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The theory and practice of time-series analysis and forecasting has devel- 
oped rapidly over the last several years. One of the better known short-term 
forecasting methods is often referred to as univariate Box-Jenkins analysis, 
or ARIMA analysis. Several years ago I introduced this method into my 
undergraduate course in model building and forecasting. I searched in vain 
for a text that presented the concepts at a level accessible to readers with a 
modest background in statistical theory and that also showed clearly how 
the method could be applied to a wide variety of real data sets. That 
fruitless search became my motivation for writing this text. 

The purposes of this text are (1) to present the concepts of univariate 
Box-Jenkins/ARIMA analysis in a manner that is friendly to the reader 
lacking a sophisticated background in mathematical statistics, and (2) to 
help the reader learn the art of ARIh4A modeling by means of detailed case 
studies. Part 1 (Chapters 1-1 1) presents the essential concepts underlying 
the method. Part I1 (Chapter 12 and Cases 1-15) contains practical rules to 
guide the analyst, along with case studies showing how the technique is 
applied. 

This book can be used as a basic or supplementary text in graduate 
courses in time-series analysis and forecasting in MBA programs and in 
departments of economics, engineering, operations research, or applied 
statistics. It can serve as a basic text in similar advanced undergraduate 
courses. Practicing forecasters in business, industry, and government should 
find the text a helpful guide to the proper construction of ARIMA forecast- 
ing models. 

The theory is presented at a relatively elementary level. Only a one- 
semester course in statistical methods is required. The reader should know 
the fundamentals of probability, estimation, and hypothesis testing, espe- 
cially the use of the r-distribution and the chi-squared distribution. Some 
knowledge of regression methods is also helpful. Proofs do not appear in the 
text, although some results are derived; most technical matters are relegated 
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to appendixes. The reader well-grounded in mathematical statistics will find 
the discussion of the theory to be quite elementary. The reader with a 
minimal background in mathematical statistics (at whom the book is aimed) 
should find the theoretical material to be sufficiently challenging and a 
helpful stepping-stone to more advanced literature. 

The 15 case studies in Part I1 use real data to show in detail how the 
univariate Box-Jenkins method is applied. They illustrate the varieties of 
models that can occur and the problems that arise in practice. The practical 
rules summarized in Chapter 12 are emphasized and illustrated throughout 
the case studies. The reader who becomes thoroughly familiar with the case 
studies should be well-prepared to use the univariate Box-Jenkins method. 

The case studies move from easier to more challenging ones. They may 
be read as a whole following completion of the first 12 chapters, or some of 
them may be read following the reading of selected chapters. Here is a 
suggested schedule: 

1. After Chapters 1-4, read Cases 1-4. 
2. After Chapter 6, review Cases 1-4. 
3. After Chapter 7, read Cases 5-8. 
4. After Chapter 9, review Cases 1-8. 
5. After Chapter 11, read Cases 9-15. 

The material in this text is based on the work of many individuals, but 
especially that of George E. P. Box and Gwilym M. Jenkins. I am deeply 
indebted to an anonymous reviewer whose painstaking comments on several 
drafts led to numerous improvements in both substance and style; any 
remaining errors of fact or judgment are my own. I was also fortunate in 
having the editorial guidance and encouragement of Beatrice Shube and 
Christina Mikulak during this project. Rich Lochrie influenced my treat- 
ment of the case studies. My colleagues Underwood Dudley and John 
Momll were always patient with my questions. Ralph Gray’s constant 
support was invaluable. Rande Holton, Mike Dieckmann, and Debbie 
Peterman at the DePauw University Computer Center were exceptionally 
helpful. I have been fortunate in having many students who provided 
challenging questions, criticism, data, preliminary data analysis. references, 
and programming assistance, but nine individuals deserve special mention: 
Carroll Bottum, Jim Coons, Kester Fong, Ed Holub, David Martin, Fred 
Miller, Barry Nelson, John Tedstrom, and Regina Watson. Lucy Field, 
Louise Hope, and Vijaya Shetty typed portions of the manuscript; Chanty 
Pankratz deserves an honorary degree, Doctor of Humane Typing. And I 
thank my children for finally realizing that I will not be able to retire next 
year just because I have written a book. 
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All data analysis presented in this text was camed out on a VAX 11-780 
at the DePauw University Computer Center using an interactive program. 
Inquiries about the program should be addressed to me at DePauw Univer- 
sity, Greencastle, Indiana 46135. 

ALAN PANKUTZ 

Greencasrle. Indiana 
April 1983 
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OVERVIEW 

1.1 Planning and forecasting 

In December 1981 I made plans to drive to Chicago with my family to visit 
relatives. The day before we intended to leave, the weather service issued a 
winter storm warning for that night and the following day. We decided to 
take a train rather than risk driving in a blizzard. As it turned out, there was 
a bad storm; but I was able to sleep and read (though not at the same time) 
on the train instead of developing a tension headache from driving on icy. 
snow-filled roads. 

The weather forecast (highly accurate in this instance) was clearly an 
important factor in our personal planning and decision making. Forecasting 
also plays a crucial role in business, industry, government, and institutional 
planning because many important decisions depend on the anticipated 
future values of certain variables. Let us consider three more examples of 
how forecasting can aid in planning. 

1. A business firm manufactures computerized television games for 
retail sale. If the firm does not manufacture and keep in inventory enough 
units of its product to meet demand, it could lose sales to a competitor and 
thus have lower profits. On the other hand, keeping an inventory is costly. If 
the inventory of finished goods is too large, the firm will have higher 
carrying costs and lower profits than otherwise. This firm can maximize 
profits (other things equal) by properly balancing the benefits of holding 
inventory (avoiding lost sales) against the costs (interest charges). Clearly, 
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4 Overview 

the inventory level the firm should aim for depends partly on the antic- 
ipated amount of future sales. Unfortunately, future sales can rarely be 
known with certainty so decisions about production and inventory levels 
must be based on sales forecasts. 

2. A nonprofit organization provides temporary room and board for 
indigent transients in a large city in the northern part of the United States. 
The number of individuals requesting aid each month follows a complex 
seasonal pattern. Cold weather drives some potentially needy individuals 
out of the city to warmer climates, but it also raises the number of requests 
for aid from those who remain in the city during the winter. Warmer 
weather reverses this pattern. The directors of the organization codd better 
plan their fund-raising efforts and their ordering of food and clothing if 
they had reliable forecasts of the seasonal variation in aid requests. 

3. A specialty foods wholesaler knows from experience that sales are 
usually sufficient to warrant delivery runs into a given geographic region if 
population density exceeds a critical minimum number. Forecasting the 
exact amount of sales is not necessary for this decision. The wholesaler uses 
census information about population density to choose which regions to 
serve. 

Forecasts can be formed in many different ways. The method chosen 
depends on the purpose and importance of the forecasts as well as the costs 
of the alternative forecasting methods. The food wholesaler in the example 
above mmbines his or her experience and judgment with a few minutes 
looking up census data. But the television game manufacturer might employ 
a trained statistician or economist to develop sophisticated mathematical 
and statistical models in an effort to achieve close control over inventory 
levels. 

1.2 What this book is about 

As suggested by its title this book is about forecasting wirh single-series 
(univariate) Box-Jenkins (UBJ) models.* We use the label “Box-Jenkins” 
because George E. P. Box and Gwilym M. Jenkins are the two people most 

‘Although our focus is on forecasting, univariate Box-Jenkins analysis is often useful for 
simply explaining the past behavior of a single data series, for whatever reason one may want 
to do so. For example. if we discover that interest rates have historicaily shown a certain 
seasonal pattern. we may better understand the causes and consequences of past policy 
decisions made by the Open Market Committee of the Federal Reserve System. This informa- 
tion may be valuable to persons having no desire 10 forecast interest rates. 
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responsible for formalizing the procedure used in the type of analysis we 
will study. They have also made important contributions to the underlying 
theory and practice. The basic theory and modeling procedures presented in 
this book are drawn largely from their work [ 1].* 

We use the letters UBJ in this text to stand for “ univariate Box-Jenluns.” 
UBJ models are also often referred to as ARIMA models. The acronym 
ARIMA stands for Auto-Regressive Integrated Moving Average. This 
terminology is explained further in Chapters 3 and 5. We use the labels 
UBJ, ARIMA, and UBJ-ARIMA more or less interchangeably throughout 
the book. 

“Single-series” means that UBJ-ARIMA forecasts are based on@ on past 
ualues of the uariable being forecast. They are not based on any other data 
series. Another word for single-series is “univariate” which means “one 
variable.” We use the terms single-series and univariate interchangeably. 

For our purposes a model is an algebraic statement telling how one thing 
is statistically related to one or more other things. An ARIMA model is an 
algebraic statement telling how observations on a variable are statistically 
related to past observations on the same variable. We will see an example of 
an ARIMA model later in this chapter. 

All statistical forecasting methods are exrrupofariue in nature: they in- 
volve the projection of past patterns or relationships into the future. In the 
case of UBJ-ARIMA forecasting we extrapolate past patterns within a 
single data series into the future. 

The purpose of this book is twofold. The first objective is to explain the 
basic concepts underlying UBJ-ARIMA models. This is done in Part I 
(Chapters 1-1 1). These concepts involve the application of some principles 
of classical probability and statistics to time-sequenced observations in a 
single data series. 

The second objective of this book is to provide enough detailed case 
studies and practical rules to enable you to build UBJ-ARIMA models 
properly and quickly. This is done in Part 11. 

Box and Jenkins propose an entire family of models, called ARIMA 
models, that seems applicable to a wide variety of situations. They have also 
developed a practical procedure for choosing an appropriate ARIMA model 
out of this family of ARIMA models. However, selecting an appropriate 
ARIMA model may not be easy. Many writers suggest that building a 
proper ARIMA model is an art that requires good judgment and a lot of 
experience. The practical rules and case studies in Part I1 are designed to 
help you develop that judgment and to make your experiences with UBJ 
modeling more valuable. 

‘All references are listed by number at the end of the book 
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In this chapter we consider some restrictions on the types of data that 
can be analyzed with the UBJ method. We also summarize the Box-Jenkins 
three-stage procedure for building good ARIMA models. 

In Chapter 2 we present two important tools, the estimated autocorrela- 
tion function and the estimated partial autocorrelation function, used in the 
UBJ method to measure the statistical relationships between observations 
within a single data series. 

In Chapter 3 we go more deeply into the principles underlying UBJ 
analysis. In Chapter 4 we summarize the characteristics of a good ARIMA 
model and present two examples of the three-stage UBJ modeling proce- 
dure. 

The emphasis in Chapter 5 is on special notation used for representing 
ARIMA models and on the intuitive interpretation of these models. 

Chapters 6 through 1 1  contain more detailed discussion of the basic 
concepts behind the UBJ method along with some examples. 

Chapter 12 contains a list of practical rules for building UBJ-ARIMA 
forecasting models. This chapter is followed by 15 case studies. The data in 
the case studies are related largely to economics and business. but modeling 
procedures are the same regardless of the context from which the data are 
drawn. 

1.3 Time-series data 

In ths book we are concerned with forecasting rime-series dara. Time-series 
data refers to observations on a variable that occur in a time sequence. We 
use the symbol z ,  to stand for the numerical value of an observation; the 
subscript r refers to the time period when the observation occurs. Thus a 
sequence of n observations could be represented this way: z , ,  z2,  z 3 , .  . . . 2,. 

As an example of time-series data consider monthly production of 
athletic shoes (in thousands) in the United States for the year 1971.* The 
sequence of observations for that year is as follows: 

7 
' I  t r zt 

1 659 7 520 
2 740 8 641 
3 82 1 9 769 
4 805 10 718 
5 687 11 697 
6 687 12 696 

'Data from various issues of Burmess Sratrsrrcs. U.S. Commerce Department. 
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In this example z ,  is the observation for January 1971, and its numerical 
value is 659; z2 is the observation for February 1971, and its value is 740, 
and so forth. 

It is useful to look at time-series data graphically. Figure 1.1 shows 60 
monthly observations of production of athletic shoes in the United States 
covering the period January 1971 to December 1975. 

The vertical axis scale in Figure 1.1 measures thousands of pairs of shoes 
produced per month. The horizontal axis is a time scale. Each asterisk is an 
observation associated with borh a time period (directly below the asterisk 
on the horizontal axis) and a number of pairs of shoes in thousands (directly 
to the left of the asterisk on the vertical axis). As we read the graph from left 
to right, each asterisk represents an observation which succeeds the previous 
one in time. These data are recorded at discrete intervals: the lines connect- 
ing the asterisks do not represent numerical values, but merely remind us 
that the asterisks occur in a certain time sequence. 

1.4 Single-series (univariate) analysis 

The phrase “time-series analysis” is used in several ways. Sometimes it 
refers to any kind of analysis involving times-series data. At other times it is 
used more narrowly to describe attempts to explain behavior of time-series 
data using only past observations on the variable in question. Earlier we 
referred to this latter activity as single-series or uniuariate analysis, and we 
said that UBJ-ARIMA modeling is a type of univariate analysis. 

