dependent on the individual realization. Again, the larger
the sample size the better the quality of the estimates, but we might be
better off with the more parsimonious Z, = a, model than with a less
parsimonious ARMAC(], 1) with estimated coefficients of poor quality.

Coefficient near-redundancy may not be nearly so obvious as in the last
example. Consider the following ARMA(2, 1) process with ¢, = 1.2, ¢, =
—0.32, and 4, = 0.5:

(1-12B+0.32B%);,=(1 - 0.5B)a, (8.11)
Factoring the AR operator on the LHS, we get
(1 -04B)(1 — 0.8B)%,=(1 - 0.5B)a, (8.12)

The AR term (1 — 0.4B) nearly cancels the MA term (1 — 0.5B), so (8.11)
is very nearly this AR(1) process:

(1-08B)z,=a, (8.13)

Thus we would expect estimated acf’s calculated from realizations generated
by process (8.11) to look much like AR(1) acf’s, especially with moderate
sample sizes. Following the usual identification procedures, the analyst
might arrive at an AR(1) like (8.13) as an adequate representation of the
data. Even if an ARMA(2, 1) were identifiable from an estimated acf, an
AR(1) might be preferable, since the latter is more parsimonious, might fit a
typical realization about as well, and would not have the unstable coeffi-
cient estimates associated with the near-redundant ARMA(2, 1) in (8.11).

The estimated model in Figure 8.2 does not appear to suffer from
coefficient near-redundancy. The AR operator (1 — ¢,B) = (1 — 0.908B)
does not come very close to canceling the MA operator (1 — 9,8 )= (1 —
0.605B). Figure 8.4 shows the residual sum-of-squares contours for this
model. Unlike the SSR contours in Figure 8.3, the one in Figure 8.4 has
only a limited range of ¢, and 4, values that are consistent with the
minimum SSR.

The practical lesson here is that we should construct a mixed model with
great care; avoid including both AR and MA terms in a model without solid
evidence that both are needed, and check estimation results for coefficient
near-redundancy. This will help produce better forecasts by avoiding non-
parsimonious models with unstable estimated coefficients.
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1.0

0.0
0.0

3‘ 1.0

Figure 84 Residual sum-of-squares contours for the ARMA(], 1) model in Figure
8.2.

Closeness of fit: root-mean-squared error. There is no guarantee that a
properly constructed ARIMA model will fit the available data closely. Some
data sets have a large amount of statistical “noise” that cannot be removed
with AR or MA terms. That is, the variance of the underlying random
shocks (02) may be large. It could be that the best ARIMA model will not
fit the available data well enough to satisfy the UBJ analyst.

Since we cannot observe the random shocks, we cannot measure their
variance directly. But we have the estimation-stage residuals (4,) and we
can use them to estimate the variance of the random shocks with this
formula:

2= — Y a2 (8.14)

n—m

where the summation is across all n available squared residuals and m is the
number of parameters estimated. By subtracting m from n, we are adjusting
62 for degrees of freedom.
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The square root of 67 is interpreted as the estimated standard deviation
of the random shocks. On the computer printout in Figure 8.2, this statistic
is referred to as the adjusted root-mean-squared error (adjusted RMSE). Its
value in this instance in 0.92857.

The adjusted RMSE is useful for comparing different models estimated
from the same realization. Two or more models could give essentially the
same results in most respects. That is, they could be equally parsimonious,
equally justifiable based on the estimated acf’s and pacf’s, and so forth. But
if one model has a noticeably lower RMSE, we prefer that one because it
fits the available data more closely. And importantly, as we see in Chapter
10, the model with the smaller RMSE tends to have a smaller forecast-error
variance.

Closeness of fit: mean absolute percent error. Another measure of how
well a model fits the available data is the mean absolute percent error
(MAPE). If a residual is divided by the corresponding observed value, we
have a percent residual. The MAPE is simply the mean of the absolute
values of these percent residuals:

4

100
__._Z -

n

(8.15)

t

where the summation is across all n available absolute percent residuals.
Dividing 4, by z, gives the percent residual. The two vertical lines (|}
indicate that we are considering the absolute values of the percent residuals.
Dividing the sum by n gives the mean absolute percent residual, and
multiplying by 100 merely relocates the decimal. Applying (8.15) to the
residuals for the model in Figure 8.2 gives a MAPE of 0.71%.

The MAPE generally should not be used for choosing among alternative
models that are equivalent in other respects. The adjusted RMSE is used for
that purpose since it is related to the forecast error variance. Instead, the
MAPE may be useful for conveying the accuracy of a model to managers or
other nontechnical users.

Using the example shown in Figure 8.2, we could report that this model
fits the available data with an average error of +0.71%. The MAPE
suggests, very roughly, the kind of accuracy we could expect from forecasts
produced by this model. However, the preferred way of conveying forecast
accuracy is to derive confidence intervals for the forecasts. This latter topic
is discussed in Chapter 10.
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Summary

1. At the identification stage we obtain somewhat rough estimates of
many autocorrelation and partial autocorrelation coefficients as a guide to
find an appropriate model.

2. At the estimation stage we make more efficient use of the available
data by obtaining precise estimates of just a few parameters (the mean and
some AR and/or MA coefficients).

3. Box and Jenkins favor choosing coefficient estimates at the estima-
tion stage according to the maximum likelihood (ML) criterion. Assuming a
correct model, the likelihood function from which ML estimates are derived
reflects all useful information about the parameters contained in the data.

4. Finding exact ML estimates can be computationally burdensome, so
Box and Jenkins favor the use of least-squares (LS) estimates. If the random
shocks are Normally distributed, LS estimates are computationally easier to
find and provide exact, or very nearly, ML estimates.

5. LS estimates are those which give the smallest sum of squared
residuals (SSR = La?).

6. A residual (4,) is an estimate of a random shock (a,). It is defined as
the difference between an observed value (z,) and a calculated value (Z,). In
practice the calculated values are found by inserting estimates of the mean
and the AR and MA coefficients into the ARIMA model being estimated,
with the current random shock assigned its expected value of zero, and
applying these estimates to the available data.

7. Linear least squares (LLS) may be used to estimate only pure AR
models without multiplicative seasonal terms. All other models require a
nonlinear least-squares (NLS) method.

8. One NLS method is the grid-search procedure. In this approach,
each AR and MA coefficient is assigned a series of admissible values and an
SSR is found for each combination of these values. The combination of
coefficients with the smallest SSR is chosen as the set of LS estimates. This
method is not often used because evaluating the sum of squared residuals
for each combinauion of coefficient estimates can be very time-consuming.

9. The most commonly used NLS method is algorithmic in nature. It is
a combination of two NLS procedures: Gauss-Newton linearization and
the gradient method. This combination, sometimes called “Marquardt’s
compromise,” involves a systematic search for LS estimates. Given some
initial coefficient estimates, this algorithm chooses a series of optimal
coefficient corrections. This method converges quickly to LS values in most
cases.
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10. Estimation-stage results may be used to check a model for stationar-
ity and invertibility. The estimated AR and MA coefficients should satisfy
the conditions stated in Chapter 6.

11. Most computer programs for estimating ARIMA models provide
approximate #-values for each coefficient. A practical rule is to include only
estimated coefficients with absolute s-values of about 2.0 or larger.

12. Estimated coefficients are nearly always correlated, but if they are
too highly correlated, the estimates are heavily dependent on the particular
realization used and tend to be unstable. As a practical rule, we should
suspect that the estimates may be of poor quality if the absolute correlation
between any two coefficients is 0.9 or larger. If we can find an alternative
adequate model with less highly correlated estimates, we should use that
alternative since its estimated coefficients will be of higher quality.

13. The adjusted root-mean-squared error (RMSE = 4,) is an estimate
of the standard deviation of the random shocks (o,). Other things equal, we
prefer a model with a smaller RMSE since it fits the available data better
and tends to produce forecasts with a smaller error variance.

14. The mean absolute percent error (MAPE) provides another measure
of goodness of fit. It is sometimes used for conveying to nonexperts the
approximate accuracy that can be expected from an ARIMA forecasting
model. However, the preferred way to convey forecast accuracy (as dis-
cussed in Chapter 10) is to derive confidence intervals for the forecasts.

Appendix 8A: Marquardt’s compromise*

In the main body of Chapter 8 we said that, in general, ARIMA coefficients
(the ¢’s and 6°’s) must be estimated using a nonlinear least-squares (NLS)
procedure. While several NLS methods are available, the one most com-
monly used to estimate ARIMA models is known as *“Marquardt’s com-
promise,” after Donald W. Marquardt, who wrote an article in which he
proved some of the key properties of this method.

In this appendix we set forth the most basic ideas associated with
Marquardt’s compromise and illustrate some of the relevant calculations.
Because the procedure is relatively complicated, we will not present the
theory rigorously or give a numerical example of every step. The purpose is
to convey the overall structure of the method, along with some supporting
calculations. Readers wanting more details about the technique may consult

*The material in this appendix is aimed at the reader with a knowledge of calculus. matrix
algebra, and lincar regression. All variables printed in boldface type represent matrices.
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Marquardt’s original article [20], or Box and Jenkins’ text [1, Chapter 7, and
pp- 500-505].

8A.1 Overview

Marquardt’s method is called a compromise because it combines two NLS
procedures: Gauss—-Newton linearization, and the gradient method, also
known as the steepest-descent method.

The practical advantage of the Gauss—Newton method is that it tends to
converge rapidly to the least-squares (LS) estimates, if it converges; the
disadvantage is that it may not converge at all. The practical advantage of
the gradient method is that, in theory, it will converge to LS estimates;
however, it may converge so slowly that it becomes impractical to use.

Marquardt’s compromise combines the best of these two approaches: it
not only converges to LS estimates (except in rare cases), it also converges
relatively quickly. Before working through an algebraic example and some
numerical illustrations, we summarize the major steps in the algorithm.
Figure 8A.1 shows these steps.

At step 1, the analyst (or the computer program) chooses some starting
values for the k ¢ and @ coefficients to be estimated; these initial estimates
are entered into the k X 1 vector B,.* Then the sum of squared residuals
(SSR ) associated with these initial values is calculated at step 2. Up to this
point, the procedure is essentially the same as the grid-search method
illustrated earlier in Section 8.2.

Step 3 is the calculation of numerical derivatives needed for the
Gauss—Newton method. We discuss this concept further in the next section.
At step 4 equations are formed (using the numerical derivatives found at
step 3) that are linear approximations to the nonlinear relationship between
the residuals 4, and the ¢ and § elements in B,. These linearized equations
are then solved (step 5) for the linear least-squares corrections (vector h)
that yield the new estimates B, = B, + h.

Since the new estimates B, are derived from only linear approximations
to the relevant nonlinear equations, they may not give a smaller SSR than
SSR,. Thus we must insert the new estimates into the model to see if the
SSR is smaller with the B, estimates than with the previous B, estimates.
These are steps 6 and 7, where SSR, is calculated and then compared with
SSR,,.

*Some programs estimate p simultaneously with the ¢'s and 8's; in that case. there would be
k + 1 inital estimates required. For simplicity we will discuss the case where u is estimated
first from the realization mean rather than simuitancously with the ¢ and 8 coefficients.
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1. Specify starting values B

¥

2. Find initial sum of squared residuals{SSR, }

{

8a. Set SSR, =SSR,
and By =B,

3. Find derivatives

!

4, Form linearized equations

7a. Reset parameter
(n) to move closer
to gradient—method
corrections

{

5. Apply linear least squares to equations
formed at step 4 to find corrections h
and new estimates B, =B, + h

No

{

6. Find new sum of squared residuals{SSR, )

No

7. 1sSSR, <SSR,?

8. 15{SSR, —SSR, }/SSRy <€, ?
Or, is the absolute value of

each correction <¢,?

9. Assume convergence to LS estimates

Figure 8A.1 The steps in Marquardt’s compromise.

If SSR, < SSR,, we test to see if the method has converged to a
minimum SSR. The relative reduction in the SSR may be compared with a
convergence parameter €,, or the absolute values of the corrections in h may
be tested against some convergence parameter ¢,. If the relative reduction in
the SSR is smaller than ¢, or alternatively, if the absolute values of the
corrections in h are all smaller than ¢,, we assume convergence has occurred
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—that is, we assume the last estimates (in B,) are LS estimates. If parameter
€, (or ¢,) is exceeded, we return to step 3 to find new derivatives after
reinitializing (at step 8a) by setting SSR, equal to the new (lower) SSR,,
and setting B, equal to the new (better) estimates B,.

As described thus far, Marquardt’s compromise is just the Gauss—
Newton linearization procedure. But as pointed out above, it is possible that
this method will not lead to a reduced SSR at step 7. This i1s where the
gradient method enters. If, at step 7, we find SSR, > SSR, then a
parameter 7 is increased by a predetermined amount and the linear equa-
tions (whose contents depend on #) are modified and new corrections are
found. As 7 increases, the corrections move closer to the gradient-method
corrections; this means that the absolute values of the corrections will tend
to be smaller, but they are more likely to produce a reduced SSR.