In some types of statistical analysis the various observations within a 
single data series are assumed to be statistically independent. Some readers 
might recall that this is a standard assumption about the error term (and 
therefore about observations on the dependent variable) in traditional 
regression analysis. But in UBJ-ARIMA analysis we suppose that the 
time-sequenced observations in a data series (. . . , 2,  - I,, z , ,  I ,  . . . ) may 
be statistically dependent. We use the statistical mncept of correlation to 
measure the relationships between observations within the series. In UBJ 
analysis we want to examine the correlation between z at time t (z , )  and z at 
earlier time periods (z,- I ,  z, - 2, z,- 3 r  . . . ). In the next chapter we show how 
to calculate the correlation between observations within a single time series. 

We can illustrate the idea of UBJ forecasting in a rough way using Figure 
1.2. Suppose we have available 60 time-sequenced observations on a single 
variable. These are represented on the left-hand side of the graph in Figure 
1.2, labeled “Past”. By applying correlation analysis to these 60 observa- 
tions, we build an ARIMA model. This model describes how any given 
observation (z , )  is related to previous observations (z, - ,, z ,  - 2, . . . ). We 
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(Sixty available observations 
on a single rria) 

o Observed value 

x Forecanvalue I 

( F o r s s m  derived from 
the ARIMA modell 

may use this model to forecast future values (for periods 61,62, . . . ) of this 
variable. 

Thus, if the data series being analyzed is athletic shoe production, our 
forecasts of shoe production for period 61 and thereafter are based only on 
the information contained in the available (past) data on shoe production. 
We make no appeal to additional information contained in other variables 
such as Gross National Product, interest rates, average monthly tempera- 
tures, and so forth. Instead we start with the idea that shoe production for 
any given rime period may be statistically related to production in earlier 
periods. We then attempt to find a good way of stating the nature of that 
statistical relationship. 

1.5 When may UBJ models be used? 

Short-tern forecasting. UBJ-ARIMA models are especially suited to 
short-term forecasting. We emphasize short-term forecasting because most 
ARIMA models place heavy emphasis on the recent past rather than the 
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distant past. For example, it is not unusual to see an ARIMA model where 
z, is related explicitly to just the two most recent observations (2,- I and 
z,-~).  On the other hand, ARIMA models showing z, explicitly related to 
observations very far in the past, such as z,- 7o or z,- I I s  are rare indeed. 

Ths emphasis on the recent past means that long-term forecasts from 
ARIMA models are less reliable than short-term forecasts. For example, 
consider an ARIMA model where z, is related explicitly to the most recent 
value z,- I .  Let n be the last period for whch data are avadable. To forecast 
z,, , (one period ahead) we use the most recent value I,. To forecast z,,~ 
(two periods ahead) we want the most recent observation z , ,  I ,  but it  is not 
available; we must use the forecast of z , ,  I in place of the observed value for 
that period. Obviously our forecasts for period n + 2 and beyond are less 
reliable than the forecast for period n + 1 since they are based on less 
reliable information (i.e.. forecasts rather than observations). 

Data types. The UBJ method applies to either discrete data or continu- 
ous data. Discrete data are measured in integers only (e.g., 1, 8, -42), never 
in decimal amounts. Data that can be measured in decimal amounts (e.g., 
44, - 19.87,2.4) are called continuous data. 

For example, counting the number of fielding errors committed by each 
major league baseball team produces discrete data: there is no such thing as 
part of an error. But measuring the distance in meters from home plate 
down the third-base line to the left-field wall in each baseball stadium could 
produce continuous data: it is possible to measure this variable in parts of a 
meter. 

Although the UBJ method can handle either discrete or continuous data, 
it deals only with data measured at equally spaced, discrete rime intervals. 
For example, consider an electronic machine that measures the pressure in a 
tank continuously. A gauge attached to the machine produces a reading at 
every moment in time, and a mechanical pen continuously records the 
results on a moving strip of paper. Such data are not appropriate for the 
UBJ method because they are measured continuously rather than at discrete 
time intervals. However, if tank pressure were recorded once every hour, the 
resulting data series could be analyzed with the UBJ technique. 

Data measured at discrete time intervals can arise in two ways. First, a 
variable may be accumulared through time and the total recorded periodi- 
cally. For example, the dollar value of all sales in a tavern may be totaled at 
the end of each day, while tons of steel output could be accumulated and 
recorded monthly. Second, data of this type can arise when a variable is 
sampled periodically. Recording tank-pressure readings once every hour (as 
discussed in the last paragraph) is an example of such sampling. Or suppose 
an investment analyst records the closing price of a stock at the end of each 
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week. In these last two cases the variable is being sampled at an instant in 
time rather than being accumulated through time. 

UBJ-ARIMA models are particularly useful for forecasting data series 
that contain seusonal (or other periodic) variation, including those with 
shifting seasonal patterns. Figure 1.3 is an example of seasonal data. It  
shows monthly cigar consumption (withdrawals from stock) in the United 
States from 1969 through 1976.' These data repeat a pattern from year to 
year. For instance, October tends to be associated with a high value and 
December with a low value during each year. With seasonal data any gven 
observation is similar to other observations in the same season during 
different years. In the cigar-consumption series, October is similar to other 
Octobers, February is like other Februarys. and so on. We discuss seasonal data 
and models in detail in Chapter 1 1  .' 

Sample size. Building an ARlMA model requires an adequate sample 
size. Box and Jenkins [l, p. 331 suggest that about 50 observations is the 
minimum required number. Some analysts may occasionally use a smaller 
sample size, interpreting the results with caution. A large sample size is 
especially desirable when working with seasonal data. 

Stationary series. The UBJ-ARIMA method applies only to srarionary 
data series. A stationary time series has a mean, variance, and autocorrela- 
tion function that are essentially constant through time.* (We introduce the 
idea of an autocorrelation function in Chapter 2. An autocorrelation func- 
tion is one way of measuring how the observations within a single data 
series are related to each other.) In this section we illustrate the idea of a 
constant mean and variance. 

The stationarity assumption simplifies the theory underlying UBJ models 
and helps ensure that we can get useful estimates of parameters from a 
moderate number of observations. For example, with 50 observations we 
can get a fairly good estimate of the true mean underlying a data series if 
there is only one mean. But if the variable in question has a different mean 
each time period, we could not get useful estimates of each mean since we 
typically have only one observation per time period. 

The mean of a stationary series indicates the overall level of the series. 
We estimate the true mean ( p )  underlying a series with the sample mean 

'Data from various issues of the SURX,V oj Currenr Bwtness, U.S. Commerce Department. 
'The cigar series is analyred in detail in Case I 3. 
'The formal definition of stationanty is more complicated than this. bur the definiiion given 
here is adequate for present purposes. We discuss stationarity more formally in Chapter 3. 
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Figure 13 Example of seasonal data: Cigar consumption. 
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(Z). The sample mean of a time series is calculated just as any ordinary 
arithmetic mean. That is, sum the observations for each time period ( 2 , )  and 
divide by the total number of observations (n): 

. n  
I 

I = -  CZ, 
r - I  

Consider the data in Figure 1.4. By summing the observations and 
dividing by 60 (the number of observations) we find the mean of this time 
series to be 100: 

1 
n 60 
CZ, = -( 102 + 99 + 101 + * - - + 98) - 1  z = -  

= 100 

If a time series is stationary then the mean of any major subset of the 
series does not differ significantly from the mean of any other major subset 
of the series. The series in Figure 1.4 appears to have a mean that is 
constant through time. For example, the first half of the data set (observa- 
tions 1 through 30) Seems to have about the same mean as the second half of 
the data set (observations 31 through 60). We should expect the mean to 
fluctuate somewhat over brief time spans because of sampling variation. In 
later chapters we consider two methods besides visual inspection for de- 
termining if the mean of a series is stationary. 

We use the sample variance s,' of a time series to estimate the true 
underlying variance u:. As usual the variance measures the dispersion of the 
observations around the mean. The sample variance of a time series is 
calculated just as any variance. That is, find the deviation of each observa- 
tion from the mean, square each deviation, sum the deviations, and divide 
by the total number of observations (n): 

1 "  
sf = - c ( z ,  - i )2  

1 - 1  

Clearly, if the z ,  observations gather closely around I, then s,' will be 
relatively small since each individual squared deviation (I, - r)' will be 
small. 

Consider again the data in Figure 1.4. If we insert the previously 
calculated mean (100) into equation (1.2), find the deviation (z, - 2 )  of 



T I  

SIMULATED DATA 
--DIFFERENCING: 0 
--EACH VERTICAL A X I S  INTERVAL = .229167 
LOW = MEAN = HICH 
94 100 105 

:w . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

61 
71 

7' - *\* 
81 +le====__ 
91 
101 * A  

1 1 1  
121 
131 

I 
I - *  

171 
181 
191 -+- 
20 I 
21 I 
221+- 
23 I 
24 I 
251 ,+- 
26 I 
27 I 
28 I 
29 I 
30 I +: 
31 I 
32 I 
33 I 
34 I 
351 
36 I I 
37 I 
38 I 
39 I * = 1 z  
401 
41 I 

I 
*- I 

- 
-+- 
- 

421 
43 I I 
44 I 
451 
461 I 
47 I 
48 I 
49 I 

51 I 
52 I *- I 

501 + - = =  
~ I 

I d 

53 I 
54 I 
551 

a+ 
I 

'I>* 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

Figure 1.4 Example of a stationary time series (simulated data). 

VALUE 
102 
99 
101 
97 
102 
100 
101 
96 
105 
99 
100 
96 
104 
1 0 0  
95 
100 
99 
105 
100 
96 
100 
94 
1 0 0  
103 
100 
99 
102 
98 
100 
99 
103 
98 
1 0 0  
103 
97 
104 
96 
104 
99 
105 
97 
102 
103 
98 
101 
98 
100 
103 
102 
94 
105 
96 
103 
loo 
103 
98 
100 
97 
101 
98 



16 Overview 

each observation from the mean, square and sum these deviations and 
divide by 60, we find that the variance of this series (rounded) is 7.97: 

7 1  
n 

s; = - C ( Z ,  - q2 

1 
60 

= - [( 102 - + (99 - + (101 - + I + (98 - lOO)’] 

1 
60 

= - ( 4 +  1 + 1 + * * .  + 4) 

= 7.97 

If a data series is stationary then the variance of any major subset of the 
series will differ from the variance of any other major subset only by 
chance. The variance of the data in Figure 1.4 does not appear to change 
markedly through time. Of course, we should expect the variance to fluctuate 
somewhat over short time spans just because of sampling error. In Chapter 
7 we refer to a more rigorous method for determining if the variance of a 
series is stationary, but visual inspection is commonly used in practice. 

The stationarity requirement may seem quite restrictive. However, most 
nonstationary series that arise in practice can be transformed into stationary 
series through relatively simple operations. We introduce some useful 
transformations to achieve stationarity in Chapters 2 and 7. These transfor- 
mations are illustrated in detail in the case studies. 

1.6 The Box-Jenkins modeling procedure 

The last two sentences at the end of Section 1.4 are important because they 
summarize the general nature of the UBJ-ARIMA method. Because all 
aspects of UBJ analysis are related in some way to the ideas contained in 
those sentences, we repeat the ideas here for emphasis. (i) The observations 
in a time series may be statistically related to other observations in the same 
series. (ii) Our goal in UBJ analysis is to find a good way of stating that 
statistical relationship. That is, we want to find a good model that describes 
how the observations in a single time series are related to each other. 

An ARIMA model is an algebraic statement showing how a time-series 
variable (z,) is related to its own past values (z,- ,, z,-~,  z,-~, . . . ). We 
discuss the algebraic form of ARIMA models in detail starting in Chapter 3, 
but it will be helpful to look at one example now. Consider the algebraic 
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expression 

z, = C + +lz,-.l + a,  (1.3) 

Equation (1.3) is an example of an ARIMA model. It says that z ,  is related 
to its own immediately past value (2,- C is a constant term. + I  is a fixed 
coefficient whose value determines the relationship between I, and 2,- I .  The 
a ,  term is a probabilistic “shock” element. 

The terms C, qqz,- and a,  are each components of z,. C is a determinis- 
tic (fixed) component, + ] z , - ~  is a probabilistic component since its value 
depends in part on the value of z,- I ,  and a,  is a purely probabilistic 
component. Together C and +lz,-  I represent the predictable part of z, while 
a, is a residual element that cannot be predicted within the ARIMA model. 
However, as discussed in Chapter 3, the a, term is assumed to have certain 
statistical properties. 

We have not yet defined what a “good” model is. In fact a satisfactory 
model has many characteristics as summarized in Chapter 4 and discussed 
in detail in later chapters. For now remember that a good model includes the 
smallest number of estimated parameters needed to adequately fit the patterns 
in the available data. 

Box and Jenkins propose a practical three-stage procedure for finding a 
good model. Our purpose here is to sketch the broad outline of the 
Box-Jenkins modeling strategy; we consider the details in later chapters. 
The three-stage UBJ procedure is summarized schematically in Figure 1.5. 

Stage 1: Identification 

Stage 2: Estimation 

Choose one or more ARIMA 
models 8s candidates 

of the model (s) chosen 

Stage 3: Diagnostic checking modcl (s) for 

F i  1.5 Stages in the Box-Jenkins iterative approach to model building. Adapted 
from Box and Jenkins [ 1, p. 191 by permission. 
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Stage 1: identification. At the identification stage we use two graphical 
devices to measure the correlation between the observations within a single 
data series. These devices are called an estimated uutocorrelurion function 
(abbreviated acf) and an estimated partial autocorrelation function (abbrevia- 
ted pacf). We look at examples of these graphical tools in Chapter 2. The 
estimated acf and pacf measure the statistical relationships within a data 
series in a somewhat crude (statistically inefficient) way. Nevertheless, they 
are helpful in giving us a feel for the patterns in the available data. 

The next step at the identification stage is to summarize the statistical 
relationships within the data series in a more compact way than is done by 
the estimated acf and pacf. Box and Jenkins suggest a whole family of 
algebraic statements (ARIMA models) from which we may choose. Equa- 
tion (1.3) is an example of such a model. We will see more examples of these 
mathematical statements starting in Chapter 3. 

We use the estimated acf and pacf as guides to choosing one or more 
ARIMA models that seem appropriate. The basic idea is this: every 
ARIMA model [such as equation (1.3)] has a theoretical acf and pacf 
associated with it. At the identification stage we compare the estimated acf 
and pacf calculated from the available data with various theoretical acf s and 
pacf s. We then tentatively choose the model whose theoretical acf and pacf 
most closely resemble the estimated acf and pacf of the data series. Note 
that we do not approach the available data with a rigid, preconceived idea 
about which model we will use. Instead, we let the available data “talk to 
us” in the form of an estimated acf and pacf. 

Whichever model we choose at the identification stage, we consider it 
only tentatively: it is only a candidate for the final model. To choose a final 
model we proceed to the next two stages and perhaps return to the 
identification stage if the tentatively considered model proves inadequate. 

Stage 2 estimation. At this stage we get precise estimates of the 
coefficients of the model chosen at the identification stage. For example, if 
we tentatively choose equation (1.3) as our model, we fit this model to the 
available data series to get estimates of t$, and C. This stage provides some 
warning signals about the adequacy of our model. In particular, if the 
estimated coefficients do not satisfy certain mathematical inequality condi- 
tions, that model is rejected. The method for estimating the coefficients in a 
model is a technical matter considered in Chapter 8. The inequality condi- 
tions the estimated coefficients must satisfy are discussed in Chapter 6. 

Stage 3 diagnostic checking. Box and Jenkins suggest some diagnostic 
checks to help determine if an estimated model is statistically adequate. A 
model that fails these diagnostic tests is rejected. Furthermore, the results at 
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this stage may also indicate how a model could be improved. This leads us 
back to the identification stage. We repeat the cycle of identification, 
estimation, and diagnostic checking until we find a good final model. As 
shown in Figure 1.5, once we find a satisfactory model we may use it to 
forecast. 

The iterative nature of the three-stage UBJ modeling procedure is im- 
portant. The estimation and diagnostic-checking stages provide warning 
signals telling us when, and how, a model should be reformulated. We 
continue to reidentify, reestimate, and recheck until we find a model that is 
satisfactory according to several criteria. This iterative application of the 
three stages does not guarantee that we will finally arrive at the best possible 
ARIh4A model, but it stacks the cards in our favor. 

We return to the three stages of UBJ modeling in Chapter 4 where we 
consider two examples. The case studies in Part I1 illustrate the use of the 
UBJ modeling procedure in detail. 

1.7 UBJ models compared with other models 

The UBJ approach has three advantages over many other traditional 
single-series methods. First, the concepts associated with UBJ models are 
derived from a solid foundation of classical probability theory and mathe- 
matical statistics. Many other historically popular univariate methods 
(though not all) are derived in an ad hoc or intuitive way. 

Second, AFUMA models are a family of models, not just a single model. 
Box and Jenkins have developed a strategy that guides the analyst in 
choosing one or more appropriate models out of this larger family of 
models. 

Third, it can be shown that an appropriate ARIMA model produces 
optimal univariate forecasts. That is, no other standard single-series model 
can give forecasts with a smaller mean-squared forecast error (i.e., forecast- 
error variance). * 

In sum, there seems to be general agreement among knowledgeable 
professionals that properly built UBJ models can handle a wider variety of 
situations and provide more accurate short-term forecasts than any other 
standard single-series technique. However, the construction of proper UBJ 
models may require more experience and computer time than some histori- 
cally popular univariate methods. 

'The optimal nature of ARIMA forecasts is discussed in Chapter 10. 
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Single-series (univariate) models differ from multiple-series (multivariate) 
models. The latter involve a sequence of observations on at least one 
variable other than the one being forecast.* Multiple-series models should 
theoretically produce better forecasts than single-series models because 
multiple-series forecasts are based on more information than just the past 
values of the series being forecast. But some analysts argue that UBJ models 
frequently approach or exceed the forecasting accuracy of multiple-series 
models in practice. This seems especially true for short-term forecasts. 
Cooper [4], Naylor et al. [5 ] ,  and Nelson [6] discuss the accuracy of 
UBJ-ARIMA models compared with multiple-series econometric (regres- 
sion and correlation) models.+ 

1. Box and Jenkins propose a family of algebraic models (called 
ARIMA models) from which we select one that seems appropriate for 
forecasting a given data series. 

2. UBJ-ARIMA models are single-series or univariate forecasting mod- 
els: forecasts are based only on past patterns in the series being forecast. 

3. UBJ-ARIMA models are especially suited to short-term forecasting 
and to the forecasting of series containing seasonal variation, including 
shifting seasonal patterns. 

4. UBJ-ARIMA models are restricted to data available at discrete, 
equally spaced time intervals. 

5. Construction of an adequate ARIMA model requires a minimum of 
about 50 observations. A large sample size is especially desirable when 
seasonal variation is present. 

6. The UBJ method applies only to stationary time series. 
7. A stationary series has a mean, variance, and autocorrelation func- 

tion that are essentially constant over time. 
8. Although many nonstationary series arise in practice, most can be 

transformed into stationary series. 
9. In UBJ-ARIMA analysis, the observations in a single time series are 

assumed to be (potentially) statistically dependent- that is, sequentially or 
serially correlated. 

'Box and Jenkins [ I ,  Chapten 10 and 1 I ]  discuss a certain type of multivariate ARIMA model 
which they call a transfer function. For more recent developments in multivariate time-series 
analysis, xe Jenkins and Alavi [2] and Tiao and Box [3]. 
'In Appendix IOA of Chapter 10 we discuss how ARIMA models may be w d  to complement 
econometric models. 
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10. The goal of UBJ analysis is to find an ARIMA model with the 
smallest number of estimated parameters needed to fit adequately the 
patterns in the available data. 

11. The UBJ method for finding a good ARIMA model involves three 
steps: identification, estimation, and diagnostic checking. 

12. At the identification stage we tentatively select one or more 
ARIMA models by looking at two graphs derived from the available data. 
These graphs are called an estimated autocorrelation function (acf) and an 
estimated partial autocorrelation function (pacf). We choose a model whose 
associated theoretical acf and pacf look like the estimated acf and pacf 
calculated from the data. 

13. At the estimation stage we obtain estimates of the parameters for 
the ARIMA model tentatively chosen at the identification stage. 

14. At the diagnostic-checking stage we perform tests to see if the 
estimated model is statistically adequate. If it is not satisfactory we return to 
the identification stage to tentatively select another model. 

15. A properly constructed ARIMA model produces optimal univariate 
forecasts: no other standard single-series technique gives forecasts with a 
smaller forecast-error variance. 

Questions and Problems 

1.1 Consider the following sequence of total quarterly sales at a drug 
store: 

Year Quarter Sales 

1963 1 
2 
3 
4 

1964 1 
2 
3 
4 

1965 1 
2 
3 
4 

$12,800 
13,400 
11,200 
14,700 
13,000 
9,400 

12,100 
15,100 
11,700 
14,000 
10.900 
14,900 
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(a) Do these observations occur at equally spaced, discrete time 
intervals? 
(b) Did these observations result from daily sales being accumulated 
and recorded periodically, or sampled and recorded periodically? 
(c) Could these observations be used to construct an ARIMA model? 

(d) Plot these observations on a graph with time on the horizontal 
axis and sales on the vertical axis. 
(e) Does there appear to be a seasonal pattern in this data series? If 
so, would this fact disqualify the use of an ARIMA model to forecast 
future sales? 
(f) Let 2,. rZ, zj, .  . . , z ,  stand for the sequence of observations above. 
What is the numerical value of n? Of r,? Of r,? Of r9? 

1.2 What are the restrictions on the type of time-series data to which 
UBJ-ARIMA analysis may be applied? 

1.3 What is meant by a “stationary” time series? 

1.4 Summarize the UBJ three-stage modeling procedure. 

1.5 What kind of information is contained in an estimated acf? 

1.6 What is the difference between a univariate time-series forecasting 
model and a multivariate time-series forecasting model? 

1.7 What advantages do UBJ-ARIMA models have compared with other 
traditional univariate forecasting models? What disadvantages? 

Explain. 

1.8 Consider the following time series: 

t 2, 

+ 1  
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 

106 
107 
98 
98 

101 
99 

1 02 
104 
97 

103 
I07 
105 

t t, 

13 106 
14 98 
15 99 
16 96 
17 95 
18 99 
19 100 
20 102 
21 108 
22 106 
23 104 
24 98 
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(a) Does this series appear to be stationary? (It may help if you plot 
the series on a graph.) 
(b) Does this series contain enough observations for you to build a 
UBJ-ARIMA model from it? 
(c) Calculate the mean and variance for this series. 



3 
INTRODUCTION TO 

OF A SINGLE DATA SERIES 
BOX- JENKINS ANALYSIS 

In the last chapter we referred to the estimated autocorrelation function 
(acf) and estimated partial autocorrelation function (pacf). They are used in 
UBJ analysis at the identification stage to summarize the statistical patterns 
within a single time series. Our chief task in this chapter is to learn how an 
estimated acf and pacf are constructed. In Chapter 4 we show how an 
estimated acf and pacf are used in building an ARIMA model. 

Before examining the idea of the estimated acf and pacf we briefly 
consider two other topics. First, we examine a transformation, called 
differencing, that is frequently applied to time-series data to induce a 
stationary mean. Second, we look at an operation, called calculation of 
deviations from the mean, used to simplify the calculations performed in 
UBJ-ARIMA analysis. 

2.1 Differencing 

We pointed out in the last chapter that UBJ-ARIMA analysis is restricted 
to stationary time series. Fortunately, many nonstationary series can be 
transformed into stationary ones. Thus the UBJ method can be used to 
analyze even nonstationary data. We discuss nonstationary series in detail 
in Chapter 7. In this section we introduce a common transformation called 

24 
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differencing. Differencing is a relatively simple operation that involves 
calculating successiue changes in the values of a data series. 

Differencing is used when the mean of a series is changng over time. 
Figure 2.1 shows an example of such a series. (These 52 observations are the 
weekly closing price of AT & T common stock for 1979.* We analyze them 
in detail in Part 11, Case 6.) Of course, it is possible to calculate a single 
mean for this series. It is 57.7957, shown in Figure 2.1 as the horizontal line 
running through the center of the graph. However. this single number is 
misleading because major subsets of the series appear to have means 
different from other major subsets. For example, the first half of the data 
set lies substantially above the second half. The series is nonstationary 
because its mean is not constant through time. 

To difference a data series, define a new variable ( w , )  which is the change 
in z,, that is,+ 

w , = z , - z , - , ,  t = 2 , 3  ...., n (2.1) 

Using the data in Figure 2.1 we get the following results when we difference 
the observations: 

w2 = z2 - Z, i= 61.625 - 61 =: 0.625 

w3 = z3 - z2 = 61 - 61.625 = -0.625 

These results are plotted in Figure 2.2. The differencing procedure seems to 
have been successful: the differenced series in Figure 2.2 appears to have a 
constant mean. Note that we lost one observation: there is no zo available to 
subtract from z ,  so the differenced series has only 51 observations. 

Series w, is called the firsr differences of z,. If the first differences do not 
have a constant mean, we redefine w, as the first differences of the first 
differences: 

'Data from The Wall Srree; Journal. 
'Differencing for a series with nonstationary seasonal variation is onIy slightly more com- 
plicated. We discuss seasonal differencing in Chapter 1 I .  
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Figure 2.1 
prices. AT& T common stock. 1979. 