8A.2 Application to an MA(1)

In this section we apply the procedure summarized in Figure 8A.1 to an
MA(1) model. We present this application primarily in algebraic form, with
numerical illustrations for some of the steps. We use the following realiza-
tion (assumed stationary) as an example:

! 7

|

0NV E WN —
|
o

This realization has far fewer observations than are required in practice. It is
used here only for purposes of illustration.
The MA(1) model is

i, =(1-6,B)a, (8A.1)
or

z,=p+a,~0a,_, (8A.2)
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Because p, 6,, and the random shocks are unknown and must be estimated,
we rewrite model (8A.2) as

z, = i+a, - éldl-l (8A3)

where the “** sign stands for estimated values.
We use the realization mean 7 to estimate p. For the realization above.

zZ=0:

Iz

n

=

4-5+43+42-6+5-2-1
- 8

[
ool O

]
o

Having estimated p with Z, we remove this nonstochastic element from
the data temporarily by expressing the data in deviations from the mean:
Z, =z, — 7. In this case, , = z, because Z = 0. Throughout the remainder of
this appendix, we refer to z, rather than Z,, since they are identical in our
example and the notation will be less cumbersome. However, bear in mind
that in this appendix, z, represents deviations from the mean.

Letting i = 7 = 0, subtracting this value from both sides of (8A.3) to
express the model in deviations from the mean, solving the result for 4,, and
recognizing that 4,, 4,_,, and z, are vectors gives this expression:

a, =z, +0a (8A.4)

We cannot find the LS estimate of 8, directly from (8A.4) by minimiz-
ing* the SSR = &’4, with respect to §, because we do not know the contents
of vector 4,_, if 8, is unknown, and we cannot solve directly for the LS
estimate of 4, if the elements in 4,_, are unknown. Thus we must use an
iterative search technique.

Initial coefficient values. At step | we specify initial values for the
contents of By, the vector of estimated coefficients. In the present example,

*The superscript () represents matnix transposition.
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Table 8A.1 Calculation of the initial sum of squared residuals (SSR,)

t z, d,-y.0 fo=—=0108,,0 G0=1z -1, alo

1 4 0 0 4.0000 16.0000
2 -5 4.0000 —0.4000 —4.6000 21.1600
3 3 —4.6000 0.4600 2.5400 64516
4 2 2.5400 —-0.2540 2.2540 5.0805
5 -6 2.2540 -0.2254 —5.7746 33.3460
6 5 —5.7746 0.5775 44225 19.5585
7 -2 4.4223 —0.4422 —1.5578 2.4267
8

-1 —1.5578 0.1558 — 1.1558 1.3359

aT 42, = 105.3592.

B, is merely a 1 X 1 vector containing §,, the initial estimate of §,. Let §, ,
stand for this initial value.

Some computer programs require the user to enter initial values for the
estimated coefficients. (Guidelines for choosing initial values are provided
in Chapter 12.) Other programs generate their own initial values based on a
preliminary analysis of the data.* Still others pick initial values arbitrarily;
often these programs use 0.1 as the initial value for all estimated coeffi-
cients. In our example, let 9,_0 = 0.1.

Initial SSR. At step 2 we use the initial value §, , = 0.1 to generate an
initial set of residuals &, , and the corresponding initial sum of squared
residuals SSR;, = a] 5a, ,. The calculations for finding SSR, from a realiza-
tion for the MA(1) are essentially the same as those shown earlier in Section
8.2 where we calculated an SSR for an AR(1) model to illustrate the idea of
the grid-search method.

Table 8A.1 shows the calculation of SSR, for the realization presented
above (reproduced in column 2), with 4, , = 0.1. Recall that a residual 4, is
defined as the difference between an observed value z, and a calculated
value Z,. In this example the elements in both 2, and &, depend on the value
of 8, ,, so we add a zero subscript to these terms:

4, ,=2,—-1,, (8A.5)

These values are calculated in column 5 of Table 8A.1.

*Box and Jenkins discuss this type of preliminary analysis and present the relevant algorithm in
[1. pp. 187-192 and 498-500].
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_ The calculated values 2, , are found from (8A.3) by letting i = Z = 0 and
6, = 8, ,, and assigning the elements in 4, , their expected values of zero:

a

£,0= 008,10 (8A.6)

These values are calculated in column 4 of Table 8A.1.

The calculations are done as follows: First, let 7 = 1. From (8A.5) we see
that 4, , cannot be calculated because we have no z, value available. Thus
we assign dg o its expected value of zero and enter this into column 3, row
r=1.

From (8A.6) we may now use the value d; , = 0 to calculate 7| ,:

s

o= —8 0dpo

= (-0.1)(0)
=0

Enter this value into column 4, row ¢ = 1.
Now from (8A.5), find 4, , as

and enter this in column 5 of Table 8A.1, row ¢z = 1.

Next, we square each residual. For ¢t = 1, we have 6‘2‘0 = (4)2 = 16. Enter
this in column 6, row ¢ = 1.

Now let 1 = 2. We have already found the next value that belongs in
column 3: 4,_, 5 = 4, o = 4. Next, use (8A.6) to find Z, ;, the next value in
column 4:

Py

= =0, 04,

(-0.1)(4)
= -04

(19
[ )
[=]

The next value in column 5 is 4, ,. From (8A.5),
dyo0=123"1%9
~5—-(-0.4)
~-4.6

The square of this value (21.16) is then entered in column 6.

]

]
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For 1 = 3, we have already found &,_, , = 4, , = —4.6. The remaining
calculations are simply a continuation of those shown above. The final step
is to sum the squared residuals in column 6 to get SSR, = 105.3592.

Linear approximation with numerical derivatives. Having found SSR,
corresponding to 6, , = 0.1, we proceed to search for a new value for 4,,
designated 4, , which has a smaller SSR than §, ,. Our ultimate goal is to
find that value of 8, which results in a minimum SSR.

We approach the problem with a linear approximation by writing a
truncated Taylor series expansion of (8A.4):®

R 5 < 93, |, .
a,=a,,-(6, - 91.0)(‘ _3_0— 6, = an,o) (8A.7)
Solving (8A.7) for &, 4:
. . da, .
a,,= (01.1 - 01.0)(“ 3; 01 =40, ) a, (8A.8)
1

Forming this linear relationship is step 4 in the algorithm. Equation
(8A.8) may be estimated with the method of linear least squares (LLS). We
may think of 4, , as the “dependent variable”—a set of “observations”
generated at step 2, given 8, = §, ,. For 9, 0 = 0.1, these values are shown
in column 5 of Table 8A_1. The term (6, , — 6, ,) in (8A.7) is the coefficient
whose value is to be estimated with LLS. The vector 4, is the set of residuals
whose sum of squares is to be minimized using LLS The (negative)
derivative of 4,, evaluated initially at §, = 8, , = 0.1 [that is, (— 34,/96, 16,
= 0, o), may be thought of as the “independent variable” in this lmear
relationship.

In practice the values of the derivatives in equation (8A.8) are found
numerically rather than analytically; that is, we generate these values from
the available data. If we increase 8, slightly from its initial value §, , = 0.1
up to 0 = (.11, we can produce a new set of residuals 4% , corresponding

*Let y be a nonlinear function of x: y = f(x). Fix x at xo,. Now we may represent the range of
y values around x, with a Taylor series expansion:

¥y =f(x0) = (x, —x.,)(_ g_ixzxo) _(_x,;_x,,)z(_ 3

The first two terms of this expansion are a linear approximation (around X, ) to the nonlinear
function y = f(x).

S -
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to the new coefficient §f, = 0.11. Then the required set of derivatives is
simply the difference between the two sets of residuals:

da,

a8,
Thus, we have one set of residuals 4, , produced at step 2 in the algorithm
with 6, = 6, ; = 0.1. These are shown in column 5 of Table 8A.1. We
produce another set of residuals a7 ;, with 6, = 0 = (.11. The required set
of derivatives is then the difference between the two vectors of residuals.
This procedure is illustrated numerically in Table 8A.2.

Column 2 of Table 8A.2 merely reproduces the realization we are
analyzing. The values in columns 3, 4, and 5 were generated in the same
manner as the values in columns 3, 4, and 5 of Table 8A.1. The only
difference is that the MA(1) coefficient used in Table 8A.1 is 0.10, while it is
0.11 in Table 8A.2. For an illustration of how these calculations are
performed, see the preceding section in this appendix where Table 8A.1 is
explained.

Column 6 in Table 8A.2 is the set of derivatives required for equation
(8A.8). It 1s the difference between the residuals in column 5 of Table 8A.1
and those in column 5 of Table 8A.2. The negatives of these values are the
“observations” on the “independent variable” in (8A.8).

él = én.o = 0-1) =&, 87,

Finding new estimates. By applying LLS to (8A.8), using the values for
&, o in column 5 of Table 8A.1, as the “dependent variable” and the values
for the dernivatives in column 6 of Table 8A.2 as the “independent variable,”
we estimate the coefficient (§, , — §, ). This coefficient is the change (the
“correction”) in §, that minimizes the SSR (a,a,) of (8A.8). This is step 5 in

Table 8A.2 Calculation of numerical derivatives

t z, ar_ o 2= =roar,, Go=2z,-%  4,0—d%
1 4 0 0 4.0000 0

2 -5 4.0000 —0.4400 —4.5600 - 0.0400
3 3 —4.5600 0.5016 2.4984 0.0416
4 2 2.4984 -0.2748 2.2748 -0.0208
5 -6 2.2748 -0.2502 — 5.7498 ~0.0248
6 5 ~ 5.7498 0.6325 4.3675 0.0550
7 -2 4.3675 -0.4804 - 1.5196 ~0.0382
8 -1 -1.5196 0.1672 - 11672 0.0114
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Marquardt’s compromise. We will not illustrate this step numerically be-
cause it involves complications beyond the scope of our discussion.*
Having used LLS to find the contents of the correction vector h, which in

this case consists of the estimated change in 6, (h= 6, , - 0, o), We may
easily find the new coefficient 0, ;- We know h = (6, , — 6, ;) and 8, o, s0
we solve for §, : 6, , =h + 8, o. For the realization in our example, the

first correction as calculated by the computer program is 0.7263, so 4, , =
0.7263 + 0.1000 = 0.8263.

Testing the new SSR. The new estimated coefficient 4, , = 0.8263 was
found by minimizing the sum of squared residuals of (8A.8). However, that
equation is only a linear approximation to the relevant nonlinear relation-
ship between &, and the sum of squared residuals we want to minimize. It is
possible that the correction derived from (8A.8) will not lead to a new
estimate 9, | that reduces the SSR obtained from §, ,. Therefore, we must
perform step 6 in the algorithm. This step is identical to step 2 except we
now use §, | = 0.8263 instead of 8, o = 0.10 to generate the sum of squared
residuals (SSR,) corresponding to (8A.4). Having done so, we compare
SSR, with SSR, at step 7. If SSR, < SSR, we assume that §, , = 0.8263 is
a better estimate of 8, than 6, , = 0.10 because §, , = 0.8263 has a smaller
SSR. For our example SSR, = 49.5623. This is smaller than SSR, =
105.3592, so we conclude that 0, , = 0.8263 is an improved estimate of §,.

Convergence test. If SSR, < SSR,, we go to step 8 in the algorithm to
decide if we have converged to a minimum SSR. Some computer programs
test the relative reduction in the SSR, as shown in step 8 in Figure 8A.1, to
see if it is less than some parameter ¢,. If it is, convergence to least-squares
estimates is assumed. Other programs (including the one used for this
example) test the absolute size of the coefficient corrections in vector h. If
each absolute correction is smaller than some parameter €, (0.001 in the
program used here), convergence to LS estimates is assumed. In this
example, the correction 0.7263 is much larger than 0.001, so we conclude
that we have not yet converged to the least-squares estimate of @,.

New starting values. When the convergence parameter (c, or €,) is

violated, the estimation procedure begins again at step 8a with 6, , reset to
equal the new, better value 6, , and with SSR reset to equal SSR,. New

*These complications are related to a transformation of the “data™ used in estimating (8A.8).
Marquardt [20] points out that the gradient-method results are sensitive to the scaling of the
data; therefore. the data are standardized before the LLS estimates of (8A.8) are calculated,
and the resuits are then scaled back again. The scaling procedure is given in Box and Jenkins {1,
pp. 504 and 505.)
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Table 8A.3 Example of results for iterations
of Marquardt’s compromise, steps 3-8a

Iteration Number 6, 7 SSR
0 0.1000 0.01 105.3592
1 0.8263 0.0t 49.5623
2 0.9089 1.0 48.3370
3 0.9091 10 48.3370

derivatives are calculated, new linear equations are formed, new corrections
found, and so forth. For our example, at step 8a we set SSR, = 49.5623 and
b, , = 0.8263.

As long as SSR, < SSR,, at each iteration, Marquardt’s compromise is
identical to the Gauss-Newton method. This method tends to produce
relatively rapid convergence if SSR, < SSR, at each iteration, since it
produces relatively large correction values. Thus the program may pass
through steps 3-8a only a few times.

Ensuring a reduced SSR. Let us return to step 7 in the algorithm. If
SSR, > SSR,,, we make an adjustment (an increase in a parameter ) to the
linear equations formed at step 4. This adjustment produces new coefficient
estimates at step 5 which are closer to the gradient-method results; because
of this, these new estimates are more likely to lead to a reduced SSR. If
these new corrections still do not give a value for SSR, that is less than
SSR,, 7 is increased again. In fact, « is increased until a reduced SSR is
induced. In theory, a sufficiently large value for = will ensure corrections
that give a reduced SSR, assuming we have not yet converged to a minimum
SSR.*

Table 8A.3 shows how = changed during the estimation of 6, for our
example. Iteration 0 is simply calculation of the initial SSR, for the starting
value 8, = 0.10; the starting value of 7 happens to be 0.01 in this program.