Example of a time series with a nonstationary mean: Weekly closing 



AT&T STOCK PRICE 
--DIFFERENCING: 1 
--EACH VERTICAL AXIS INTERVAL = . 106771 
LOW = MEAN = HIGH = 
-2. 125 -. 171569 3 

TIHE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  VALUE 
21 
31 
41 
51 
61 *<I 
71 I==-* 
81 *- I 
91 
101 

121 .*-I 
\ 

*+* 
1 1 1  I / +  

131 
141 
151 
161 
171 
181 
191 
20 I 
21 I 
22 I 
23 I 
24 I 
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27 I 
28 I 
29 I 
30 I 
31 I 
32 I 
33 I 
34 I 
35 I 
36 I 
37 I 
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39 I 
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41 I*- I 
42 I 
43 I 
44 I 
451 

47 I 
48 I 
49 I 
50 I 
51 I 
52 I 
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46 I I '*, 
+, 

-:-• 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

- 375 
5 

-2 
- 375 

125 
5 

- 5  
- 625 
875 

- 25 
-2 - 875 
0 
- 5  
25 - 75 

- 625 
625 

1 125 
- 875 
- 125 
125 - 875 
125 
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375 
875 

- 25 

- 25 
-1 5 
- 375 
0 

-1 125 - 125 
125 

-2 125 - 625 
5 
625 

- 125 
125 
25 
25 

- 875 
-1 25 
375 

0 

Figure 2.2 First differences of the AT & T stock price series. 
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Series w, is now called the second differences of z, because it results from 
differencing I, twice. Usually, first differencing is sufficient to bring about a 
stationary mean. Calculating the second differences for the series in Figure 
2.1 does not seem necessary because the first differences in Figure 2.2 
appear to have a constant mean. However, we show some calculations for 
purposes of illustration. Since the second differences are the first differences 
of the first differences, we merely apply differencing to the data in Figure 
2.2: 

= (-0.625) - (0.625) = -j .25 

w4 = ( z4 - 2,) - ( z3 - z2) 

= (3) - ( -0.625) = 3.625 

w5 = (3 - 24) - (z4 - 3) 
= (-0.25) - (3) = -3.25 

= (0.375) - ( -  1.25) = 1.625 

When differencing is needed to induce a stationary mean, we construct a 
new series wI that is different from the original series z,. We then build an 
AFUMA model for the stationary series w,. However, usually we are 
interested in forecasting the original series z ,  so we want an ARIMA model 
for that series. Fortunately, this does not present a serious problem since w, 
and I, are linked by definition (2.1) in the case of first differencing or by 
definition (2.2) in the case of second differencing. In Chapter 7 and in the 
case studies (Part 11) we will see exactly how an ARIMA model for w, 
implies an ARIMA model for z,. 

A final point about differencing: a series whch has been made stationary 
by appropriate differencing frequently has a mean of virtually zero. For 
example, the nonstationary series in Figure 2.1 has a mean of about 57.8. 
But the stationary series in Figure 2.2 achieved by differencing the data in 
Figure 2.1 has a mean of about -0.2, which is obviously much closer to 
zero than 57.8. This result is especially common for data in the social and 
behavioral sciences. 
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2.2 Deviations from the mean 

When the mean of a time series is stationary (constant through time) we 
may treat the mean as a deterministic (meaning fiied, or nonstochastic) 
component of the series. To focus on the stochastic behavior of the series we 
express the data in deviations from the mean. That is, define a new time 
series 2, as each z ,  minus P, where the sample mean f is an estimate of the 
parameter p: 

z ,  = z ,  - i 

The new series ( I , )  will behave exactly as the old series (2,) except that the 
mean of the I ,  series will equal precisely zero rather than i. Since we know i 
we can always add it back into the f, series after we have finished our 
analysis to return to the overall level of the original series. 

Consider the stationary simulated series in Figure 1.4. We have already 
found the mean of that series to be 100. Therefore the 2, values for this 
series are calculated as follows: 

- 
( 2 . 3 )  

2, = I, - P = 102 - 100 = 2 

f 2 = z 2 - f =  9 9 - l o o =  - 1  

I ,  = z j  - P = 101 - 100 = 1 

I , = t m - P = 9 8 - 1 0 0 = - 2  

Figure 2.3 shows the new series 2,. It is indistinguishable from the series 
z ,  in Figure 1.4 except that it has a mean of zero. In fact, the two series z, 
and Z, have all the same statistical properties except for their means. For 
example, the variances of the two series are identical (both are 7.97). 

2.3 Two analytical tools: the estimated autocorrelation 
function (acf) and estimated partial autocorrelation 
function (pacf) 

Several times we have referred to the estimated autocorrelation function 
(acf) and the estimated partial autocorrelation function (pacf). These tools 
are very important at the identification stage of the UBJ method. They 
measure the statistical relationship between observations in a single data 
series. In this section we discuss how estimated acfs and pacfs are con- 
structed from a sample. 



SIMULATED SERIES 
--DIFFERENCING: 0 
--EACH VERTICAL A X I S  INTERVAL = ,229167 
Lou = MEAN = HIGH = 
-6 0 5 

-1 
1 

-3 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

Figure 2 3  The data from Figure 1.4 expressed in deviations from the mean. 
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In this chapter we discuss the estimated acf and pacf primarily as tools 
for summarizing and describing the patterns within a given data series. But 
constructing an estimated acf and pacf is not merely an exercise in descrip- 
tive statistics. As emphasized in Chapter 3, we use the estimated acf and 
pacf for statistical inference. That is, we use them to infer the structure of 
the true, underlying mechanism that has given rise to the available data. 

We use the data displayed in Figures 1.4 and 2.3 to illustrate the 
construction of an estimated acf and pacf. Remember that the data in 
Figure 2.3 are the data in Figure 1.4 expressed in deviations from the mean; 
these two series have identical statistical properties (except for their means), 
including the same acf and pacf. 

Graphical analysis. The estimated acf and pacf of a data series are most 
useful when presented in their graphical forms as well as their numerical 
forms. To help motivate the ideas behind autocorrelation and partial 
autocorrelation analysis we first consider some simpler forms of graphical 
analysis. 

One possible type of graphical analysis is merely to look at the observa- 
tions in Figure 2.3 (or Figure 1.4) in the hope of seeing a pattern. But this is 
not a very promising approach. Some data series show very clear and 
obvious patterns to the eye, but many do not. Even if a series does display 
an obvious visual pattern, estimating its exact nature simply by looking at a 
plot of the data would be difficult and would give quite subjective results. 

A more promising type of graphcal analysis is to plot various 2, + values 
(for k = 1,2, . . . ) against the previous observations if.* After all, in uni- 
variate analysis we are starting with the idea that the observations from 
different time periods may be related to each other. Perhaps we could see 
these relationshps if we plot each observation against the corre- 
sponding observation that occurs k periods earlier (2 , ) .  

It will be helpful if we first arrange the data in columns to create ordered 
pairs: each observation is paired with the corresponding observation k 
periods earlier. Then we may plot the ordered pairs on a twespace graph. 

For example, letting k = 1 we can pair if+ I with if by first writing all the 
f, values in a column. Then create another column, if+ ,, by shfting every 
element in column I, up one space. The results of doing this for a portion of 
the data in Figure 2.3 are shown in Table 2.1. The arrows indicate the 
shifting of the data. 

'The reader should not be confused by the arbitrary use of a positive sign on the subscript k. 
We may refer to the relationship between I ,  and the value that occurs k periods earlier. : , - k ,  or 
to the relationship beween I , ,  and the value that occurs k periods earlier, i,. In both caxs we 
are deahng with the relationship between two observations separated by k periods: only the 
notation is different. 
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For t = 1 we have paired 2, = - 1 (in column 3 of Table 2.1) with the 
observation one period earlier, f, - 2 (in column 2). For t = 2 we have 
paired 2, = 1 (in column 3) with the observation one period earlier, f, = - 1 
(in column 2), and so forth. Note that we have 59 ordered pairs: there is no 
261 available to pair with 2@. 

Next, we plot each f l+ l  value in column 3 against its paired f, value in 
column 2. This should allow us to see how the observations 2,+ I are related, 
on average, to the immediately previous observations 2,. The ordered pairs 
(2,. TI+ I) are plotted in Figure 2.4. 

There seems to be an inverse relationship between these ordered pairs, 
that is, as 2, increases (moving to the right along the horizontal axis) there is 
a tendency for the next observation (Z,+ ,) to decrease (moving downward 
on the vertical axis). 

Now suppose we want to see the relationship between observations 
separated by two time periods. Letting k = 2 we want to relate observations 
f,+, to observations two periods earlier, f,. We do this by again writing 
down the original observations in a column labeled 2,. But now we create a 
new column 2, + by shifting all the observations in 2, up two spaces. Using 
a portion of the data in Figure 2.3, the results are shown in Table 2.2. A w n  
the arrows show the shifting procedure. 

This time we have 58 ordered pairs: there is no ia2 to pair with fm and no 
f61 to pair with ZS9. In general, with a sample size of n we will have n - k 
ordered pairs when we relate observations separated by k time periods. In 
this instance n = 60 and k = 2, so we have 60 - 2 = 58 ordered pairs. 

By plotting each f,+, observation from column 3 in Table 2.2 against its 
paired 2, value in column 2, we can see how observations in this series are 

I 4 f,+ I 

2 / - :  

-;/ 

1 
3 2 - i s - ;  
4 
5 

59 
60 

%.a. = not available. 
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0 0  
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0 0 0  0 

0 . 0 0  

0 . 0  0 0  0 . 0 0  

0 0 0 0  

0 . 0  

0 0  0 0 

0 0 0  

0 

0 .  

Figure 2.4 A plot of ordered pairs ( 2 , .  f,, ,) using the data from columns 2 and 3 
in Table 2. I .  