At iteration 1, we achieved a reduced SSR without having to increase =:
it remained at 0.01. In order to achieve a reduced SSR at iteration 2,
however, = had to be increased gradually up to 1.0 (it was increased two
times to reach that level). Then at iteration 3, 7 had to be increased to 10 to
ensure getting an SSR that was not larger than the previous one. Since the
absolute value of the coefficient correction at iteration 3 (h = 0.0002) was

*In practice, the value of 7 required to vield a reduced SSR could be so large that machine
limits are exceeded and computational errors occur. Fortunately, this rarely happens.
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smaller than the relevant convergence parameter (¢, = 0.001), convergence
was assumed and the program halted.

Standard errors of the estimated coefficients. In finding coefficient
corrections, we apply LLS to the linearized model, such as equation (8A.8).
Let X be the matrix of derivatives. Then the variance-covariance matrix of
the estimates is

V=¢(xx)"" (8A.9)

where 6 is the estimated residual variance as discussed in Section 8.3 and X
is the matnix of derivatives calculated at the /asr linearization. Note that the
estimated variances of the coefficients derived from (8A.9) are only ap-
proximate since they are based on a linear approximation to a nonlinear
function. It follows that the r-values associated with the estimated coeffi-
cients provide only rough tests of the significance of the coefficients.

Appendix 8B: Backcasting

Box and Jenkins distinguish between two estimation procedures: conditional
least squares (CLS), which is identical in results to the conditional maxi-
mum likelihood method, and unconditional least squares (ULS). They sug-
gest a practical procedure called “backcasting” or “backforecasting” which
gives ULS estimates that are very nearly unconditional maximum likelihood
estimates.

Box and Jenkins [1, p. 211] suggest that CLS is satisfactory for estimating
models without seasonal elements when the number of observations in the
realization is moderate to large. But they emphasize that CLS is generally
inferior to ULS for seasonal models. They propose the method of backcast-
ing as a practical way of producing ULS estimates that are very nearly
unconditional maximum likelihood estimates.*

8B.1 Conditional least squares

We can get at the idea of CLS by considering how we calculated the SSR’s
in Tables 8.1 and 8A.1. In Table 8.1 we calculated an SSR for an AR(1)

*However, Newbold and Ansley [21] present evidence, based on Monte Carlo methods, that
ULS results can deviate significantly from maximum likelihood results when process parame-
ters are close to the nonstationarity or noninvertibility boundaries with small samples.
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model. We found residuals (4,) for periods 2 through 6, but not for period 1
because there is no value z; available to find the calculated value i = ¢,
and therefore we could not find 4,. Thus the SSR calculated there is
conditional in the sense that it depended on our using z;, = 20 as the starzing
value of the z, series.

In Table 8A.1 we calculated an SSR for an MA(1) model. In this case we
found residuals for periods 1-8. But to find 4, 4, we had to set 4, , equal to
its expected value of zero. That allowed us to find the calculated value
i = —(71_060_0 = 0, and therefore we could find 4, g =2, — ;=4 -0 =
4. Thus the SSR calculated in Table 8A.1 is conditional in the sense that it
depended on our using 4, , = 0 as the starting value for the 4, series, and
z, = 4 as the starting value for the z, series.

8B.2 Unconditional least squares

Consider the sequence of observations z,, z,, z5,..., z,. Now consider some
subsequent value z,,,,, with a certain probability relationship to the
previous values z,,..., z,. It can be shown that a value preceding the
sequence z,,. .., z, (designated z _,) has the same probability relationship to
the sequence z,, z,_,, z,_3.....2, a 2Zz,,,,, has to the sequence
2yy 295 2350 -es 2p

In other words, we can do somewhat better than to confess complete
ignorance about the values preceding z,, z,,..., z, if we know something
about the probability relationship between z,.,., and the sequence
2y, 29,...4 2, (Le., if we have a tentative ARIMA model in hand for the
2y, 23,..., 2, series). If we know something about that probability relation-
ship, then we also know something about the probability relationship
between the available (reversed) data sequence :z . Z, and a value
(z.,) that precedes that sequence.

This fact leads Box and Jenkins to propose the following backcasting
procedure. First, start with a realization, such as the one in Table 8.1,
expressed in deviations from the mean. This Z, sequence is reproduced in
column 2 of Table 8B.1. Now, reverse the Z, series in time, that is, Z,
becomes the last observation, 7, becomes the next to last, and so forth, and
Z, becomes the first observation. This is shown in Table 8B.2 for 7 =
6,5,...

Next, “forecast” the reversed series (i.e., backcast the original series)
using the most recent values of the estimated coefficients. The example in
Table 8.1 is an AR(1) model with ¢, = 0. 5. Applymg this estimate of ¢, to
the Z, series, the forecasting equation is Z, = ¢,2,_, = 05Z,_,. But for the
reversed Z, series, the backcasting equation is Z, = ¢,7,, , 0 5%,,,;. Thus

n’nl"
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Table 8B.1 A reproduction of
the realization in Table 8.1

tay

-

t

20

-30
=20
10
20

N D WN -

the backcast for ¢ = 0 is Z, = 0.57, = 0.5(20) = 10. This value is entered in
column 2 of Table 8B.2, in the row where ¢ = 0. Then the backcast for

= —1is _, = 0.5z since z, is not available, we replace it with its
backcast value Z, = 10. Therefore, 7_, = 0.5(10) = 5. Continue in this
manner, each time calculating 7, = 0.5Z,,, and substituting the backcast
value Z,,, for ,,, when necessary. Backcasting may be halted when a
satisfactory number of successive backcasts are sufficiently close to zero (the
mean of the Z, series).

Table 8B.2 The realization in Table 8B.1

reversed, with “forecasts”
! i

6 20

5 10

4 -20

3 -30

2 0

1 20

0 10
-1 5
-2 2.5
-3 1.25
-4 0.625

-5 0.3125

“z, is reversed in sequence.
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Table 8B3 The Realization in Table 8B.1

with backcasts
t zf

-5 0.3125
-4 0.625
-3 1.25
-2 2.5
-1 5

0 10

1 20

2 0

3 -30

4 -20

5 10

6 20

%z, includes backcasts.

Now we may reverse the reversed series with its “forecasts” to obtain the
original Z, series, with some estimated previous values (backcasts) included.
This is shown in Table 8B.3, which is simply the series in Table 8B.2
reversed. An estimation procedure is now applied to this 7, series, including
its backcasts, to reestimate ¢,. This value of ¢, is then used to generate new
backcasts, and estimation is reapplied to 7, including the new backcasts.
This procedure continues until convergence to LS estimates occurs.

When MA terms are present in a model, backcasting involves more
computation because the calculations must start with ¢ = n to produce the
required estimation residuals. Nevertheless, the concepts are the same as in
the preceding example.
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DIAGNOSTIC CHECKING

Once we have obtained precise estimates of the coefficients in an ARIMA
model, we come to the third stage in the UBJ procedure, diagnostic
checking. At this stage we decide if the estimated model is statistically
adequate. Diagnostic checking is related to identification in two important
ways. First, when diagnostic checking shows a model to be inadequate, we
must return to the identification stage to tentatively select one or more other
models. Second, diagnostic checking also provides clues about how an
inadequate model might be reformulated.

The most important test of the statistical adequacy of an ARIMA model
involves the assumption that the random shocks are independent. In Section
9.1 we focus on the residual acf as a device for testing whether that
assumption is satisfied. In Section 9.2 we consider several other diagnostic
checks. Then in Section 9.3 we discuss how to reformulate an ARIMA
model when diagnostic checking suggests it is inadequate.

9.1 Are the random shocks independent?

A statistically adequate model is one whose random shocks are statistically
independent, meaning not autocorrelated. In practice we cannot observe the
random shocks (a,), but we do have estimates of them; we have the
residuals (4,) calculated from the estimated model. At the diagnostic-check-
ing stage we use the residuals to test hypotheses about the independence of
the random shocks.

224
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Why are we concerned about satisfying the independence assumption?
There is a very practical reason. The random shocks are a component of z,,
the variable we are modeling. Thus, if the random shocks are serially
correlated, then there is an autocorrelation pattern mn z, that has not been
accounted for by the AR and MA terms in that model. Yet the whole idea
in UBJ-ARIMA modeling is to account for any autocorrelation pattern in
z, with a parsimonious combination of AR and MA terms, thus leaving the
random shocks as white noise. If the residuals are autocorrelated they are
not white noise and we must search for another model with residuals that
are consistent with the independence assumption.

When the residuals are autocorrelated we must consider how the esti-
mated ARIMA model could be reformulated. Sometimes this means return-
ing to reexamine the initial estimated acf’s and pacf’s. However, as we see in
Section 9.3, the results at the diagnostic-checking stage can also provide
clues about how the model could be improved.

The residual acf. The basic analytical tool at the diagnostic-checking
stage is the residual acf. A residual acf is basically the same as any other
estimated acf. The only difference is that we use the residuals (4,) from an
estimated model instead of the observations in a realization (z,) to calculate
the autocorrelation coefficients. In Chapter 2 we stated the commonly used
formula for calculating autocorrelation coefficients. To find the residual acf
we use the same formula, but we apply it to the estimation-stage residuals:

n—k
(a¢,-a)a,.,—a)
r(a) = ,‘l,, ; (9.1)
2 (a,-a)y

(=1

The d in parentheses on the LHS of (9.1) indicates that we are calculating
residual autocorrelations. The idea behind the use of the residual acf is this:
if the estimated model is properly formulated, then the random shocks (a,)
should be uncorrelated. If the random shocks are uncorrelated, then our
estimates of them (4,) should also be uncorrelated on average. Therefore,
the residual acf for a properly built ARIMA model will ideally have
autocorrelation coefficients that are all statistically zero.

In the last two sentences we use the words “on average” and “ideally”
because we cannot expect all residual autocorrelations to be exactly zero,
even for a properly constructed model. The reason is that the residuals are
calculated from a realization (not a process) using only estimates of the
ARIMA coefficients (not their true values). Therefore, we expect that
sampling error will cause some residual autocorrelations to be nonzero even
if we have found a good model.
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Figure 9.1 Residuals from the ARMAC(I, 1) model estimated in Chapter 8.
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In Chapter 8 we presented the results of estimating an ARMA(], 1)
model: (1 — 0.908B) z, — 99.44) = (1 — 0.605B)4,. The residuals from this
model are plotted in Figure 9.1. Applying equation (9.1) to this series
produces the residual acf in Figure 9.2.

t-tests. Having calculated and plotted the residual autocorrelations. it is
important to determine if each is significantly different from zero. We use
Bartlett’s approximate formula, first introduced in Chapter 3, to estimate
the standard errors of the residual autocorrelations. When applied to
residual autocorrelations, the formula is

k1 172
s[r(a)] = (1 +2% r,(a)z) n 1/ (9.2)

J=1

Having found the estimated standard errors of r,(d) from (9.2), we can
test the null hypothesis H,: p,(a) =0 for each residual autocorrelation
coefficient. The symbol p and the a in parentheses indicate that we are
testing a hypothesis about the random shocks in a process. We do not have
pi(a) values available, but we have estimates of them in the form of the
residual autocorrelations r, (d). We test the null hypothesis by calculating
how many standard errors (¢) away from zero each residual autocorrelation
coefficient falls:

r.(a)-0
p= el 2 (9.3)
s[’k(a)]
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Figure 9.2 Residual acf for the residuals in Figure 9.1.
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In practice, if the absolute value of a residual acf r-value is less than
(roughly) 1.25 at lags 1, 2, and 3, and less than about 1.6 at larger lags, we
conclude that the random shocks at that lag are independent. We could be
wrong in this conclusion, of course, but we always run that risk when
making decisions based on sample information.

If any residual acf t-value is larger than the critical values suggested
above, we tentatively reject the null hypothesis and conclude that the
random shocks from the estimated model are correlated and that the
estimated model may be inadequate. We then tentatively identify a new
model and estimate it to see if our suspicion is justified. We discuss how
models are reformulated in Section 9.3.

Unfortunately, there is a potential problem in using Bartlett’s formula in
testing residual autocorrelations: the estimated standard errors are some-
times seriously overszated when applying Bartlett’s formula to residual
autocorrelations. This is especially possible at the very short lags (for
practical purposes, lags 1 and 2 especially, and perhaps lag 3 also). If the
estimated standard errors are overstated, we see from (9.3) that the corre-
sponding t-values are understated. Since finding the exact values for the
estimated standard errors and t-values for residual autocorrelations is
relatively difficult, most computer programs print residual acf r-values
calculated using Bartlett’s approximation. Therefore, we must be careful in
using these printed r-values, especially those at the short lags. This is why we
suggest using a warning level for absolute z-values of roughly 1.25 at lags 1,
2, and perhaps 3 in the residual acf.*

Chi-squared test. There is another way of dealing with the problem of
underestimated residual acf r-values. Ljung and Box [24] and Davies et al.
[25]) suggest a test statistic based on all the residual autocorrelations as a set.
We are given K residual autocorrelations. We test the following joint null
hypothesis about the correlations among the random shocks

Hy: p(a)=p,(a)= - =pgla)=0 (9.4)

with this test statistic
K
Q*=n(n+2)Y (n-—k)'lrkz(é) (9.5)
k=1

where n is the number of observations used to estimate the model. The

*This problem is discussed by Durbin (22] and further analyzed by Box and Pierce [23].
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statistic Q* approximately follows a chi-squared distribution with (K — m)
degrees of freedom, where m is the number of parameters estimated in the
ARIMA model. This approximate chi-squared test is sometimes referred to
as a Ljung—Box test. A table of critical chi-squared values appears at the
end of this book. If O* is large (significantly different from zero) it says that
the residual autocorrelations as a set are significantly different from zero,
and the random shocks of the estimated model are probably autocorrelated.
We should then consider reformulating the model.