Table 2.2 Ordered pairs (i,, f, + 2 )  for the data 
in Figure 23  

t f, f , + 2  

58 -3 
59 
60 -2  n.a. 

~~~ 

"n.a. = not available. 
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related to observations two periods earlier. Figure 2.5 is a plot of the 
ordered pairs ( f l ,  f f + 2 ) .  On average, there appears to be a positive relation- 
ship between them. That is, higher Zr values (moving to the right on the 
horizontal axis) seem to be associated with higher values two periods later, 
f I i 2  (moving up on the vertical axis). 

We could now let k = 3 and plot the ordered pairs ( f l ,  Z,,j). Then we 
could let k = 4 and plot the pairs ( Z f ,  Zl+4). and so forth. The practical 
upper limit on k is determined by the number of observations in the series. 
Remember that as k increases by one the number of ordered pairs decreases 
by one. For example, with n = 60 and k = 40 we have only n - k = 60 - 
40 = 20 pairs to plot. This number is too small to provide a useful guide to 
the relationship between f f  and Zf+a.  

Estimated autocorrelation functions. Rather than plotting more ordered 
pairs, return to the two diagrams we have already produced, Figures 2.4 and 
2.5. Visual analysis of diagrams like these might give a rough idea about 
how the observations in a time series are related to each other. However, 
there are two other graphical tools that summarize many relationships like 
those in Figures 2.4 and 2.5. These tools are called an estimated aurocorrelu- 

Figure 2.5 A plot of ordered pairs (T , ,  i,+?) using the data from columns 2 and 3 
in Table 2.2. 
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tion function (acf) and an estimated partial autocorrelation function (pacf). In 
this section we examine the estimated acf. 

The idea in autocorrelation analysis is to calculate a correlation coeffi- 
cient for each set of ordered pairs (Z,, Z,, k ) .  Because we are finding the 
correlation between sets of numbers that are part of the same series, the 
resulting statistic is called an autocorrelation coefficient (auto means self). 
We use the symbol rk for the estimated autocorrelation coefficient of 
observations separated by k time periods withn a time series. (Keep in 
mind that the rk's are statistics; they are calculated from a sample and they 
provide estimates of the true, underlying autocorrelation coefficients desig- 
nated pk . )  After calculating estimated autocorrelation coefficients, we plot 
them graphically in an estimated autocorrelation function (acf), a diagram 
that looks something like a histogram. We will see an example of an 
estimated acf shortly. 

An estimated autocorrelation coefficient ( rk ) is not fundamentally differ- 
ent from any other sample correlation coefficient. It measures the direction 
and strength of the statistical relationship between ordered pairs of observa- 
tions on two random variables. It is a dimensionless number that can take 
on values only between - 1 and + 1. A value of - 1 means perfect negative 
correlation and a value of + 1 means perfect positive correlation. If rk = 0 
then z, ~ and z, are not correlated at all in the available data. (Of course, 
sampling error could cause an r& value to be nonzero even though the 
corresponding parameter p k  is zero. We deal with this matter further in 
Chapter 3.) Figure 2.6 illustrates various degrees of autocorrelation that 
might arise in a given sample. 

The standard formula for calculating autocorrelation coefficients is* 

n - k  

r - l  rk = n 

c ( 2 ,  - 92 
, = I  

(2.4) 

Equation (2.4) can be written more compactly since 2, is defined as z, - Z, 
Substitute accordingly and (2.4) becomes 

n - k  

I -  I 

'There are other ways of calculating rk .  Jenkins and Watts [7] discuss and evaluate some of the 
alternatives. Equation (2.4) seems to be most satisfactory and is commonly used. 
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Apply (2.5) to the ordered pairs in Table 2.1 to find rl as follows: 

2,2 ,  + f 2 2 ,  + * - + 2&, 
2 

r l  = 
( r$  + ( f 2 y  + * .  - + ( 2 , )  

- (2)(-1) + ( - I ) ( ] )  + - * -  + ( I ) ( -2)  - 
( 2 y  + ( -  + . * * + ( -2)2 

= -0.51 

Likewise, r2 for the same data set is calculated by applying (2.5) to the 

r&= 0 

- 

0 O 0  

Figure 2.6 Examples of different degrees of autocorrelation that could arise in a 
sample: ( a )  strong positive autocorrelation; ( b )  strong negative autocorrelation; (c) 
moderately strong positive autocorrelation; ( d )  zero autocorrelation. 
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ordered pairs in Table 2.2 in this manner: 

2,2, + i2i, + * . *  + 2S82W 
r2 = 

( z,)2 + ( f2)2 + . . * + ( z&J2 

- (2)( 1) + ( - 1 )( - 3) + * * - + ( - 3)( - 2) - 
(2)’+ ( -1y + * - .  + (-2)2 

= 0.22 

Other r, are calculated in a similar fashion. It is more convenient to use a 
computer to calculate autocorrelation coefficients than to find them by 
hand. Below we apply a computer program to the data in Figure 1.4. The 
program first finds the mean of the series (i). It then finds the deviations 
( 2 , )  of each observation from the mean as shown in Figure 2.3. The r, are 
then calculated by applying equation (2.5) to the 2, values in Figure 2.3. 

Box and Jenkins [ I ,  p. 331 suggest that the maximum number of useful 
estimated autocorrelations is roughly n/4, where n is the number of 
observations. In our example n = 60, so n/4 = 15. Using a computer to 
calculate r, (for k = 1,2,. . . , 15) for the data in Figure 1.4 gives the 
estimated acf shown in Figure 2.7. 

The third column in Figure 2.7 (LAG) is k, the number of time periods 
separating the ordered pairs used to calculate each r,. The first column 

+ + + + + + + + + + + + + AUTOCORRELATIONS + + + + + + + + + + + + + 
+ FOR DATA SERIES. SIWLATED SERIES + 
+ DIFFERENCING: 0 PEAN = 100 + 
+ DATA COUNT = LO STD DEV = 2.82253 + 

COEF 1-VAL LA6 0 
-0 .51  -3 .94  1 <<<<<<<<<c<<<<<<<o 3 

0 .22  1 .41  2 c 0>;>>1>> 3 
-0.25 -1. 50 3 c CCC<CCC<O 3 

0. 16 0. 92 4 c O>>>>> 3 
-0. 09 -0. 50 5 c <<<O 3 
0 .09  0.  53 6 c O>>> 3 

-0. 02 -0. 13 7 
0. 05 0. 31 8 
0 . 0 5  0 .2& 9 

-0. 12 -0.71 10 
0 .10  0.57 11 

-0.11 -0.44 12 
0. 16 0 88 13 

-0.21 -1. 14 14 
0 . 2 2  1. 19 15 

CHl-SGUARED* = 

c CO 3 
t O>> 3 
c O?> 3 
c <<<CO 3 
c O>>> 3 
c <<:co 3 
c O>>>>> 3 
c c<<c<c<o 3 
c o>>>>>>> 3 

38. 83 FOR DF = 15 

Figure 2.7 Estimated autocorrelation function (acf) calculated from the data in 
Figure 1.4. 
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(COEF) is the set of r,, the estimated autocorrelation coefficients calculated 
by applying (2.5) to the data in Figure 1.4. Note that the first two 
autocorrelation coefficients (-0.51, 0.22) are identical to the ones we found 
by hand. The second column (T-VAL) measures the statistical significance 
of each r,. (We discuss the topic of statistical significance in Chapter 3. For 
now note that a large absolute t-value indicates that the corresponding rk is 
significantly different from zero, suggesting that the parameter p k  is non- 
zero.) The diagram next to the three columns of numbers in Figure 2.7 is a 
plot of the various rk values. All positive rk values are represented to the 
right of the zero line and all negative rk values are shown to the left of the 
zero line. The length of each spike (a or m) is proportional to the value 
of the corresponding r,. The square brackets [ ] show how large each rk 
would have to be to have an absolute ?-value of approximately 2.0. Any r, 
whose spike extends past the square brackets has an absolute r-value larger 
than 2.0. 

Looking at the pattern in an estimated acf is a key element at the 
identification stage of the UBJ method. The analyst must make a judgment 
about what ARIMA model@) might fit the data by examining the patterns 
in the estimated acf. Thus, there is an element of subjectivity in the UBJ 
method. However, the acf offers great advantages over other types of 
graphical analysis. It summarizes in a single graph information about many 
different sets of ordered pairs (Z,, Z,,,), whereas a graph like Figure 2.4 
gives information about only one set of ordered pairs. Furthermore, the acf 
provides mathematically objective measures of the relationship between 
each set of ordered pairs. In addition, we can perform statistical tests of 
significance using the acf and pacf that we cannot perform using visual 
analysis of plots of ordered pairs. 

Before you read further be sure you understand (i) what estimated 
autocorrelations ( r , )  measure, (ii) how the r, are calculated, and (iii) how 
the rk are represented graphically in an estimated acf diagram. 

Estimated partial autocorrelation functions.* An estimated partial auto- 
correlation function (pacf) is broadly similar to an estimated acf. An 
estimated pacf is also a graphical representation of the statistical relation- 
ship between sets of ordered pairs (I,, I,+,) drawn from a single time series. 
The estimated pacf is used as a guide, along with the estimated acf, in 
choosing one or more ARIMA models that might fit the available data. 

*In this section we assume the reader is familiar with the rudiments of multiple regression 
analysis. Those wanting to review the fundamentals may consult an introductory statistics text 
such as Mansfield [S, Chapters 1 1  and 121 or an intermediate text such as Womacotr and 
Wonnacott 19. Chapter 31. 
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The idea of partial autocorrelation analysis is that we want to measure 
how i, and i,+& are related, but with the effects of the intervening i’s 
accounredfor. For example, we want to show the relationship between the 
ordered pairs (i,, ,?,+2) taking into account the effect of I,+ I on ,?r1+2. Next, 
we want the relationship between the pairs (i,, Zr+3) ,  but with the effects of 
both I,, and i,+2 on ,?c+3 accounted for, and so forth, each time adjusting 
for the impact of any z ’s that fall between the ordered pairs in question. 
The estimated partial autocorrelation coefficient measuring this relationship 
between Z, and Z l + &  is designated ikk. (Recall that i,, is a statistic. It  is 
calculated from sample information and provides an estimate of the true 
partial autocorrelation coefficient &) 

In constructing an estimated acf we examine ordered pairs of i’s ,  but we 
do not account for the effects of the intervening 2’s. Thus in calculating 
estimated autocorrelation coefficients, we deal with only two sets of vari- 
ables at a time, so autocorrelation analysis is easy to picture graphically. To 
do so we just look at a two-dimensional scatter diagram (e.g., Figure 2.4 or 
2.5) and think of an autocorrelation coefficient as measuring how closely the 
matched pairs are related to each other. 

By comparison, in partial autocorrelation analysis we must deal with 
more than two variables at once. That is, we have to contend not only with 
the ordered pairs (Z,, i,+&), but also with all the 2’s that fall between these 
matched pairs ( 2 ,  + I , i,+ 2 , .  . . , ,?,+ - I ). Thus visualizing partial autocorrela- 
tions on a two-dimensional graph is not possible. [The only exception is the 
first partial Since there are no 5’s falling between 2, and i,, , we can use 
a scatter diagram of the ordered pairs (Z,, I t + , )  to picture the idea of the 
first partial autocorrelation coefficient. In fact, ill = rl . ]  

The most accurate way of calculating partial autocorrelation coefficients 
is to estimate a series of least-squares regression coefficients. An estimated 
regression coefficient is interpreted as a measure of the relationship between 
the “dependent” variable and the “independent” variable in question, with 
effects of other variables in rhe equation taken into account. That is exactly the 
definition of a partial autocorrelation coefficient: i,, measures the relation- 
ship between ,?, and ,?,+& while the effects of the 2’s falhng between these 
ordered pairs are accounted for. 

Let us show how estimated partial autocorrelation coefficients are found 
by applying regression techniques to the data in Figure 2.3. First consider 
the true regression relationshp between Z,+ I and the preceding value 2,: 

where +, I is the partial autocorrelation coefficient to be estimated for k = 1. 
In equation (2.6), Z r + l  and Z, are all the possible ordered pairs of 

observations whose statistical relationship we want to measure. is the 
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true partial autocorrelation coefficient to be estimated by the regression. 
u,+ is the error term representing all the things affecting f,+ I that do not 
appear elsewhere in the regression equation. Since there are no other 2's 
between Zr and z',+ I ,  we can visualize an estimate of equation (24) as an 
estimated regression line running through the scatter of data in Figure 2.4. 
Using a least-squares regression computer program to estimate I, we find 
ill = -0.513. 

Now we want to find G2*. This entails estimating the multiple regression 

f f + 2  = +21f1+1 + + 2 2 f ,  + u r + 2  (2.7) 

where h2 is the partial autocorrelation coefficient to be estimated for k = 2. 
Note that 'pu is estimated with f f  + I included in the equation. Therefore, & 
estimates the relationship between f, and f , + 2  with f r + l  accounted for. 
Estimating regression (2.7) with the data in Figure 2.3, we find & = - 0.047. 

Next, we estimate the following regression to find 433: 
' f + 3  = @ 3 1 f f + 2  + (P32'1+1 + +33't + ' 1 + 3  (2.8) 

where +33 is the partial autocorrelation coefficient to be estimated for k = 3. 
By including i,+ and i,+2 in this regression we are accounting for their 
effects on Z r + 3  while estimating +33. Therefore, &3 is the estimated partial 
autocorrelation for k = 3. Using the data in Figure 2.3 gives this estimate of 

There is a slightly less accurate though computationally easier way to 
estimate the +kk coefficients. It involves using the previously calculated 
autocorrelation coefficients ( r k ) .  As long as a data series is stationary the 
following set of recursive equations gives fairly good estimates of the partial 
autocorrelations: * 

+33: i3, = -0.221. 

*This method of estimating partial autocorrelations is based on a set of equations kno-wn as the 