We use the residual acf in Figure 9.2 to illustrate the calculation of a
Q*-statistic. With 15 residual autocorrelations, we have K = 15. Apply (9.5)
to the r,(a) values shown in the COEF column in Figure 9.2:

K
Q*=n(n+2) Y (n- k) 'r3(a)
k=1

= 59(61) ‘E (59 - k)~ 'r2(a)

k=1
= 3599(1/58)0% + (1/57)(—0.07)* + - -

+(1/45)(0.13)° + (1,/44)(0.01)?]

= 8.07

If you perform these calculations by hand you may get a shghtly different
result due to rounding. The model for which these residual autocorrelations
were calculated is an ARMA(], 1), so m = 3. (We have estimated three
parameters: ¢,, 6,, and p.) Therefore, we have (K — m)=(15-3)= 12
degrees of freedom. The chi-squared statistic and the degrees of freedom
(abbreviated df) are both printed beneath the residual acf in Figure 9.2.
According to the chi-squared tables at the end of this book, the critical
value with df = 12 at the 10% level is 18.5. Since our calculated chi-squared
is less than this critical value, we conclude that the residual autocorrelations
in Figure 9.2 are not significantly different from zero as a set, and we accept
hypothesis (9.4) that the random shocks are independent. (See Case 12 in

*Some analysts and computer programs use a statistic suggested by Box and Pierce {23]:
K
= 202
Q=n Z 7 (a)
k=1
The Ljung-Box statistic is preferred to the Box~Pierce statistic since its sampling distribution

more nearly approximates the chi-squared distribution when the sample size is moderate. Ali
chi-squared statistics in this text are calculated using the Ljung-Box formula (9.5).
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Part 11 for an example of a significant chi-squared statistic that leads to

rejection of a model, despite the fact that the residual autocorrelation
t-values are only moderately large.)

9.2 Other diagnostic checks

The residual acf, along with the associated t-tests and chi-squared test, is the
device most commonly used for diagnostic checking; we make extensive use
of it in the case studies in Part II. In this section we discuss several other
methods for checking the adequacy of a model.*

Residual plot. The residuals from a fitted model constitute a time series
that can be plotted just as the original realization is plotted. Visual analysis
of a plot of the residuals is sometimes helpful in detecting problems with the
fitted model.

For example, the residuals may display a variance that changes over time,
suggesting a logarithmic transformation (or some other transformation) of
the original data. In fact, it is sometimes easier to see a changing variance in
a plot of the residuals than in a plot of original data. The original realization
may contain patterns that interfere with our ability to visualize the variance
of the realization. But these patterns are filtered out of the data at the
estimation stage, sometimes leaving a more clear picture of the variance of
the data in the residuals. The residuals for the ARMAC(1, 1) model discussed
earlier are plotted in Figure 9.1. Inspection does not suggest that the
variance is changing systematically over time.

The residual plot can also be helpful in detecting data errors or unusual
events that impact a time series. In Figure 9.1, residuals more than two
standard deviations from the mean have an @ note next to them. Of course,
we must expect some residuals to be large just by chance. But they might
also represent data that were incorrectly recorded, or perturbations to the
data caused by identifiable exogenous events. Thus, careful inspection of
residuals can sometimes lead to improved accuracy in the data base or
insight into the causes of fluctuations in a data series. (Case 2 in Part II
shows an example of a large residual that could have arisen because of an
identifiable economic policy action by the U.S. Congress.)

Overfitting. Another way of checking a fitted model is to add another
coefficient to see if the resulting model is better. This diagnostic check is

*One tool not discussed here is the cumulative periodogram. Box and Jenkins (1. pp. 294-298]
suggest that this device is especially helpful when checking the adequacy of models with
seasonal components.
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known as overfirting. One should have a reason for expanding a model in a
certain direction. Otherwise, overfitting is arbitrary and tends to violate the
principle of parsimony.

Overfitting is justified especially if the initial estimated acf and pacf are
ambiguous. For example, suppose an estimated acf decays toward zero
while the pacf has a significant spike at lag 1, suggesting an AR(1) model.
But suppose the pacf also has a spike at lag 2 with a t-value of 1.8, for
example. While this value is not highly significant, it is moderately large.
Therefore, an AR(2) is plausible though the evidence favoring it is not
overwhelming. According to the principle of parsimony, we should start
with an AR(l) model. But using the overfitting strategy, we check our
judgment by also trying an AR(2). In this case the moderately large pacf
spike at lag 2 gives a clue about the direction in which the model should be
expanded.

A special warning is in order: in overfitting be careful not to add
coefficients to both sides of the model. That is, do not overfit with both AR
and MA terms simultaneously. Doing so not only runs counter to the
principle of parsimony but can also lead to serious estimation problems
because of coefficient redundancy. This latter problem is discussed in
Chapter 8.

Fitting subsets of the data. Sometimes data continue to be generated by
the same type of process [e.g., an ARMA(I, 1)}, but the coefficients (¢; and
6,) in that process change in value over time. If this happens, forecasts
based on a model fitted to the entire data set are less accurate than they
could be.

One way to check a model for this problem is to divide the data set in
half, for example, and estimate the same model for each half. Then perform
a statistical test to see if the coefficients from the two data sets are
significantly different.

For example, suppose an AR(1) model has been fitted to both the first
(A) and second (B) halves of a realization, with the following results:

6.=05  s(é,,) =020

-

6,5=0.7,  s(¢,5) =025

where 0.20 and 0.25 are the ‘standard errors of the two coefficients. Now
consider the statistic ¢,, — ¢,5 = 0.5 — 0.7 = —0.2. The variance of this
difference is the sum of the two variances. Therefore, the estimated standard
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error of this difference is
(14 — 1) = [(0.20* + (0.25)2] " = 0.32
Testing the hypothesis H,, that ¢, , = ¢, or
Sia—bp=0
gives this ¢-statistic
(‘i’u - ‘i’ls) -0
3(¢u - ¢|B)

_ 02
0.32

= —0.625

! =

Since this s-statistic is not significantly different from zero at the 5% level,
we conclude that ¢,, = ¢,. In other words, the coefficient ¢, is the same
for both halves of the data set.

There is another, less formal check for changing coefficients. We may
drop the latter part of the realization (e.g., the last 10% of the observations)
and reestimate the same model for this shortened realization. If the resulting
coefficients are close to those estimated using the full realization (e.g.,
within 10.1), we conclude that the most recent observations are being
generated by the same process as the earlier data.

The first of the two preceding approaches has the advantage of involving
a formal statistical test. However, the decision to divide the realization in
half is arbitrary. It may be, for example, that the last two-thirds of the
realization is generated by coefficients different from those generating the
first third. Furthermore, the number of observations must be relatively large
before we can consider splitting the data into segments.

The second approach (dropping the latter part of the realization) has the
advantage of emphasizing the very recent past. If recent data behave quite
differently from the rest of the realization, this raises a serious concern
about the ability of the overall model to forecast the near-term future very
well. The disadvantage of this check is that it is informal; however, the last
10% or so of a realization is often not a large-enough data set to allow useful
formal tests of the change in coefficients, as suggested in the first approach
above. (Case 2 in Part II shows an example where estimated coefficients
fitted to a subset of the realization are very close to those obtained from the
entire data set.)
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9.3 Reformulating a model

Suppose we decide tentatively that a model is statistically inadequate
because (i) some residual acf r-values exceed the suggested warning values,
or (ii) the residual acf chi-squared statistic is too large. According to the
UBJ method, we then return to the identification stage to tentatively select
one or more other models. There is no guarantee, of course, that we will
discover a better model: the residual autocorrelations from the original
model could be large just because of sampling error.

One way to reformulate an apparently inadequate model is to reexamine
the estimated acf and pacf calculated from the original realization. Because
they are based on a realization, estimated acf’s and pacf’s can give ambigu-
ous evidence about the process generating the data. For example, they might
have a pattern that could be interpreted as either a decay or a cutoff to zero,
so that either an AR model or an MA model could be justified. Reexamina-
tion of the original estimated acf and pacf might suggest one or more
alternative models that did not initially seem obvious.

Another way to reformulate a model is to use the residual acf as a gwmde.
For example, suppose the original estimated acf decays toward zero and we
fit this AR(1) model to the data initially:

(] _¢IB)zl=bI (96)

where b, is a set of autocorrelated shocks. Suppose the residual acf for (9.6)
has a spike at lag 1 followed by a cutoff to zero. This suggests an MA(I)
model for b,:

b= (1~ 6,B)a, (9.7)

where a, is not autocorrelated. Use (9.7) to substitute for b, in (9.6). The
result is an ARMAC(1, 1) model for z,:

(l - ¢IB)Z-J = (l - 0|B)al (98)

As an illustration, consider the estimated acf and pacf (based on a
simulated realization) in Figure 9.3. Suppose we tentatively identify an
AR(1) model for the realization underlying these functions. This model is
justified because the estimated acf decays toward zero rather than cutting
off to zero, and the estimated pacf has a single spike (at lag 1) with a r-value
greater than 2.0.

The top of Figure 9.4 shows the results of fitting model (9.6) to the data.
The estimated coefficient <i>, = (.693 satisfies the stationarity requirement
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Figure 93 Estimated acf and pacf for a simulated realization.

|, < 1.Itis also statistically significant at better than the 5% level since its
t-value is substantially larger than 2.0.

The residual acf is printed below the estimation results in Figure 9.4. The
residual autocorrelation coefficient at lag 1 has a #-value of 1.64. This
exceeds the practical warning level of 1.25 suggested earlier for lags 1, 2, and
3 in a residual acf; therefore, we consider modifying the initial AR(1)
model.

The residual acf in Figure 9.4 is similar to an MA(]) acf, with a
significant spike at lag 1 followed by autocorrelations that are not signifi-
cantly different from zero. In other words, the residuals ( l;,) of model (9.6)
appear to be autocorrelated, following an MA(1) pattern as in (9.7). Using
the substitution procedure followed above we arrive at (9.8), an ARMA(1, 1)
model, for the original realization z,.

The results of estimating and checking (9.8) are shown in Figure 9.5. This
model satisfies the stationarity requirement |¢,| < 1 and the invertibility
requirement |4,| < 1, and both estimated coefficients have absolute r-values
greater than 2.0.

Model (9.8) is better than (9.6) since its adjusted RMSE = 1.43754 (the
estimated standard deviation of a,) is smaller than the estimated standard
deviation of b,, 1.50238. Furthermore, the residual acf at the bottom of



Reformulating a model 235

+ + + 4+ + + + + + +ECOSTAT UNIVARIATE B~J RESULTS+ + + + + + + + + +
+ FOR DATA SERIES: SIMULATED DATA +
+ DIFFERENCING: [o] DF = 57 +
+ AVAILABLE: DATA = &0 BACKCASTS = O TOTAL = &0 +
+ USED TO FIND SSR: DATA = 59 BACKCASTS = O TOTAL = S9 +
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COEFF ICIENT ESTIMATE STD ERROR T-VALUE
PHI 1 0. 693 0. 095 7.31
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Figure 9.4 Estimation and diagnostic-checking results for an AR(1) with a simu-
lated realization.

Figure 9.5 is satisfactory since none of the absolute r-values exceeds the
warning levels suggested earlier, and the calculated chi-squared statistic is
not significantly different from zero.

The preceding example is not unusual, and it suggests that modifying a
model in light of the residual acf is rather straightforward. That is, the
initial acf decays to zero, suggesting an AR(1). Then the residual acf has a
single spike at lag 1, suggesting the addition of an MA term at lag 1. The
resulting model (9.8), in this case, is an obvious composite of the initial
model for z, and the subsequent model for the residuals 5,. It appears from
this example that we can reformulate models by simply adding to the
original model the coefficient implied by the residual acf. (See Cases 2 and 5
in Part II for similar examples.) However, the information contained in the
residual acf may be less clear than in the preceding illustration.

For example, suppose the initial fitted model is an AR(1):

(1 -¢\B)z, = b, (9.9)
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+ 4+ ¢ ¢ + + + + + +ECOSTAT UNIVARIATE B-.J) RESULTS+ + + + + + + + + +
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Figure 9.5 Estimation and diagnostic-checking results for an ARMA(1. 1) with a
simulated realization.

where again b, is a set of autocorrelated shocks. But suppose the residual acf
also suggests an AR(1) model for b,

(1 - ¢1B)b, = a, (9.10)

where a, is a set of uncorrelated shocks.