Yule-Walker equations. The method for solving the Yule-Walker equations for the Qak values 
embodied in (2.9) is due to Durbin 1101. 
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Illustrating how equations (2.9) can be used to calculate partial autocor- 
relations by hand is cumbersome and we will not do that here. But using a 
computer program to apply these equations to the estimated autocorrela- 
tions in Figure 2.7 (derived from the data in Figure 2.3) gives the estimated 
partial autocorrelation function (pacf) shown in Figure 2.8. 

The column labeled LAG is the sequence of values for k = 1,2,3, . . . 
indicating which set of ordered pairs (Z,, Z,,,) we are examining. Column 
COEF is the set of estimated partial autocorrelation coefficients (&,) for 
each set of ordered pairs (Z,, Z , + k )  calculated using equation (2.9). The 
column labeled T-VAL shows the t-statistic associated with each 4,,. We 
discuss these r-statistics in Chapter 3. For now, remember that any 6,, with 
an absolute r-value larger than 2.0 is considered to be significantly different 
from zero, suggesting that the parameter +,, is nonzero. 

The graph toward the right-hand side of the pacf is a visual representa- 
tion of the i,, coefficients. Positive ikk coefficients are represented to the 
right of the zero line and negative i,, coefficients are shown to the left of 
the zero line. Each graphical spike (e or x g )  is proportional to the value 
of the corresponding i,, coefficient. Any i,, with a spike extending past 
the square brackets [ ] has an absolute r-value greater than 2.0. Note that the 
first three estimated partial autocorrelations in Figure 2.8 (-0.51. -0.05, 
- 0.20) are very close to the estimates we obtained earlier for the same data 
using regression analysis ( - 0.5 13, - 0.047, - 0.22 1). 

We make extensive use of estimated pacfs in applying the UBJ method. 
For now be sure you understand (i) how to interpret estimated partial 
autocorrelation coefficients, (ii) how estimated partial autocorrelation coef- 
ficients can be calculated, (iii) how partial autocorrelation coefficients differ 

+ + + + + + + + + + + PARTIAL AUTOCORRELATIONS + + + + + + + + + + + 
COEF 1-VAL LAC 0 

-0 .51 -3.94 1 <<<<<<<<<c<<<<<<<o 3 
-0 .05 -0. 36 2 c <<O 3 
-0.20 -1.59 3 c <<<<<<<o 3 
-0.w -0.50 4 c <<0 3 
-0.03 -0.21 5 c (0 3 
0.02 0. 17 6 c 0, 3 
0.07 0. 51 7 c 0>> 3 
0.09 0.73 B c o>>> 3 
0. 18 1.41 9 c o>>>>>> 3 
-0.03 -0. 19 10 c <O 3 
0 . 0 s  0 .37  11 c 0>> 3 

-0.04 -0.31 12 c <O 3 
0 . 0 5  0 . 4 1  13 c 0>> 3 

-0. 14 -1.07 14 c <<<<<o 3 
0. 03 0. 24 I5 c O> 3 

Figure 28 Estimated partial autocorrelation function (pacf) calculated from the 
data in Figure 1.4. 
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from autocorrelation coefficients, and (iv) how estimated partial autocorre- 
lations are represented graphically in an estimated pacf. 

Stationarity and estimated autocorrelation functions. In Chapter 1 we 
pointed out that a data series had to be rendered stationary (have a mean, 
variance, and acf that are essentially constant through time) before the UBJ 
method could be applied. It happens that the estimated acf is useful in 
deciding whether the mean of a series is stationary. If the mean is stationary 
the estimated acf drops offrupidy to zero. If the mean is not stationary the 
estimated acf drops off slowly toward zero. 

Consider the estimated acf in Figure 2.7. It was calculated using the data 
series in Figure 1.4 which appears to have a stationary (constant) mean. 
This conclusion is reinforced by the appearance of the estimated acf in 
Figure 2.7 since it drops off to zero quite rapidly. That is, the estimated 
autocorrelations quickly become insignificantly different from zero. Only 
one acf spike (at lag 1) extends past the square brackets and only the first 
three spikes have absolute r-values greater than 1.2. 

In contrast, consider the estimated acf in Figure 2.9. It was calculated 
using the AT&T stock price data in Figure 2.1. The mean of that series 
appears to be shifting through time. We therefore expect the estimated acf 
for this series to drop slowly toward zero. This is what we find. The first 
four autocorrelations in Figure 2.9 have absolute r-values greater than 2.0, 
and the first six have absolute t-values exceeding 1.6. This is fairly typical 
for a data series with a nonstationary mean. If estimated autocorrelations 

+ + + + + + + + + + + + + AUTOCORRELATIONS + + + + + + + + + + + + + 
+ FOR DATA SERIES: ATbT STOCK PRICE + 
+ DIFFERENCINC: 0 =AN = 57.7957 + 
+ DATA COUNT = 52 STD DEV = 3.4136 + 

COEF T-VAL LAC 0 
0.93 6.74 1 f 0>>>>>3>>>>>>>>>>>>>>>>> 
0.86 3.75 2 f 0>>>>>>>>>>>3>>>>>>>>>> 
0.81 2.85 3 c 0>>>>>>>>>>>>>3>>>>>> 
0.75 2.29 4 c 0>>>>>>>>>>>>>>>3>>> 
0.68 1.91 5 c O>>>>>>>>>>>>>>>>>l 
0.62 1.62 6 c o>>>>>>>>>>>>>>>> 3 
0 . 5 5  1.38 7 c O>>>>>>>>>>>>>> 3 
0.49 1. 19 8 c O>>>>>>>>>>>> 3 
0.44 1.03 9 C O>>>>>>>>>>> 3 
0.38 0.87 10 c O>>>>>>>>> 3 
0. 29 0. 65 11 C O>>>>>>> 3 
0.22 0.49 12 c O>>>>> 3 
0. 18 0. 39 13 C O>>>> 3 

CHI-SQUARED* = 280.32 FOR W = 13 

Figure 2.9 Estimated acf calculated from the AT & T stock price data in Figwe 
2 . i .  
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have absolute t-values greater than roughly 1.6 for the first five to seven 
lags, this is a warning that the series may have a nonstationary mean and 
may need to be differenced. The estimated autocorrelations need not start 
from a high level to indicate nonstationarity. See Part 11, Case 8 for an 
estimated acf that starts from relatively small autocorrelations but whose 
slow decay indicates the data are nonstationary. 

Summary 

1. A data series with a nonstationary mean can often be transformed 
into a stationary series through a differencing operation. 
2. To difference a series once, calculate the period-to-period changes: 

w, = z, - z,- I .  To difference a series twice, calculate the changes in the first 
differences: w, = (2, - z,-~) - (z,-~ - z , - ~ ) .  

In practice first differencing is required fairly often; second dif- 
ferencing is called for only occasionally; third differencing (or more) is 
virtually never needed. 

4. To focus on the stochastic (nondeterministic) components in a sta- 
tionary time series, we subtract out the sample mean I, which is an estimate 
of the parameter p. We then analyze these data expressed in deviations from 
the mean: 2, = t, - I. 

5. A series expressed in deviations from the mean has the same statisti- 
cal properties as the original series (e.g., it has the same variance and 
estimated acf) except the mean of the differenced series is identically zero. 

6. An estimated autocorrelation function (acf) shows the correlation 
between ordered pairs (2 , .  Z , + k )  separated by various time spans (k = 
1,2,3, . . . ), where the ordered pairs are drawn from a single time series. 
Each estimated autocorrelation coefficient rk is an estimate of the corre- 
sponding parameter p k .  

7. An estimated partial autocorrelation function (pacf) shows the 
correlation between ordered pairs (Z,, i ,+k) separated by various time 
spans (k = 1,2,3, . . . ) with the effects of intervening observations 
( z, + I 5, + 2 ,  - . . - 2 ,  + - I ) accounted for. The ordered pairs are drawn from a 
single time series. Each estimated partial autocorrelation coefficient i,, is 
an estimate of the corresponding parameter +kk. 

8. The estimated acf for a series whose mean is stationary drops off 
rapidly to zero. If the mean is nonstationary the estimated acf falls slowly 
toward zero. 

3. 
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Questions and Problems 

2.1 In Section 2.2 we assert that expressing a data series in deviations from 
the mean shifts the series so its mean is identical to zero. Prove this 
assertion. That is, prove C(z, - i) = 0. Hint: Use the following two rules 
about summation: E ( x  + y )  = Ex + Ey and EK = nK when K is a con- 
stant. 

2.2 Does a series expressed in deviations from the mean always have a 
mean of zero? Does a differenced series always have a mean of zero? 
Discuss. 

23 Consider the time series in Problem 1.8. 
(a) Express those data in deviations from the mean. 
(b) Calculate t,, r2, and r3 for this series. Plot these values on an acf 
diagram. 
(c) Calculate 6, ,, &, and k3 for this series. Plot these values on a 
pacf diagram. 

2.4 How can you tell if the mean of a time series is stationary? 

2.5 Calculate the first differences of the following time series. Does the 
estimated acf of the original series confirm that differencing is required? If 
so, is first differencing sufficient to induce a stationary mean? 

Z I  

1 23 
2 21 
3 23 
4 25 
5 22 
6 27 
7 26 
8 29 
9 28 

10 27 
11 30 
12 31 

13 29 
14 31 
15 30 
16 35 
17 36 
18 34 
19 32 
20 36 
21 35 
22 35 
23 38 
24 40 

25 39 
26 38 
27 40 
28 40 
29 39 
30 42 
31 40 
32 45 
33 46 
34 47 
35 45 
36 44 

1 2 ,  

37 48 
38 50 
39 49 
40 52 
41 46 
42 48 
43 50 
44 47 
45 45 
4 6 4 6  
47 42 
48 40 

t Z I  

49 41 
50 39 
51 39 
52 35 
53 38 
54 35 
55 37 
56 32 
57 33 
58 34 
59 32 
60 33 

2.6 How many useful estimated autocorrelation coefficients can one ob- 
tain from a given sample? 
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UNDERLYING STATISTICAL 
PRINCIPLES 

In Chapter 1 we discussed the nature of time-series data and introduced the 
three-stage modeling framework proposed by Box and Jenkins (identifica- 
tion, estimation, diagnostic checkmg). Then in Chapter 2 we constructed 
two useful graphs from a set of time-series observations-an estimated 
autocorrelation function (acf) and an estimated partial autocorrelation 
function (pacf). An estimated acf and pacf show how the observations in a 
single time series are correlated. 

In Chapter 4 we show how ARIMA models are constructed by applying 
the three-stage UBJ procedure to two data sets. But first we must establish 
some terminology and introduce some principles that underlie the UBJ 
method. These principles are similar to those in an introductory statistics 
course, although the terminology may be different. 

3.1 Process, realization, and model 

An important question is: From where do observations (like those shown in 
Figures 1.1 and 1.4) come? A quick answer is that the shoe production data 
in Figure 1.1 came from a U.S. Commerce Department publication called 
Business Statistics, and the simulated series in Figure 1.4 came from a 
computer. Another similar answer is to say that the Commerce Department 
data came from a survey of shoe manufacturers. 

45 
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But the question about “where the observations come from” is meant to 
get at a different, more abstract matter. A better way to ask it is: What kind 
of underlying mechanism produced these observations? 

In UBJ-ARIMA analysis observations are assumed to have been pro- 
duced by an ARIMA process. The corresponding concept in classical 
statistics is the population. The population is the set of all possible observa- 
tions on a variable; correspondingly, an ARIMA process consists of all 
possible observations on a time-sequenced variable. 

Now we must add something to the preceding definition of a process to 
clarify it. An ARIMA process consists not only of all possible observations 
on a time-sequenced variable, but it also includes an algebraic statement, 
sometimes called a generating mechanism, specifying how these possible 
observations are related to each other. We examine two such algebraic 
statements later in this chapter. 

In classical statistics we distinguish between the population (all possible 
observations) and a sample (a set of actual observations). A sample is a 
particular subset of the population. In UBJ-ARIMA analysis we usually 
refer to a sample as a realization. A realization is one subset of observations 
coming from the underlying process. For example, the shoe production data 

Realization __ - 
(the Nailable data) (2) 

We choose a 

Model 
(a Rpresenution of the pi-, 

drvclopcd by analwing the 
realization) 
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in Figure 1.1 are a realization; these data are only 60 observations out of 
many possible observations. 

If we could discover the underlying process that has generated a realiza- 
tion, then maybe we could forecast future values of each series with some 
accuracy, assuming the same mechanism continues to produce future 
observations. Unfortunately, in practice we never know the underlying 
process. 

Our goal in UBJ analysis is to find a good representation of the process 
generating mechanism that has produced a given realization. This represen- 
tation is called a model. An ARIMA model is an algebraic statement chosen 
in light of the available realization. Our hope is that a model which fits the 
available data (the realization) will also be a good representation of the 
unknown underlying generating mechanism. The three-stage UBJ procedure 
is designed to guide us to an appropriate model. We return to this important 
topic in Chapter 4, where we introduce the characteristics of a good model 
and present two examples of UBJ-ARIMA modeling. Figure 3.1 sum- 
marizes the relationship among a process, a realization, and a model. 

3.2 Two common processes 

An ARIMA process refers to the set of possible observations on a time- 
sequenced variable, along with an algebraic statement (a generating mecha- 
nism) describing how these observations are related. In this section we 
introduce two common ARIMA processes. We examine their algebraic form 
and discuss their stochastic (probabilistic) nature. 

In Chapter 2 we learned how to construct an estimated acf and pacf from 
a realization. Every ARIMA process has an associated rheorericul acf and 
pacf. We will examine the theoretical acfs and pacfs of two common 
processes in this section. Then in Chapter 4 we see how to identify an 
ARIMA model by comparing the estimated acf and pacf calculated from a 
realization with various theoretical acf s and pacf s. 

Theii algebraic form. The generating mechanisms for two common 
ARIMA processes are written as follows: 

(3.2) I, = C - 8 , u l - ,  + a, 
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Consider process (3.1). Processes with past (time-lagged) z terms are 