In this case we cannot just add to the original model the coefficient
suggested by the residual acf—it is not possible to add an AR coefficient at
lag 1 when we already have this coefficient in the model. We can, however,
use the same algebraic procedure used in the previous example. Solve (9.10)
for b,

b=(1-¢1B) 'a, (9.11)
Now substitute (9.11) into (9.9):
(1-¢B)z, = (1 -¢tB) 'q, (9.12)
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Next, multiply both sides of (9.12) by (1 — ¢1B):

(1-¢1B)(1 - ¢,B)Z, = aq, (9.13)
Expanding the LHS of (9.13) gives
(1 — ¢\B — ¢1B + ¢\¢1B?)z, = a, (9.14)
Combining terms, we get this AR(2) model:
(1 — ¢,B — ¢,B%)z, = a, (9.15)

where ¢, = ¢} + ¢} and ¢, = —¢i¢}.

This example shows that the information contained in the residual acf
can be subtle at times. In particular, it may not be appropriate to simply
add to the initial model the coefficients that appear to describe the residual
series. Case 4 in Part II illustrates a similar substitution procedure. It also
shows that the residual acf can be critically important in finding an
adequate model. Case 13 likewise demonstrates how the residual acf is
sometimes virtually the only means by which an appropriate model can be
found.

Summary

1. At the diagnostic-checking stage we determine if a model is statisti-
cally adequate. In particular, we test if the random shocks are independent.
If this assumption is not satisfied, there is an autocorrelation pattern in the
original series that has not been explained by the ARIMA model. Our goal,
however, is to build a model that fully explains any autocorrelation in the
original series.

2. In practice we cannot observe the random shocks (a,) in a process,
but we have estimates of them in the form of estimation-stage residuals (4, ).

3. To test the hypothesis that the random shocks are independent we
construct a residual acf. This acf is like any estimated acf except we
construct it using the estimation residuals 4, instead of the realization z,.

4. Approximate r-values are calculated for residual autocorrelation
coefficients using Bartlett’s approximation for the standard error of esti-
mated autocorrelations.

5. If the absolute r-values of residual autocorrelations exceed certain
warning values, we should consider reformulating the model. The critical
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values are
Lag Practical Warning Level
1,2,3 1.25
All others 1.6

6. The warning values above are smaller for the short lags (1, 2, and 3)
because using Bartlett’s approximation can result in understated residual acf
t-values, especially at the short lags.

7. Another way to deal with potentially underestimated residual acf
1-values is 10 test the residual autocorrelations as a set rather than individu-
ally. An approximate chi-squared statistic (the Ljung-Box statistic) is
available for this test. If this statistic is significant we should consider
reformulating the model.

8. Other diagnostic checks are to (i) plot the residuals to see if their
variance is changing over time, as a clue about incorrectly recorded data.
and as a clue about identifiable exogenous events that may perturb the data
series; (i1) overfit the model by adding another AR or MA term if there is
reason to think another might be called for; (iii) fit the chosen model to
subsets of the available realization to see if the estimated coefficients change
significantly.

9. When reformulating a model that seems inadequate in light of the
diagnostic checks, it is wise to return to the original estimated acf and pacf
to look for further clues to an appropriate model.

10. The residual acf is an important guide to reformulating a model. At
times, we may simply add to the original model the coefficients that are
appropriate for the residuals of that model based on the residual acf. At
other times, we must algebraically substitute the model that is appropriate
for the residuals into the original model to see what new model is implied
for the original senes.

Questions and Problems
9.1 An estimated ARIMA model with significantly autocorrelated residu-
als is inadequate. Explain why.

9.2 How does a residual acf differ from an estimated acf calculated from
an original realization?
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9.3 “A properly constructed ARIMA model has residual autocorrelations
that are all zero.” Comment on this statement.

9.4 It is suggested that the practical warning level for the absolute values
of residual acf r-statistics at lags 1, 2, and 3 is about 1.25. Why is such a
small r-value used as the warning level at the short lags in the residual acf?

9.5 What is the motivation for applying a chi-squared test in addition to
the r-tests applied to residual autocorrelations?
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FORECASTING

The ultimate application of UBJ-ARIMA modeling, as studied in this text,
is to forecast future values of a time series. In this chapter we first consider
how point forecasts (single numerical values) are denived algebraically from
an estimated ARIMA model. We then discuss how to establish probability
limits around point forecasts, thus creating interval forecasts. Next, we
consider complications that arise in forecasting a series estimated in loga-
rithmic form. Finally. we discuss the sense in which ARIMA forecasts are
best, or optimal.

Unless indicated otherwise. throughout this chapter we assume, for
simplicity, that any ARIMA model we consider is known; that is, the mean
u, all ¢ and @ coefficients, and all past random shocks are assumed known.
Fortunately, the conclusions based on this simplifying assumption are
essentially correct in practice if we have properly identified and estimated
an ARIMA model using a sufficient number of observations: The properties
of ARIMA forecasts are little affected by ordinary sampling error when the
sample size is approprate.*

In the appendix to this chapter we discuss how UBJ-ARIMA methods
may be used to complement econometric (regression and correlation) fore-
casting models.

*The robustness of ARIMA forecasts with respect to sampling error in parameter estimates is
discussed in Box and Jenkins (1. pp. 306-308].
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10.1 The algebra of ARIMA forecasts

Difference-equation form. The most convenient way to produce point
forecasts from an ARIMA model is to write the model in difference-equation
form. In this section we give several examples of how this is done.

Let ¢ be the current time period. When forecasting we are interested in
future values of a time series variable, denoted z,, ,, where / > 1. Period ¢ is
called the forecast origin, and ! is called the forecast lead time. In ARIMA
analysis, forecasts depend on the available observations on variable z up
through period 1. Let the information contained in the set of available
observations (z,, z,_,, ... ) be designated /,. Then the forecast of z,
designated Z,(/), is the conditional mathematical expectation of z,,,. That
is, Z,(/) is the mathematical expectation of z, ., given /,:

21(1)=E(ZI+I|II) (]01)

where the vertical line means “given.”
As an illustration, consider an ARIMAC(1, 0, 1) model. We develop the
general algebraic form for the first several forecasts from this model. Then

we show a numencal example.
The ARIMAC(1,0, 1) model is

(1 -¢,B);,=(1-6,B)a,
or
zl=.“'(l —¢l)+¢lzl—l _0|al—| +al (102)

Now let / = 1. By altering time subscripts appropriately, use (10.2) to
write an expression for z, ,:

zi=p(l —¢)) + ¢z, — 8,a,+ a,,, (10.3)
Applying (10.1) to (10.3), we find that the forecast of z, ., is
£(1) = E(z,,,11,)
=p(l - ¢,) + ¢,z, — 8,q, (10.4)
Since a,_, is unknown at time ¢, we assign its expected value of zero. In this

example z, and a, together constitute /,. That is, z, and q, are all the relevant
information about past z's needed to forecast z,, ,. (Remember that MA
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terms are parsimonious algebraic substitutes for AR terms; thus a, repre-
sents a set of past z’s.)

Continuing the preceding example with / = 2, use (10.2) to write an
expression for z,, ,. Then the conditional expected value of that expression
is the forecast 7,(2):

21(2) = E(zl+2|]1)
="’(l “¢,)+¢|ZH,| _ala,.‘.] (105)

Since z,,, is unknown at origin ¢ it must be replaced by its conditional
expectation Z,(1) from (10.4). Likewise, a,,, is unknown at origin ¢ and is
replaced by its expected value of zero. With these two substitutions, (10.5)
becomes

7,2) =u(1 - ¢,) + ¢,4,(1) (10.6)

Proceeding as above, we find that each subsequent forecast for this
ARIMAC(1,0, 1) is based on the preceding forecast value of z. That is, 7,(3)
depends on Z,(2), Z,(4) depends on 7,(3), and so on:

£,3)=p(1 - 9,) +¢,4(2)
7,(4)=p(l - 9,) +¢,7(3)
£(5)=n(1 —9,) +¢,7,(4)

In the example above, forecasts for / > | are called “bootstrap” forecasts
because they are based on forecast z’s rather than observed z’s.

Forecasts from other ARIMA models are found in essentially the same
manner as above. In practice, p is unknown and is replaced by its estimate
ji. Likewise, the ¢ and 8 coefficients are replaced by their estimates, ¢ and .
As shown above, past z observations are employed when available. They are
available up to time ¢, the forecast origin; thereafter, they must be replaced
by their forecast counterparts (their conditional expected values). Past g,
values are replaced by their corresponding estimates, the estimation residu-
als d,, when these residuals are available. But when the time subscript on a
random shock exceeds the forecast origin ¢, that shock is replaced by its
expected value of zero. This is what happened as we moved from (10.5) to
(10.6) in the case of the ARIMA(1, 0, 1): there is no estimation residual 4, ,
available when we forecast from origin r, so we substitute zero.
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Now we consider an estimated model as a numerical example. Estimation
with n = 60 produced these values: ji = 101.26, ¢, = 0.62, and 4, = —0.58.
Thus the estimated model can be written as

(1 - 0.62B)z, = (1 + 0.58B)4,

where Z = z, — 101.26. The estimated constant term is ¢ =40 - 43,) =
101.26(1 — 0.62) = 38.48. The last observation of z, in this data series is
zgo = 96.91. We will show how the first three forecasts from this model are
calculated.

With a forecast origin ¢ = 60 and a forecast lead time / = 1, from (10.4)
the forecast for period t = 61 is

2, = 26o(1) = C + ¢,2¢9 — b,
= 38.48 + 0.62(96.91) + 0.58( - 1.37)

=97.77

In the preceding calculations the observation for period ¢ = 60 is known
(z¢o = 96.91). The random shock for period t = 60 is unknown, but we have
the estimation residual do, = —1.37 to put in its place. (Most computer
programs for estimating ARIMA models have an option for printing the
estimation-stage residuals.)

With a forecast origin ¢ = 60 and a forecast lead time / = 2, (10.5) gives
this forecast for period ¢ = 62:

fgy = 2gp(2) = C+ 4;1261 - éldel
— 38.48 + 0.62(97.77) + 0.58(0)
= 99.10

In these calculations, z, is unknown at origin ¢ = 60; therefore, z¢, is
replaced by its conditional expectation Z;, = Z4(1) = 97.77. The random
shock ag, is not observable and is replaced by its estimate, the residual dg,.
However, since the data extend only through period 60, d,; is unknown and
so 1s replaced by its expected value of zero.

For origin ¢ = 60 and lead time / = 3, (10.5) gives

263 = 2(3) = C + §,2¢;, — b,d¢,
= 38.48 + 0.62(99.10) + 0.58(0)
= 99,92
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Forecasts from other estimated ARIMA models are calculated in the
same manner as above. Most computer programs for identifying and
estimating ARIMA models also have an option to generate forecasts from
any estimated model, so the forecasts need not be produced by hand.
However, the necessary calculations are illustrated further in Part II in
Cases 3, 9, and 15.

Note in the calculations above that the forecasts are converging toward
the mean of the series (101.26). This occurs with the forecasts from all
stationary models. Cases 1 and 2 in Part II illustrate forecasts that converge
to the estimated mean. The convergence may be rapid or slow depending on
the model. In general, forecasts from pure MA models converge more
rapidly to the mean, since we quickly lose information about past estimated
random shocks as we forecast further into the future. As shown above, with
pure AR or mixed models we can “bootstrap” ourselves by using forecast
z’s to replace observed z’s; but with a pure MA model we must replace
random shocks with the expected value of zero when the forecast lead time
exceeds the lag length of a past shock term. When the forecast lead time
exceeds g, the maximum lag length of the MA terms, the forecasts from a
pure MA model are equal to the estimated constant C, which is equal to the
estimated mean ji in pure MA models.

Forecasts from nonstationary models do not converge toward the series
mean: a nonstationary series does not fluctuate around a fixed central value,
and forecasts for such a series reflect that nonstationary character. (See
Cases 5 and 7 in Part II for examples.)

Figure 10.1 shows forecasts generated from an AR(1) model. The letter F
represents a forecast value. (The square brackets [ ] represent confidence
intervals whose construction and interpretation are discussed in the next
section.) Note that the printed values of the forecasts are gravitating toward
the estimated mean (6.04) just as the forecasts calculated above from
another AR(1) converged toward the estimated mean of that series (101.26).

Figure 10.2 shows forecasts produced from an MA(1) model. The first
forecast is £,g; = #,00(1) = € — 6,8,4,. Since the estimation residual 4, is
available, the forecast reflects not only the estimated constant C (equal to
the estimated mean fi in a pure MA model), but also the last estimated
random shock d,g. But for lead time / = 2, the forecast is simply o, =
%,00(2) = C. The estimation residual 4,,, is not available so it is replaced by
its expected value (zero) and the forecast converges to the estimated mean
(i = € = 99.8344).

Figure 10.3 shows forecasts derived from a nonstationary model, an
ARIMA(O, 1,1). In difference-equation form this model is z, = z,_, —
6,a,_, + a,. The forecast origin is the fourth quarter of 1978, designated
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92. 89
103. 39
100. 78
97.7
100. 406
99. 8344
99. 8344
99.8344
99. 8344
99. 8344
99. 8344
99. 8344
99. 8344
99. 8344
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78(4). For ! = 1, the forecast is

Zi0y = 573(4)(1) = Zoga) — 0,87a)

Since both z,4,, and d,4,, are available, the forecast includes both of these
terms. But with lead time / = 2 the forecast becomes Z,g;) = 7744,(2) = Z39y)-
That is, z,4,, is not observed so it is replaced by its forecast value. The
estimation residual 4,4, is not available and is replaced by its expected
value of zero. By similar reasoning all subsequent forecasts are equal to the
preceding forecast, so the forecasts converge to the one-step-ahead forecast
278(4)(1)~

Note that these forecasts are not converging to the calculated mean of the
series (193.3) because the model is nonstationary. Differencing (d = 1) has
freed the forecasts from a fixed mean. If a series mean is shifting signifi-
cantly through time, we do not want to tie forecasts to the overall mean of
the series; although that value can be calculated, it is not useful for
describing the shifting level of the series.

Finally, consider the forecasts in Figure 10.4. These were produced from
another nonstationary model, an ARIMA(0, 2, 1). The realization used to
identify and estimate this model (not all of which is displayed in Figure
10.4) shows changes in both level and slope. As discussed in Chapter 7, such
series require second differencing (d = 2) to induce a constant mean. The
overall mean of the original series is 62.7. Once again, aithough we can
calculate this single value, it is not helpful in describing the behavior of the
series since the level of the data is shifting through time. Clearly, the
forecasts in Figure 10.4 are not gravitating toward the overall realization
mean of 62.7.

These forecasts are dominated by the differencing element in the model.
To see this, consider the difference-equation form of the ARIMA(0,2, 1)
model: z,=2z,_, —z,_,— 6,4, , +d, The terms 2z,_, and z,_, are
present because of the differencing operation. The first forecast is

Zagany = 273(10)(]) = 223810, ~ Z739) ~ 91475010

The values z,44, and z,4, are both available from the realization, and
d 4310y 1$ available from the estimation residuals. But for lead time / = 2, the
forecast is 71415 = Z7510)(2) = 227511, — Z3810)- Although observation z,4,,,
is available, neither the observation z.,,, nor the estimation residual
d181) is available. The former is replaced by its forecast value 7,4, and the
latter is replaced by its expected value of zero. All subsequent forecasts are
entirely bootstrap forecasts. For example, for { = 3, we have Z.,,, =
218010(3) = 224512) — Z711)- Thus we see that the forecasts are dominated
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Figure 103 Forecasts from an ARIMA(O, 1, 1) model.
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by the differencing component in the model, and are not tied to any fixed
central value.

Random-shock form. Any ARIMA model can be written in random-
shock form. That is, we can replace any AR terms with an infinite series of
MA terms. A pure MA model is already in random-shock form.

Although the random-shock form is not usually convenient for producing
forecasts, it is especially useful for estimating the variance of forecasts and
thus for deriving confidence intervals around point forecasts.

The coefficients in the random-shock form are denoted by the symbol ¢,,
with i corresponding to the time lag of the associated past random shock:

z,=p+yga, +ya,_, +ya,_,+ l1’3‘11—-3 +- (10-7)

where , = 1. If the sequence ¢/, ., ... is finite, then (10.7) is a pure MA
model. If the sequence is infinite, (10.7) represents an AR or mixed model.
For a stationary series, p is simply the mean. For a nonstationary series, g
represents the changing level of the series as determined by the differencing
operations.

Any pure MA model is already in random-shock form, with order q. For
example, consider an MA(2):

(z,-p)=(1-6,B- 0232)‘11

or

z,=p+a,—Hba,_,—ba,, (10.8)

Letting yy = 1, ¥, = —#6,, and y, = —#§,, we may write (10.8) in random-
shock form as

2, =p+yea,+¥,a,_, +¥a,_, (10.9)

which is simply a truncated version of (10.7).

AR models can be written in random-shock form by inverting and
expanding the AR operator. For example, we showed in Chapter 5 how an
AR(1) could be written in MA (random-shock) form. The AR(1) is (1 —
¢,BXz, — ) = a,. Dividing both sides by the AR operator gives z, — p =
(1 -~ ¢,B) 'a,. If |¢,] <1, (1 —¢,B)"! is equivalent to the convergent
infinite series (1 + ¢,B + ¢B2 + ¢’B> + --- ). Thus the AR(1) may be
written as

z,—p={(1+¢,B+ B>+ B>+ - - )aq,
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or
z,=pta +¢a_ + ¢zlal-—2 + ¢3|al—3 + - (10'10)

Letting Yo = 1,¢, = ¢,, ¥, = ¢%, ¥; = ¢}, and so forth, we see that (10.10)
is equivalent to (10.7) with an infinite sequence of §’s.

The values of the y coefficients for different ARIMA models vary (except
for y,, which is always 1) depending on the degree of differencing and the
values of the AR and MA coefficients in the model. It can be cumbersome
to find the ¢ weights for more complex models by hand; they are usually
generated by a computer program. However, we illustrate a method for
finding ¢ weights using two examples.

It can be shown that the ¢ weights are found by equating coefficients of
like powers of B in this expansion:*

(Yo + ¢,B+ ¢,B*+---)(1 — ¢,B~ B> — --- — ¢,B7)(1 — B)*
~(1-6B-6,B>----—8,B9) (10.11)
Consider again the AR(1) model. The relevant version of (10.11) then is

($o+¥,B+ ;B> +---)(1 - ¢,B) =1

or

Yo+ (¥ — o) B+ (¥ — 09 ) B> + (Y3 — ¢y )B + - =1

Now set the coefficients of the various powers of B on the LHS equal to the

coefficients of the same powers of B on the RHS. For B® we find y, = 1.

For B' we get y, — ¢,y = 0, or §, = ¢,. For B? we have ¥, — ¢,¥, = 0,

or ¥, = ¢3. With B> we get y; — ¢y, = 0, or y; = ¢}. We see that this

method produces the same result for the AR(1) obtained in (10.10) above.
Next consider an ARIMA(1,0, 1). In this case (10.11) is

(¥o + B+ ¢,B* + y3B* + ---}(1 — ¢,B) = (1 — 6,B)

*This expansion is found as follows: Define ¢#(B) as the AR operator. §(B) as the MA
operator, V¢ as the differencing operator. and ¥(B) as the y-weight operator. Then the
ARIMA model for z, is ¢( B)V Y, = 6( B)a,. where the y~weight form is Z, = §(B)a,. Write
the y-weight form as a, = ¥ (B) ™ 'Z,: substitute this for a, in the ARIMA model and rearrange
10 get ¥(B)$(B)v?, = §(B):z, Dividing by Z, and writing the operators in long form gives
(10.11).
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or

Yo+ (¥ = dido) B+ (43— 619 ) B2 + (Y3~ 6,9) B> + -
=1-6,B

Now equate the coefficients of like powers of B on both sides of the
equation. This leads to the following results:

J B/ ¥,

0 B° Yo =1

1 B; ¥, =¢, — 0,

2 B Yy = (¢, — 01)
3 6,)

B? Yy = ¢2|(¢1 -

We see from the pattern that, in general, ¥, = ¢{'(¢, — 4,) for the
ARIMA(1,0, 1).

Apply this result to the ARIMA(1,0, 1) estimation results presented in
the last section. There we had «f», = 0.62 and 6§, = —0.58. Inserting these
estimated coefficients into the above expression for y,, we get

‘I’o =]
¥, =9, - 6, =0.62 + 0.58 =1.20
§, =6,(é, — 6,) =0.62(1.20) =0.74

¥3 =43($, — 6,) =(0.62)*(1.20) =0.46

We will use these results in the next section to illustrate how the ¢
weights are used to construct confidence intervals around point forecasts.

10.2 The dispersion of ARIMA forecasts

Using the difference-equation form of an ARIMA model, we can produce a
series of point forecasts, where “point” means the forecast is a single value
rather than a range. Using the random-shock form, we can find the variance
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of the forecast errors. This allows us to construct approximate confidence
intervals around our forecasts, thus providing some information on how
reliable forecasts may be. In this section we find general expressions for the
variance and standard deviation of ARIMA forecast errors. Then we show
how confidence intervals are constructed, and we illustrate the relevant
calculations using the ARIMA(1,0, 1) model presented earlier.

Forecast-error variance and standard deviation. First, define a forecast
error for origin ¢ and lead time /, designated e,(/), as the observed z for
period ¢ + / minus the forecast z for that period:

el(l)=zl+l_£l(l) (1012)
Use (10.7) to write z, ., in random-shock form as
zt+l="'+‘l’oal+l+‘l’|al—1+1+‘I’za,,p./'*’"‘ (10.13)

The corresponding forecast value Z,(/), which is the conditional mathe-
matical expectation E(z,,,|l,), is found from (10.13) to be

21(1) = E(zl*‘llll)
=p+da, tdaa,_ tyaa (10.14)

That is, the information set /, is defined as information about the series z
only through period 7. Thus (10.14) contains random shocks only from
period 1 or earlier since any random shock after period ¢ is unknown at time
t. (We are assuming for simplicity that shock terms at time ¢ or earlier are
observable. Of course, in practice they must be estimated from the estima-
tion-stage residuals. Shock terms after time ¢ are not only unknown at time
t, they cannot be estimated at time ¢.)

For example, let / = 1. We want to find the expectation of (10.13) given
I,. The first shock term on the RHS of (10.13) is Yya,., = ¥,a,. . Since
a,, is unknown (and cannot be estimated) at origin 7 we assign this term its
expected value of zero. The next shock term is ¥,a,_,,, = ¥,a,. The value
a, is known (or may be estimated) at origin ¢, so we include y,a, = ¥ ,a, in
the expectation (10.14). The next shock termin (10.13) is y,a,_, ., = ¥a,_,.
The value a,_, is available at time 7 so the term ¢, ,a,_, = ¥,4a,_, appears
in (10.14). By the same reasoning all subsequent shock terms in (10.13) are
known at origin r and therefore appear in (10.14). The reader is encouraged
to proceed as above to see how finding the expectation of (10.13) leads to
(10.14) for { = 2. The result is 7,2y = p + ¢ a, + Ysa, | + Yqa,_, +....
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where the terms y,a,,, and ¥,q,,, in (10.13) have an expected value of
zero since q, , , and a, ., are unknown (and cannot be estimated) at origin r.
Substituting (10.13) and (10.14) into (10.12), we find

e(!)=voa,  + ¥, 1+ + Y4, (10.15)

That is. (10.13) contains all random-shock terms up through period ¢ + /,
whereas (10.14) contains only those up through period 1. Subtracting (10.14)
from (10.13) leaves the random-shock terms from period ¢ + / back through
period ¢ + 1.

Now using (10.15) we find that the (conditional) variance of ¢,(/) is

o?[e,(1)] = E{e,(!) = E[e,())i1,)’
= E[e (D]
21+ i+ i+ +y) (10.16)

and therefore the standard deviation of e (/) is

)" (10.17)

ole (D} = o, (1+yi+ 43+ - +yi,

The variance (10.16) is found by squaring (10.15). {Note in (10.15) that
Efe, (1)) = 0, and recall that ¢, = 1.} All cross-product terms have an
expected value of zero since the random shocks are assumed to be indepen-
dent. The expected value of each remaining squared shock term is, by
assumption, the constant ¢}.

In practice, o[e,(/)] must be estimated, since o, is unknown and is
replaced by the RMSE (4,) and since the coefficients are unknown and are
replaced by estimates (4/ ) calculated from the estimated ARIMA coeffi-
cients (¢’s and 6°s). The resulting forecast-error variances (and forecast
confidence intervals) are therefore only approximate.

Consider the sequence of estimated y coefficients calculated in the last
section for an estimated ARIMA(1,0, 1). They were

Yo =1
¥, =120
4:2 = 0.74

¥; = 0.46
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The estimated standard deviation of the shocks for this model is 6, = 1.60.
Use these values and (10.17) to find the estimated standard deviation of the
forecast errors for lead times / = 1, 2, and 3:

éfe,(1)] = 6,(1)"”
= 1.60

5[e, ()] = 6,(1 +42)"”

1.6[1 + (1.200°]*

2.50

)1/2

é[e,(3)]

6,(1 + 2 + {3

1,2

1.6[1 + (1.20)* + (0.74)’]
=277

Forecast confidence intervals. If the random shocks are Normally dis-
tributed (as we assume they are) and if we have estimated an appropriate
ARIMA model with a sufficiently large sample, forecasts from that model
are approximately Normally distributed. Using (10.17) we can therefore
construct confidence intervals around each point forecast using a table of
probabilities for standard Normal deviations. Thus an approximate 95%
confidence interval is given by

£,(1) +1.966[e, ()]
and an approximate 80% confidence interval is
2,(1) + 1.286[e,(1)]

Earlier we presented forecasts for lead times /=1, 2, and 3 for an
estimated ARIMA(1,0, 1) model. These point forecasts were

2(1) = 97.77
£(2) = 99.10

2(3) = 99.92
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The estimated standard deviations of the forecast errors calculated above
are used to produce approximate 95% confidence intervals around the point
forecasts as follows:

25(1) £ 1.966[ 5o (1)]
97.77 + 1.96(1.60)
97.77 + 3.14

or
(94.63,100.91)

Z6o(2) £ 1.966(e5o(2)]
99.10 + 1.96(2.50)

99.10 + 4.90

or
(94.20, 104.00)

£6o(3) £ 1.966]e0(3))
99.92 + 1.96(2.77)

99.92 + 5.43

or
(94.49, 105.35)

These intervals are interpreted in the usual way. For example, the last
interval is interpreted in this way: We can be 95% confident that the interval
(99.49, 105.35) will contain the observed value z,,, = 24,3 = 2.