called auroregressiue (abbreviated AR) processes. The longest time lag 
associated with a z term on the right-hand-side (RHS) is called the AR order 
of the process. Equation (3.1) is an AR process of order 1, abbreviated 
AR( l), because the longest time lag attached to a past z value is one period. 
That is, the subscript of the RHS z is t - 1. On the left-hand-side (LHS), z, 
represents the set of possible observations on a time-sequenced random 
variable z,.* 

Process (3.1) tells us how observed values of z ,  are likely to behave 
through time. It states that z, is related to the immediately past value of the 
same variable (z,-~). The coefficient t#q has a fixed numerical value (not 
specified here) which tells how z, is related to z,-~.+ C is a constant term 
related to the mean of the process. The variable a, stands for a random-shock 
element. Although z, is related to z,-~, the relationship is not exact: it is 
probabilistic rather than deterministic. The random shock represents this 
probabilistic factor. We discuss the random-shock term a, in more detail 
later. 

Now consider process (3.2). Processes with past (time-lagged) random 
shocks are called mooing-auerage (abbreviated MA) processes.* The longest 
time lag is called the MA order of the process. Equation (3.2) is an MA 
process of order 1, abbreviated MA( l), since the longest time lag attached to 
a past random shock is t - 1. Once again z ,  on the LHS is the set of 
possible observations on the time-sequenced random variable t,, C is a 
constant related to the mean of the process, and u, is the random-shock 
term. 

The negative sign attached to 6, is merely a convention. It makes no 
difference whether we use a negative or a positive sign, as long as we are 
consistent. We follow the convention used by Box and Jenkins by prefixing 
all 8 coefficients with negative signs. 

'It is common to denote a random variable with an upper-case letter (2,) and a particular 
value of that random variable with a lower-case letter (I,). However. the common practice in 
Box-Jenkins literature is to use lower-case letters for both random variables and specific 
observations. letting the context determine the interpretation. We follow this practice in the 
text; the symbol 2, refers to a random variable when we speak of a process. and the Same 
symbol refers to a specific observation when we speak of a realization. 
'The cp and B coefficients in ARIMA processes are assumed to be fixed parameters. It is 
possible to postulate variable-parameter models, with coefficients changmg through time in 
some specified manner. However, such models are beyond the scope of this book. Standard 
UBJ-ARIMA models are fixed-parameter models, and we restrict our inquiry to these 
standard types. 
*The label "moving average" is technically incorrect since the MA coefficients may be negative 
and may not sum to unity. This label is used by convention. 
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One aspect of process (3.2) is sometimes confusing for students at first 
glance. We have emphasized that ARIMA models are univariate; they deal 
with the relationship between observations within a single data series. 
Process (3.1) is consistent with this since the set of possible observations at 
time r (z,) is related to the set of possible observations on the same variable 
at time t - 1 ( z , -  ,). 

However, in process (3.2) z, is related to a past random shock. How can 
we think of (3.2) as a univariate process if it does not describe how z, is 
related to other past z elements in the same series? The answer is that any 
MA process, including equation (3.2), is a univariate process because past 
random-shock terms can be replaced by past z terms through algebraic 
manipulation. In Chapter 5 we show how this is done. Alternatively, 
consider that a, is simply part of 2,. Thus, an MA term represents a 
relationship between z, and a component of a past z term, where the 
component is the appropriately lagged random shock. 

Their stochastic nature: the random shock 0,. Because of the random 
shock a,, an ARIMA process generates realizations in a stochusric (meaning 
chance or probabilistic) manner. The a, terms in an ARIMA process are 
usually assumed to be Normally, identically, and independently distributed 
random variables with a mean of zero and a constant variance. Such 
variables are often called “white noise.” Figure 3.2 illustrates this idea with 
a Normal distribution centered on zero. The horizontal axis shows the 
values of a, that could occur. The area under the curve between any two a, 
values (such as the shaded area between a,, and a,*)  equals the probability 

Figure 3.2 A normal distribution for the random shock U ,  
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of a ,  falling within that range. Since the a,  are identically distributed for all 
r ,  this distribution characterizes a,  for all t .  Since the a,  are independently 
distributed they are not autocorrelated, that is, knowing the set of past 
random shocks (a , -  ,, a,-2r  a,-3, .  . . ) would not help us predict the current 
shock a,.  

To see the importance of the chance element a,,  consider two extreme 
situations. First, suppose the random shocks were absent from equations 
(3.1) and (3.2). Then they would be deterministic rather than stochastic 
relationships. In (3.1) z ,  would be exactly known from C, $,, and z,-  ,. In 
(3.2) z ,  would be exactly known from C. We will not consider such 
deterministic relationships but deal only with stochastic processes whose 
random shocks meet the above assumptions. 

Alternatively, suppose we would have C = +, = 8, = 0 in equations (3.1) 
and (3.2). Then, in both cases, z,  = a,  so that z, would have no identifiable 
univariate time structure. Realizations generated by t h s  process would be 
white noise, a sequence of uncorrelated values. 

Consider again the shoe production data in Figure 1.1. In UBJ-ARIMA 
analysis we assume these data were generated by an unknown stochastic 
process. Thus, we think of any specific observed value (e.g., z, = 659 for 
January 1971) as composed of three parts: a deterministic part represented 
by the constant term C, another part reflecting past observations repre- 
sented by AR and MA terms, and a pure chance component represented by 
a,. Since the value of each observation I, is determined at least partly by 
chance, we think of this particular realization as on& one which might have 
occurred. Mere chance could have produced many realizations other than 
the one actually observed. 

In practice we cannot return to January 1971 to observe how athletic 
shoe production might have been different due to chance. But we can 
imagine conducting such an experiment and recording the results. As we 
conduct this experiment suppose the random shock a, for each month is 
drawn from a probability distribution like the one in Figure 3.2. 

We can imagine conducting this experiment for the year 1971 over and 
over again, hundreds or thousands of times, each time drawing a different 
value of a,  for each month. Since a ,  is a component of z,, L, for each month 
would also have a different value for each experiment and thus each 
experiment would generate a different realization. 

This idea is illustrated in Figure 3.3. We have reproduced the first 12 
months of the realization shown in Figure 1.1 along with two other 
(imaginary) realizations that might have occurred instead because of the 
stochastic nature of the underlying process. The heavy line with the asterisks 
is the original realization; the other lines are the two imaginary realizations. 
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SHOE PRODUCT I ON 
--D I FFERENC I NG : 
--EACH VERTICAL AXIS INTERVAL = 11.125 
Low = MEAN = HIGH = 
409 750.75 943 

0 

TfHE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  VALUE 

659 
740 

71 11 
21 
31 82 1 

805 
687 

41 
51 
61 687 

520 
64 1 
769 
718 

7 1  
81 
9 1  
101 

697 
696 

1 1 1  
121 

Figure 3 3  Actual realization for athletic shoe production, January 1971-Decem- 
ber 1971, and two imaginary realizations. 

Their stochastic nature: joint probabiiity functions. Another way of 
discussing the stochastic nature of an ARIMA process such as (3.1) or (3.2) 
is to describe it in terms of a stationary, Normal, joint probability distribution 
function. 

Consider the realization z l r . .  . , z,. Let us suppose these observations are 
drawn from a joint probability distribution 

where P(  ) is a joint probabihty density function that assigns a probability 
to each possible combination of values for the random variables z I ,  . . . , 2,. 

Our goal in forecasting is to make statements about the likely values of 
future 2’s. Now, if we know the joint density function P ( z l , .  . . , z , ,  I),  
including the relevant marginal probabilities, we could form the conditional 
distribution 

Then from knowledge of the past values (z, ,  . . . , z,) we could use (3.4) to 
make a probability statement about the future value z , ,  ,. 
Recall that UBJ-ARIMA analysis is restricted to stationary processes 

and realizations. (Keep in mind that many nonstationary realizations can be 
rendered stationary with suitable transformations.) For a process to be 
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stationary, the joint distribution function describing that process must be 
invariant with respecr to time. That is, if we displace each random variable 
( z f , .  . . , Z,+&) by m time periods, we have the stationarity condition 

Condition (3.5) is sometimes referred to as strong or stricr stationarity. It 
shows the entire probability structure of our joint function constant through 
time. Weak stationarity requires only that certain characteristics of our joint 
function be time-invariant. But now we encounter a pleasing simplification: 
if our joint function is a joint Normul distribution, then it is strongly 
stationary if its mean (first moment) and variance and covariances (second 
moment) are constant over time. In fact our assumption that the random 
shocks a, are Normally distributed is equivalent to the assumption that the 
joint distribution for the z ’s is a joint Normal distribution. 

If we have a stationary joint Normal distribution for the Z’S ,  then we 
have a constant mean, p = €( z,) for all z ’s,* 

a constant variance, u: = yo = € ( z ,  - p)2,  for d l  z’s, 

(3.7) 
2 u;” = yo = E ( z ,  - p )  = € ( z r + m  - p)2 

(Since we are talking about the covariances between random variables 
occurring within the same time series, these covariances are called autoco- 

We can conveniently summarize variances and covariances in matrix 
form. A matrix is simply an array of numbers. In this case we want to 
present the variances and covariances of the random variables ( z , ,  . . . , z n )  
in an organized array. The variance-covariance matrix for a stationary joint 

Variances.) 

.E is the expected value operator. 
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- 
Yo 
YI 

Y2 

~ Yn-  I 

distribution function for ( z l , .  , . , 2,) is a square array: 

- 
Yn-  I 

Y n - 2  

Y"-3 

Yo - 

YI 

Yo 

0 
Y2 

Y n - 2  

Y2 

Yl 

Yo 

Y1 

Y n - 3  

Y2 

YI 

Yo 

... 

... 

... 

... 

... 

(3.9) 

Row 1 (the top row) and column 1 (the left-most column) refer to random 
variable t,, row 2 (second from the top) and column 2 (second from the left) 
refer to random variable z2, and so forth. The covariance between any two z 
variables is the y value corresponding to the appropriate row and column. 
For example, the covariance between t3 and z2 is circled; it is found where 
row 3 (for z 3 )  intersects column 2 (for z2). The subscript k attached to y 
refers to the number of time periods separating the two variables whose 
covariance is being considered. Since 13 and z2 are separated by one time 
period, their yk has the subscript k = 1. 

Note that the covariance between z ,  and itself is the variance of 2,. When 
k = 0, ( z ,  - p )  times ( z , , ~  - p )  is simply (2, - p ) * ,  in which case yk = yo 
- u2 . 

Matrix (3.9) is a useful vehicle for discussing the idea of stationarity. For 
example, since the variance u,' (equal to yo)  does not vary with time for a 
stationary process, we find the Same element along the entire main diagonal. 
That is, the variance of z ,  is yo, the variance of z2 is also yo, the variance of 
z3 is also yo, and so on. 

Similarly, stationary covariances depend only on the number of time 
periods separating the variables in question, not on the particular time 
subscripts attached to them. For example, the covariance between zI  and t2 
is yI; they are separated by one time period. The covariance between z2 and 
2 3  is also y1 because they are also separated by one time period. The same is 
true for 2 3  and t4, z4 and zS, and so forth. Therefore, the diagonals 
immediately above and below the main diagonal contain the constant yI. 
The stationarity assumption likewise explains why every other diagonal is 
made up of a constant. 

Autocovariances are awkward to use because their sizes depend on the 
units in which the variables are measured. It is convenient to standardize 
autocovariances so their values fall in the range between - 1  and + 1  
regardless of the units in which the variables are measured. This is accom- 

- 2  
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plished by dividing each autocovariance ( yk ) by the variance of the process 
( y o  = u,'). Such standardized autocovariances are autoconelation coeffi- 
cients and, for a process, are denoted by the symbol p. By definition, 

(3.10) 

As with autocovariances. autocorrelations can be conveniently repre- 
sented in matrix form. Start with matrix (3.9) and divide each element by yo. 
All elements on the main diagonal become one, indicating that each z ,  is 
perfectly correlated with itself. All other yk values become pk values as 
indicated by equation (3.10): 

(3.1 1) 

Once again, stationarity dictates that each diagonal be composed of a 
constant . * 

Although we may discuss the stochastic nature of ARIMA processes in 
terms of joint probability Qstribution functions m e  (3.3) and (3.4), in 