10.3 Forecasting from data in logarithmic form

In Chapter 7 we said if the standard deviation of a data series changes in propor-
tion to its mean, then building a model of the natural logarithms of the series is
appropriate. (Cases 9 and 11 in Part II are examples of such a series.) How-
ever, usually we are interested in forecasting the original data rather than the
log values. It might be tempting merely to calculate the antilogs of
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the logarithmic forecasts to get the forecasts of the original series. But doing
this creates a problem: if the random shocks of the log series are Normally
distributed. then the shocks of the original series (and the forecasts of this
series) follow a log-Normal distribution.*

Let a log series be denoted by z;, where z, is the original series. Then it
can be shown that the forecast for z, ., depends on both the forecast and the
forecast-error variance of z;_, in this way:

z,(1) = exp{2;(1) + 302 [e; (D)]) (10.18)

Thus, we should not simply find the antilog of (/) to find Z,(!). Instead,
we must take into account the variance of the logarithmic forecast as shown
in (10.18). However, the upper and lower confidence limits around Z,(/) are
found by taking the antilogs of the hmits around 7;(/). That is, if U and L
are the upper and lower limits of an a-percent confidence interval around
2,(1), then exp(U) and exp(L) are the a-percent upper and lower hmts
around Z,(/). It follows that the interval around 7,(/) is not symmetrical
since the interval around Z;(/) is symmetrical.

Finally, note that forecasts of z, may be interpreted in terms of z, without
finding antilogs because the change of a log value is the percent change of
the corresponding antilog value. For example, suppose the following fore-
casts for z;,, are generated from ongin ¢:

[ () 90% Confidence Values (+)
1 3.7866 0014
2 3.8084 0.015
3 3.8209 0.017

Let the log of the last available observation (z;) be 3.7525. Then we have
these forecast log changes.

! Az(])
1 0.0341 = /(1) — z, = 3.7866 — 3.7525
2 0.0218 = £(2) — 7/(1) = 3.8084 — 3.7866
3 0.0125 = 7/(3) — #(2) = 3.8209 — 3.8084

These log changes are interpreted directly as forecast percent changes for
z,,,. and the interval values above are interpreted as percent intervals. That

*The log-Normal distribution is discussed by Olkin et al. [26. pp. 299-302]. Nelson [27. pp.
161-165] discusses the log-Normal distribution in the context of ARIMA models.
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is, multiply the forecast log changes and the 90% confidence values by 100
to get

! Percent A%,(/) 90% Confidence Values ()
1 341% 1.4%
2 2.18% 1.5%
3 1.25% 1.7%

Thus, the original series is forecast to rise by 3.41% from period r to ¢ + 1,
then it is forecast to rise by another 2.18% from period r + 1 to ¢t + 2, and
by 1.25% from period t + 2 to 7 + 3.

10.4 The optimality of ARIMA forecasts

Forecasts from ARIMA models are said to be optimal forecasts. This means
that no other univariate forecasts have a smaller mean-squared forecast
error (abbreviated MSE). That is, let an ARIMA /-step-ahead forecast be
2,(1), with corresponding forecast error e,(/), and let /, be the information
about all available z’s through period r. Then given I, 7,(/) is optimal
because the conditional mathematical expectation of the squared ARIMA
forecast error, E[e,(/)|1,]%, is smaller than for any other univariate forecast.*
It also follows that ARIMA forecasts give the minimum forecast-error
variance since E[e,(/)|1,)? is that variance.

Several points must be clarified. First, optimality refers to the mathemati-
cal expectation of [e,(/)}?, not to any particular e,(/). That is, some other
(non-ARIMA) univariate model forecast could have a smaller squared
forecast error than a properly constructed ARIMA-model forecast in a
particular instance, but not on average.

Second, optimality applies strictly only if the particular ARIMA model
being considered is the correct one. Thus, ARIMA forecasts are minimum
MSE forecasts in practice only if the strategy of identification, estimation,
and diagnostic checking is adequate to the problem at hand, and only if that
strategy has been properly employed.

Third, we are comparing ARIMA forecasts only with other univariate
forecasts. That is, I, contains information about past z’s only. If /, were
expanded to include information about other relevant variables (giving a

*Box and Jenkins {1, pp. 127-128] demonstrate that the ARIMA forecast is the minimum MSE
forecast of z,, .
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multiple-series model), we could get forecasts with a smaller MSE than
ARIMA forecasts.

Fourth, we are considering only univariate models that are linear combi-
nations of past z’s, with fixed coefficients. “Linear combination” means
that each past z is multiplied by some coefficient, and the resulting terms
are then added. Consider that any ARIMA model can be wntten, by
inverting and expanding the MA operator, as an AR model of infinitely
high order:*

z,=C+a,+mz,_ +mz,_,+ - (10.19)

where each 7, is some combination of ¢ and # coefficients. It should be clear
that (10.19) is a linear combination of past z’s. Now, it is possible that a
nonhnear combination of z's could produce forecasts with a smaller MSE
than linear ARIMA forecasts.

Furthermore, the 7 coefficients in (10.19) do not have time subscripts:
they are fixed through time because they are composed of ¢ and 6
coefficients which are assumed to be fixed. Univariate models with time-
varying coefficients could, at times, produce smaller MSE forecasts than the
fixed-coefficient ARIMA models we have considered. The theory and
practice of nonlinear ARIMA models and time-varying parameter ARIMA
models is not well-developed at present.

These conditions on the optimality of ARIMA forecasts might seem
quite restrictive. But keep in mind that linear, fixed-coefficient univariate
models are often very useful in practice. It is helpful, therefore, to know that
forecasts from ARIMA models are optimal within this larger class of useful
models.

Summary

1. Point forecasts (single numerical values) from an ARIMA model are
calculated most easily by writing the model in difference equation form.

2. To find point forecasts from an ARIMA model using the difference-
equation form, write the model in common algebraic form and solve for z,.
Insert the estimates of C and the ¢ and 8 coefficients and assign a, its
expected value of zero. Now insert the appropriate values for any past
observations (past z terms) and past random shocks (past a terms). In
practice we must use estimation-stage residuals in place of past random
shocks, or the expected value of zero if the forecast lead time / exceeds the

*We showed in Chapter 5 how an MA(1) model, for example, can be written in AR form.
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lag length of the MA term in question. Likewise, we use forecast z values in
place of observed z values when the forecast lead time / exceeds the lag
length of the AR term in question.

3. While point forecasts are most conveniently calculated from the
difference-equation form of an ARIMA model, in creating confidence
intervals around these point forecasts it is convenient to start with the
random-shock form of a model.

4. The random-shock form of an ARIMA model is its MA form. That
is, by inverting and expanding the AR operator, we replace any AR terms
with an infinite series of MA terms.

S. A forecast error for lead time /, e,(/), is defined as the difference
between an observed z, and its forecast counterpart Z,(/):

el(l) =z, - 21(1)
This forecast error has variance o%[e,(/)] given by
(1 +yi+yi+- +yl)

where the ¥, coefficients are the coefficients in the random-shock form of
the model.

6. If the random shocks are Normally distributed and if we have an
appropriate ARIMA model, then our forecasts and the associated forecast
errors are approximately Normally distributed.

7. The forecast-error vanance for a given ARIMA model is estimated
from the available realization. Let d{e,(/)] be the square root of this
estimated variance. This estimate may be used to construct a confidence
interval around any forecast:

2,(1) £ Zé[e,(1)]

where Z is the standard Normal deviation associated with the desired degree
of confidence.

8. If the variance of a realization is made stationary by transformation
of the original data into natural log values (z,;), we may not forecast the
original series (z,) by merely finding the antilogs of the log forecasts.
Instead, we must take into account the variance of the log forecasts in this
way:

2,(1) = exp(z;(1) + 4o [e; ()]}
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9. Forecast log changes are interpreted as forecast percentage changes
for the original series.

10. ARIMA forecasts are said to be optimal univariate forecasts: the
mean-squared forecast error, given the information (/,) about the z observa-
tions available through period . designated E[e,(/)|/,]. is smaller than for
any other univaniate forecast. Note that optimality refers to the mean-
squared forecast error, not to any particular squared forecast error.

11. ARIMA forecasts are optimal only if we have found an appropriate
ARIMA model and only among forecasts from univaniate, linear,
fixed-coefficient models. A multivariate model, or a model with a nonlinear
combination of past z’s, or a model with time-varying coefficients might
give forecasts with a smaller mean-squared forecast error.

Appendix 10A: The complementarity of ARIMA models
and econometric models

This appendix is aimed primarily at the reader with a background in
econometrics. However, it should be useful to any reader who knows the
fundamentals of regression analysis.

We have noted that ARIMA models are a special class of univariate
models: they use only the information contained in past observations of the
variable being analyzed. In this appendix we discuss how ARIMA models
may be used in conjunction with econometric models, a common class of
multiple-series models based on standard regression and correlation meth-
ods. While there are some important differences between ARIMA and
econometric forecasting models, both have the same purpose: finding stat-
istical relationships that are reliable enough to produce useful forecasts.

A single-equation econometric model specifies how a dependent variable
(») is functionally related to one or more independent variables (x,, x,,. ..,
X,,) other than past values of y. (Sometimes econometric models have past
values of y among the “independent” variables, but other variables are also
present.} If one or more of the independent variables (x,,.... x,,) is also
logically dependent on y, the econometric model may consist of several
equations.

A single-equation econometric model might be written as follows:

ye=a+ Bix, + Byx; +¢ (10A.1)

where a, B,, and B, are parameters, ¢ is a time subscript, and ¢ is a
probabilistic shock element usually assumed to be a set of Normally,
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independently, and identically distributed random variables with a mean of
zero.

In econometric modeling the analyst is guided by some theory when
selecting independent variables. This theory may involve human behavior or
a technological relationship, for example, but one should have a reason
besides mere statistical patterns for choosing the variables to include in an
econometric model. By contrast, in UBJ-ARIMA modeling we emphasize
statistical appearances (correlation as shown in estimated acf’s and pacf’s)
rather than theories about why one variable 1s related to another.

UBJ-ARIMA analysis may be used to complement econometric analysis
in at least four ways, as discussed below.

Forecasting independent variables. Econometric models are often used
for forecasting time-series data, and they can be very useful for this purpose.
However, one must first forecast the values of any independent variables
that are contemporaneous with the dependent variable ( y,) before forecast-
ing y,. That is, if y, depends on x, and x,, as in equation (10A.1), we must
forecast the future values x,; and x,,_, in order to forecast y, .

ARIMA models are convenient for producmg forecasts of independent
variables whenever an independent variable is contemporaneous with the
dependent variable in an econometric model. These forecasts can be gener-
ated without gathering additional data (assuming enough observations on
the independent variable are available initially) since UBJ-ARIMA models
are univariate models.

Analyzing residuals. ARIMA analysis can be applied to the estimated
residuals (estimates of the ¢, terms, designated €,) to see if they satisfy the
standard independence assumption. ARIMA analysis can detect patterns in
the €, terms that might be missed by traditional econometric tests. For
example, a common way of testing regression equation shock terms for
independence is with the Durbin-Watson statistic (d ):*

Tro(é — &)
d== 22" ‘2’ ! (10A.2)
As suggested by the form of the numerator in (10A.2), this statistic tests
only for correlation between estimation residuals separated by one time
period (k = 1), whereas with UBJ-ARIMA analysis one routinely examines
residuals separated by various time periods (k = 1,2,3,...) in a residual
acf.

*For a brief introduction to the Durbin—Watson statistic, see Mansfield [8, Chapter 12].
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Combining forecasts. A forecast which is a weighted average of two or
more individual forecasts often has a smaller error variance than any of the
individual forecasts. This is especially true when the individual forecasts are
based on different information sets and/or different methods.

It may be worthwhile, therefore, to average econometric forecasts and
ARIMA forecasts. This is particularly appealing since an econometric
model contains information (the independent variables) that a univanate
ARIMA model does not contain, and ARIMA models may contain infor-
mation (past values of the dependent variable) not contained in an econo-
metric model.

This approach to forecasting must be used with care. For example, the
weights assigned to the individual forecasts must be chosen properly.
Furthermore, if combined forecasts are superior, this suggests that another
forecasting method may be called for—one that meshes the individual
approaches. For an introductory discussion about combining forecasts, see
Granger [28, pp. 157-164]. For a more advanced treatment, along with
bibliographic references, see Granger and Newbold {17, Chapter 8].

Checking for misspecification. The mathematical structures of some
econometric models logically imply ARIMA models for the endogenous
(dependent) variables. This means that econometric and ARIMA models
are, under certain circumstances, alternative ways of expressing the same
mathematical model.

The consequences of this are quite interesting. In particular, if an
econometric model logically implies an ARIMA model for an endogenous
variable which is quite inconsistent with the estimated acf and pacf of that
variable, this is strong evidence that the econometric model is incorrectly
specified. Thus ARIMA models can aid in the construction of better
econometric models.

The logical relationship between econometric models and ARIMA mod-
els is a relatively recent area of research. The interested reader may consult
two articles by Zellner [29, 30], both of which contain additional references.

Questions and Problems

10.1 Write the following in difference-equation form:
(a) (1 —¢|B—¢ZBZ)Z',=(1 — 8,B)a,
() 7, =( - 6,B~ 6,B%)a,
() (1 -—¢,BX1 - B)Z,=aq,
(d (1-B):,=(-48,B)a,
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€ (1-B)%=(1-6B8-6,B%a,
® (-¢,B):i=(1-6B8-6B")a,

10.2 Use the following information to forecast for lead times / = 1, 2, and
3 for each of the models in question 10.1.
(@) n =100, zgo =53, 2,00 = 56, dp0 = 1.4, &, = 1.4, ¢, = —0.7,
6,=03,4i=50
(b) n =100, dgg = 1.3, d1pp = —2.6,6, = 0.7, 8, = —0.5, i = 100
(€) n =100, z49 = 217, z,oo=232 é, —03
d n=100,2,0 =288, =05d,,= -07
@ n=100,z9 =97, 2,00 = 102,68, =03, 6, =02,d,, =04,
dgg = 0.5 ) .
() n=100,z,4, =103, ¢, =06,6,=08,6,= -03, i = 100,
Ao = 1.2,dgg = 0.3

103 Find the values of the first three i weights for each of the models in
problem 10.2 using expansion (10.11). Present both the algebraic form and
numerical values.

10.4 Find the estimated forecast-error variances and standard deviations
for each of the forecasts produced in problem 10.2 using the following
information

@@ ¢2=133
® 62=25
(¢) ¢} =38

@ 62=67
© ‘42 =12
@ =25

10.5 Construct 80% and 95% confidence intervals for each of the forecasts
produced in probiem 10.2.
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SEASONAL AND OTHER
PERIODIC MODELS

Time-series data often display periodic behavior. A periodic series has a
pattern which repeats every s time periods, where s > 1. Experience has
shown that ARIMA models often produce good forecasts of periodic data
series.

One of the most common types of periodic behavior is seasonal vanation.
This is why we use the letter s to stand for the length of periodicity. In this
chapter we focus on seasonal models, but everything said here also applies
to other types of periodic models.

ARIMA models for seasonal time series are built using the same iterative
modeling procedure used for nonseasonal data: identification, estimation,
and diagnostic checking. With seasonal data we must often difference the
observations by length s. This involves calculating the periodic differences
z, — z,_,. We also give special attention to estimated autocorrelation and
partial autocorrelation coefficients at mulitiples of lag s, (s.2s,3s,...).
Likewise, at the estimation stage we obtain estimates of selected AR and
MA coefficients appearing at multiples of lag s. And at the diagnostic-
checking stage we focus on residual autocorrelation coefficients at multiples
of lag s.

This attention to coefficients at multiples of lag s is in addition to our
usual concern about nonseasonal patterns in the data. This is why analyzing
seasonal series is so challenging—most seasonal series also have a nonsea-
sonal pattern. Distinguishing these two patterns to achieve a parsimonious
and statistically adequate representation of a realization can be difficuit,
especially for the beginning analyst.
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Figure 11.1 Heating degree days, Columbus, Ohio, 1938-1949.



45

45

47

48

49

101
111
121

21
31
41
S1

(284

71s
8l

1
101
111
121

11

21

31

41

SI

61,

N
-

7is

els

1
101
111
121

61

-

714

101
111
121

/

/f
-
R R

/

'\

/f
N N O O e k]

/

/

\
\
1

*,

/I
et m-]unm O

\.
|

\

/

I\

L]
\
S

P R L
Ld

\

!

|

Figure 11.1

(Continued)

resss e

263
694
812
10346
1018
936
247
119

26
214
$94
833
1103
1018
661
325
138
17

133
244
607
1109
1026
897

$40
126

111
339
734
1066
62
864
854
428

1155
1283
903
432
332
241
56

31
347
623
1192
1016
B62

390
1469
28

23
187

516
881

267



268 Seasonal and other periodic models

In this chapter we first discuss the nature of periodic and seasonal data.
Next, we examine the theoretical acf’s and pacf’s associated with seasonal
models. Then we consider seasonal differencing. We conclude with a
critically important topic—how to build models for data series that have
both seasonal and nonseasonal ARIMA patterns.

11.1 Periodic data

As an example of a periodic series, consider the plot of monthly heating
degree days (abbreviated HDD) for Columbus, Ohio shown in Figure 11.1.
The winter months’ values are regularly higher than those in other months
within the same year, while the summer months’ values are regularly lower.
This suggests that HDD values in any given month are similar to HDD
values in the corresponding month in other years; that is, the January value
in one year is similar to January values in other years, the July value in one
year is similar to the July values in other years, and so forth for each month.

In any pertodic series we expect observations separated by multiples of s
to be similar: z, should be similar to z,, ), where i = 1,2,3,... . In the
case of the monthly HDD data, one time period is one-twelfth of a year.
This gives a pattern that repeats every 12 observations, so s = 12. Therefore,
we expect HDD in a given month (z,) to be related to HDD in the same
month one year earlier (z,_,,), the same month one year later (z,.,,), the
same month two years earlier (z,_,,), the same month two years later
(2,4 24), and so forth.

The frequency with which data are recorded determines the value as-
signed to s, the length of the periodic interval. The monthly HDD data
show a similarity between observations twelve periods apart, so s = 12. But
if the data were recorded quarterly, we would expect a given quarter’s value
to be similar to values in the same quarter in other years. Thus similar
observations would be four periods apart and we would have s = 4.

Figure 11.2 is another example of periodic data. It shows the number of
students passing through a turnstile as they enter a university library. The
building is open seven days a week, and the data in Figure 11.2 display a
weekly (seven-day) periodicity. The first observation in each week is a
Monday; the data reach a peak value near the middle of each week and
drop to a low each Saturday. In this example observations seven periods
apart are similar, so s = 7. Therefore, we expect z, to be related to z, , ;5 for
i=1,23,....

Seasonal data. The most common type of periodic data in economics
and business is data with seasonal variation, meaning variation within a
year. The HDD series in Figure 11.1 is an example of a seasonal series—the
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within-year pattern is sirmlar from year to year. The turnstile data are
periodic but not seasonal; that is, the repeating patterns in this series occur
from week to week rather than from year to year.

Seasonal patterns reflect physical forces, such as changes in the weather,
or institutional factors, such as social customs. For example, people may
buy more ice cream as the temperature rises during the summer but buy less
during the winter as the temperature drops. Other data such as liquor sales
show repeated peaks (high values) and troughs (low values) partly because
an extended holiday season comes in the late fall and early winter.

11.2 Theoretical acf’s and pacf’s for seasonal processes

Theoretical and estimated acf’'s and pacf’s play the same role in the
construction of seasonal ARIMA models as in the building of nonseasonal
models. At the identification stage estimated acf’s and pacf’s are calculated
from the available data. These are compared with some common, known
theoretical acf’s and pacf’s and a tentative model is chosen based on this
comparison. The parameters of this model are estimated and the
estimation-stage residuals (4,) are then analyzed with a residual acf to see if
they are consistent with the hypothesis that the random shocks (a,) are
independent. If we reject this hypothesis, the structure within the residual
acf may help us tentatively identify another model.

The fundamental fact about seasonal time-series data is that observations
s time periods apart (2,, Z,_;, 2,45, Z, 25 21425 -- ) are similar. We there-
fore expect observations s periods apart to be correlated. Thus, acf’s and
pacf’s for seasonal series should have nonzero coefficients at one or more
multiples of lag s (s,2s, 3s,...).

In Chapter 6 we discussed the theoretical acf’s and pacf’s for five
common (stationary) nonseasonal models: AR(1), AR(2), MA(1), MA(2),
and ARMAC(], 1). The ideas presented there carry over to the analysis of
seasonal data with one exception: the coefficients appearing at lags 1,2,3,. ..
in nonseasonal acf’s and pacf’s appear at lags s,2s, 3s,. .. in purely seasonal
acf’s and pacf’s. For example, a stationary nonseasonal AR(1) process with
¢, = 0.7 has a theoretical acf that decays exponentially in this manner
(where k is the lag length and p, represents the autocorrelation coefficient):

k Py

1 p, =07
2 p; = 0.49
3 p; = 0.34
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A stationary seasonal process with one seasonal AR coefficient and with
s = 4, for example, also has a theoretical acf that decays exponentially, but
at the seasonal lags (4,8,12,...) which are multiples of 4:

k P

1 p=0

2 p, =0

3 p; =0

4 ps = 0.7
5 ps =

6 pe=0

7 P =

8 pg = 0.49
9 pe =0
10 Pe=0
11 P =0
12 p, =034

This parallel between nonseasonal and seasonal acf’s and pacf’s sim-
plifies the analysis of seasonal data. The reader who is thoroughly familiar
with the nonseasonal acf’s and pacf’s in Chapter 6 should be able to picture
the same patterns occurring at multiples of lag s. Because of the similarity
between nonseasonal and purely seasonal acf’s and pacf’s, we examine here
only two of the more common seasonal processes.

Consider a purely seasonal process with one autoregressive coefficient at
lag s. This is written

z,=C+®:z,_,+a,
or

(1 - ®,B%)z, = a, (11.1)

(Upper-case greek letters are used for seasonal coefficients.) Equation (11.1)
says that z, is related to its own past value s periods earlier, z,_ .

A purely seasonal moving-average process with one coefficient at lag s is
written

Z, = C- esal-s +a,
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Figure 113 Theoretical acf’s and pacf’s for four stationary seasonal processes.
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or
7, =(1 - ©,B%)aq, (11.2)

Here :, is related to the random shock s periods earlier, a,_ .

Figure (11.3) shows the theoretical acf’s and pacf’s for these two purely
seasonal processes under various assumptions about the signs of @, and ©,.
These diagrams are identical to the nonseasonal AR(1) and MA(1) acf’s and
pacf’s except the coefficients for the seasonal processes occur at multiples of
lag s (s,2s5,3s,...) instead of at lags 1,2,3,.... The theoretical acf for
process (11.1) decays exponentially at lags s,2s,3s,... either all on the
positive side or alternating in sign starting from the negative side. The
theoretical acf for process (11.2) has a spike at lag s foliowed by a cutoff to
zero at lags 2s, 3s,..., .

In practice, identifying seasonal models from estimated acf’s and pacf’s
can be more difficult than is suggested by the preceding discussion. In
particular, many realizations with seasonal vanation also contain nonsea-
sonal patterns. The estimated acf and pacf for a combined seasonal-nonsea-
sonal realization reflect both of these elements. Visually separating the
seasonal and nonseasonal parts in estimated acf’s and pacf’s can be dif-
ficult. We consider combined seasonal-nonseasonal models in Sections
11.4-11.6.

A seasonal process with a nonstationary mean has an acf similar to the
acf for a nonstationary, nonseasonal process. In Chapters 2, 6, and 7 we saw
that the acf for a process with a nonstationary mean fails to damp out
quickly to zero. A seasonal process with a nonstationary mean has acf
spikes at lags s,2s, 3s,... that do not damp out rapidly to zero. Figure 11.4
shows a hypothetical example. These autocorrelations need not be large to

1.0'}

Py | | S}
s 2s 3s 4s Ss

Y k=1lag

-1.0-+
Figure 11.4 Theoretical acf for a hypothetical nonstationary seasonal process.
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indicate a nonstationary mean. The key point is that they do not quickly
damp out to zero. When a realization produces an estimated acf similar to
the one in Figure 11.4, seasonal differencing is warranted.

11.3 Seasonal differencing

The mean of a realization may shift significantly from period to period
because of strong seasonal variation. Nevertheless, the observations for a
given season may all fluctuate around a constant mean.

Seasonal differencing is similar to regular differencing (introduced in
Chapter 2) because both involve calculating the changes in a data series. For
regular differencing we calculate the period-to-period changes z, — z,_,. But
to perform seasonal differencing, we calculate the change from the last
corresponding season z, — z,_,.

For example, consider the HDD data in Figure 11.1. The mean of the
series seems to shift within each year: while January values tend to Lie above
those for other months, July values are regularly lower than those for most
other months. It is as if the January values are drawn from one probability
distribution with a certain mean, February values are drawn from another
probability distribution with a different mean, and so forth for other
months. The estimated acf for the HDD data in Figure 11.5 confirms the
nonstationary character of the seasonal variation in those data: the autocor-
relations at the seasonal lags (12, 24, 36) decay slowly. When the mean of a
realization shifts according to a seasonal pattern, seasonal differencing often
induces a constant mean.

To find the seasonal differences (w,) of the HDD data, subtract from
each observation the observation occurring 12 periods earlier:

w3 =23 — z; = 1278 — 1046 = 232
Wiy =214 — 25 = 1178 — 914 = 264
Wis = 25 — 23 = 656 — 532 = 124
Wie = 216 — 24 = 545 — 480 = 65
Wy, =z, — 25 = 104 — 236 = — 132

W =213~ 2,=6—38=—-32
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Figure 11.5 Estimated acf for the heating-degree-days data.

The first seasonal difference we can find (w,;) is for January 1939. This is
because there is no z; value available to subtract from z,, (December 1938),
no z_, value to subtract from z,, (November 1938), and so forth. Therefore,
we lose 12 observations due to seasonal differencing of length 12.
The seasonally differenced data are plotted in Figure 11.6 and the
estimated acf and pacf for this series are shown in Figure 11.7. Inspection of
Figure 11.6 suggests that seasonal differencing has removed the obvious
peak-trough seasonal variation appearing in the original data in Figure
11.1. The estimated acf in Figure 11.7 now drops quickly to small values at
lags 24 and 36 following the spike at lag 12. Since the estimated acf also
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Figure 11.6 Seasonal differences of the heating-degree-days data.
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