practice we do not specify such distribution functions in detail. Instead we 
summarize the behavior of a process with a stochastic generating mecha- 
nism, like the AR(1) or MA(1) in equation (3.1) or (3.2). We may then use 
these generating mechanisms to derive the mean, variance, and autocovari- 
ances (and corresponding autocorrelation coefficients) and the conditional 
distribution of future z 's for that process. Such derivations are presented in 
Chapters 6 and 10. 

Thewetical ad's and pacf's. Each time-dependent process has a rheoreri- 
cul acf and pacf associated with it. These are derived by applying certain 

*It can be shown that for stationary processes, the autocorrelation matrix (3.11) and the 
autocovariance matrix (3.9) are positive definite. It follows that the determinant of the 
autocorrelation matrix and all principal minors are positive, so the autocorrelation coefficients 
for a stationary process must satisfy numerous conditions. For linear processes these stationar- 
ity conmtions can be stated conveniently in the form of restrictions on the AR coefficients. The 
restrictions are discussed in Chapter 6. 
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definitions and rules to the process in question. In Chapter 6 we derive the 
theoretical acfs for processes (3.1) and (3.2). For now we simply present the 
theoretical acf s and pacf s associated with these two processes. 

Remember that theoretical acfs and pacfs are different from estimared 
ones. Estimated acfs and pacfs (like the ones we constructed in Chapter 2) 
are found by applying equation (2.5) to the n observations in a realization. 
On the other hand, theoretical acfs and pacfs are found by applying 
definitions and rules about mathematical expectation to specific processes. 

As we shall see in Chapter 4, a critical part of the identification stage in 
UBJ-ARIMA modeling involves the comparison of estimated acfs and 
pacf s with theoretical acf s and pacf s. Thus the UBJ analyst must become 
thoroughly familiar with the most common theoretical acf s and pacf s. 

Following are the most important general characteristics of theoretical 
AR and M A  acf s and pacf s, summarized in Table 3.1. .(We discuss mixed 
ARMA processes, which contain both AR and MA terms, starting in 
Chapter 6.) 

1. Stationary autoregressive (AR) processes have theoretical acf ’s that 
decay or “damp out” toward zero. But they have theoretical pacf’s 
rhat cut offsharply to zero after a few spikes. The lag length of the last 
pacf spike equals the AR order ( p) of the process. 
Moving-average (MA) processes have theoretical acf ’s that cut off to 
zero after a certain number of spikes. The lag length of the last acf 
spike equals the MA order (4) of the process. Their theoretical 
pacf ’s decay or “die out ” toward zero. 

2. 

Figure 3.4 shows the kinds of theoretical acfs and pacfs associated with 
an AR(1) process like (3.1). Note that the acf decays toward zero whether 9, 

Table 3.1 General characteristics of theoretical acf‘s 
and pacf’s for AR and MA processes 

Process acf pacf 

AR Decays toward zero Cuts off to zero 
(lag length of 
last spike equals 
AR order of process) 

MA Cuts off to zero Decays toward zero 
(lag length of 
last spike equals 
MA order of process) 
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is positive (Example I) or negative (Example 11). When @I is negative the 
autocorrelations alternate in sign, starting on the negative side. But, as with 
all stationary AR processes, the absolute values of the autocorrelations in 
Example I1 die out toward zero rather than cut off to zero. 

In Examples I and I1 the theoretical pacf has a spike at lag 1 followed by 
a cutoff to zero. This cutoff in the pacf is typical for AR processes. There is 
only one spike in the pacfs in Figure 3.4 because they are associated with 
AR(1) processes. That is, the lag length of the last spike in the theoretical 
pacf of an AR process is equal to the AR order (the maximum lag length of 
the z terms) of the process. 

Figure 3.5 shows examples of theoretical acf s and pacf s associated with 
MA( 1) processes. The lag length of the last spike in the theoretical acf of an 
MA process equals the order of the MA process. Thus, an MA( 1) theoretical 
acf has a spike at lag 1 followed by a cutoff to zero. This is an example of 
the general rule for MA theoretical acfs: they always cut off to zero rather 
than decay toward zero. For the MA( 1) the sign and size of 8 ,  determine the 

+ 1.0- 

0 
t 

- 1 . O A  

Example I: +4, is positive 

+1.0 

* @kk 0 

acf 

- ' ,I: .  

Lag length J. 
k= 

Lag length 

- 1.0 

0 h 

I k= 

-1 .01  - 1.01 

Example It: 4, is negative 
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sign and size of the acf spike. The MA(1) acf spike is positive if 8, is 
negative, but negative if 8, is positive. 

All theoretical pacfs for MA processes decay toward zero unlike the 
pacfs for AR processes, which cut off to zero. The pacf for an MA process 
may or may not alternate in sign. As shown in Figure 3.5, when 8, is 
negative the theoretical pacf for an MA(1) starts on the positive side and 
alternates in sign. But when 8, is positive the pacf decays entirely on the 
negative side. 

In Chapter 5 we consider three additional common processes and their 
associated acfs and pacfs. Familiarity with the common theoretical acfs 
and pacfs is essential for the analyst who wants to use the UBJ method 
effectively. The various theoretical acf s and pacf s may differ substantially 
from each other in detail, and this may seem confusing initially. But keep in 
mind these two points: (i) Thorough knowledge of just a few common 
theoretical acf s and pacfs is sufficient for building proper ARIMA models 

+1.0 

5 O J  

t 

-1.0 

Example I : 6, is negative 

- +1.0 - 

Pacf 

> 
L- 

Lag length 

t acf 

Lag L= length "i' O ,'l'+. 

- -1.0 4- 

+1.0 

t 
i ' 1  

-1.0 

Example I I : 6, is positive 

- +1.0 - 
Pacf 

0 > 

L W I L  'i' Lag 1-h 
k= 

t acf 

&= 
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for the vast majority of data sets. (ii) Unusual ARIMA processes share 
certain general characteristics with the more common ones. Thus, knowl- 
edge of the common theoretical acfs and pacfs gives good guidance even 
when the appropriate model is not common. 

Estimated ad‘s and pad‘s. At the identification stage of UBJ-ARIMA 
analysis we first calculate an estimated acf and pacf by applying (2.5) and 
(2.9) to the available data. Then we compare the estimated acf and pacf with 
some common theoretical acfs and pacfs to find a reasonably good 
“match.” We then select as a tentative model for our data the process 
associated with the matching theoretical acf and pacf. 

Suppose, for example, that an estimated acf (calculated from a given 
realization) has a single spike at lag 1. We know that a theoretical acf with a 
spike at lag 1 characterizes an MA(1) process, represented algebraically by 
equation (3.2). Therefore, we would tentatively choose equation (3.2) as a 
model to represent the realization in question. We then go to the estimation 
and diagnostic-checking stages to estimate the parameters and to test the 
adequacy of the chosen model. Clearly, an important step in this procedure 
is the tentative matching of estimated acf s and pacf s with theoretical acf s 
and pacfs. In this section we use simulation methods to develop a feel for 
how closely estimated acfs and pacfs might, or might not, match theoreti- 
cal acfs and pacfs. 

We specify two processes-an AR(1) and an MA( 1)-assuming we know 
their parameters. (In practice we never know what process has generated a 
given realization. But as a learning exercise we can pretend that we know 
these processes exactly.) Then we use a computer to produce a series of 
Normally and independently distributed random shocks with zero mean 
and a constant variance. Using the known processes and the random shocks 
produced by the computer, we generate five simulated realizations for each 
process. Finally, we compute estimated acfs and pacfs from these simu- 
lated realizations to see how closely they match the known theoretical acfs 
and pacfs associated with the known AR( 1) and MA( 1) processes by which 
the realizations were generated. 

As a numerical illustration of how these simulated realizations are 
generated, consider the following AR(1) process: 

In this example, +, = 0.5 and C = 0. Let the starting value for z,-, be 0. 
Now suppose we draw at random a sequence of a, values, for r = 1, 2, 3, 
and 4, from a collection of Normally and independently distributed num- 
bers having a mean of zero and a constant variance [designated u, - 
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NID(0, a:)]. Let these a, values be (3, - 2, - 1,2). Then we can calculate the 
values of z, for t = 1, 2, 3, and 4 recursively as follows: 

z ,  = OSz, + U ,  

= 0.5(0) + 3 

= 3  

z2  = 0.51, + u2 

= 0.5(3) - 2 

= -0.5 (3.13) 

= 0.5( -0.5) - 1 

= -1.25 

z4 = 0 . 5 ~ ~  + a., 

= 0.5( - 1.25) + 2 

= 1.375 

Keep in mind that we generated this realization (3, -0.5, - 1.25, 1.375) 
artificially. In practice the random shocks are not observable, and C and 9, 
are unknown. Here we are merely trying to illustrate how process (3.12) 
could generate one particular series of observations (3.13). All the simulated 
realizations considered in this section were generated in a similar fashon, 
though using a computer for convenience. 

The following AR( 1) process was used to simulate five different realiza- 
tions: 

Z, = O.7.,-, + U ,  (3.14) 

In all cases @, = 0.7, C = 0, the starting value for I,- , is zero, the variance 
of the random shocks (a:) is one, and n = 100. 

The theoretical acf and pacf for process (3.14) are shown in Figure 3.6. 
As with all stationary AR( 1) processes, the theoretical acf decays toward 
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zero and the theoretical pacf cuts off to zero after a spike at lag 1. The 
estimated acf and pacf for each of the five realizations are shown in Figure 
3.7. 

The important thing to note is this: although the estimated acfs and 
pacf s are similar to the theoretical acf and pacf in Figure 3.6, in some cases 
the similarity is vague. This is because the estimated acfs and pacfs are 
based on a realization and therefore contain sampling error. Thus we cannot 
expect an estimated acf and pacf to match the corresponding theoretical acf 
and pacf exactly. 

This suggests ambiguities at the identification stage as we try to match 
the estimated acf and pacf with a theoretical acf and pacf. While estimated 
acfs and pacfs are extremely helpful, they are only rough guides to model 
selection. That is why model selection at the identification stage is only 
tentative. We need the more precise parameter estimates obtained at the 

1 2  3 4 5  6 7 '  

+1.0 T Paef 

- 1 . 0 1  

Figure 3.6 Theoretical acf and pacf for process (3.14): z, = 0.72,- I + u, ,  with 
u, - NID(0,l). 
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Figure 3.7 Five estimated acfs and pacTs for reahations generated by process 
(3.14). 
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Figure 3.7 (Continued). 
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large estimated autocorrelations can occur after the theoretical auto- 
correlation function has damped out, and apparent ripples and trends 
can occur in the estimated function which have no basis in the 
theoretical function. In employing the estimated autocorrelation func- 
tion as a tool for identification, it is usually possible to be fairly sure 
about broad characteristics, but more subtle indications may or may 
not represent real effects, and two or more related models may need to 
be entertained and investigated further at the estimation and diagnos- 
tic checking stages of model building. [ 1, p. 177; emphasis in original. 
Quoted by permission.] 

This point is emphasized by a result due to Bartlett [ l l ]  showing that 
estimated autocorrelation coefficients at different lags ( r k ,  rk+,,  i * 0) may 
be correlated with each other. Thus, a large estimated autoconelation 
coefficient might also induce neighboring coefficients to be rather large. (See 
Part 11, Cases 2 and 4 for examples of this phenomenon.) 

+ l . O T  acf 

-1.0 I 

+ l . O T  

P k f  

4kk 1 2 3 :  a, > L-  Lag length 
I- 

I 
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Figure 3.8 Theoretical acf and pacf for process (3.15): i, = -O.Sa,_, -k u, ,  with 
U ,  - NID(0, I ) .  
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-0. 04 
0. 02 
0. 05 

+ + + + + +  
T-VAL LAC 
-4. 31 1 
-2.80 2 
-0.34 3 
-1.25 4 
-0.67 5 
-2. 88 6 
-1.35 7 
-1.66 0 
0.37 9 
-0.39 10 
0. 16 11 
0 .50  12 

+ + P A R T I A L  AUTOCORRELATIONS + + + + + + + + + + + 

0 
;~<<ic<<<<.~<cc<~<<cc<<o 3 

<c<tc<c<ci<<cto 3 
c cco 3 
c <<ei<-:o 3 
c <<<O 3 

c<c<c<<<c<c<<co 3 
c <c<<<<<o 3 
c <<<<<<<eo 3 
c 0>> 3 
c <<o 3 
c O> 3 
c O>>> 3 

+ + + + + + + + + + + + + AUTOCORRELATIDNS + + + + + + + + + + + + + 
+ FOR DATA S E R I E S :  S IMULATED DATA + 
+ D I F F E R E N C I N G :  0 MZAN = ,0003 + 
+ DATA COUNT = 100 STD DEV = 1. 3403 + 

COEF 
-0. 60 
0 29 

-0 25 
0 07 

-0 08 
0 19 

-0 13 
-0 01 

0 02 
-0 04 
0 09 
0 04 

C H I  

0 T-VAL LAG 
-6 02 1 . . .<t.<<<<<<<i<C<<<<<O 
2 21 2 c 0>'>>>>>3>> 

-1  82 3 c ;,;<:i<<<o 3 
0 53 4 c O>> 3 
-0 54 5 c <<<O 3 

1 30 6 c o>> ;>>:, 3 
-0 08 7 c <<<<O 3 
-0 07 0 I 0 3 
0 10 9 c O> 3 

-0 26 10 c 10 3 
0 61 11 c 0));' 3 
0 27 12 c O> 3 

3 "<*/ r . 

-SQUARED* = 60 04 FOR D F  12 

+ + + + + + + + + + + P A R T I A L  AUTOCORRELATIONS + + + + + + + + + + + 
0 

-0 bO -4 02 1 ._ .. ... ... . .. . ... ..I <<<<<o 1 </<..,'' I_- ,-. *,-/ ..,*,- 
COEF T-VAL LAC 

-0 11 -1 13 2 c <<c<o 3 
-0 20 -1 97 3 < c ,:<<<-:0 3 
-0 24 -2 41 4 << C <<<<<O 3 
-0 24 -2 40 5 ;.: [ ,;,:,:r'.<o 3 
0 04 0 39 b c O> 3 
0 01 0 07 7 c 0 3 

-0 19 -1 55 8 c <<< ;.:o 3 
-0 10 - 1  03 9 c <i<o 3 
-0 08 -0 81 10 c i<<o 3 
-0 02 -0 16 11 c co 3 
0 11 1 10 11 c o>i>> 3 

Figure 3.9 Five estimated acfs and pads  for realizations generated by process 
(3.15). 
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+ 
+ 

+ + + + + + + + + + + + AUTOCORRELATIOW + + + + + + + + + + + + + 
FOR DATA SERIES: SIMULATED DATA + 
DIFFERENCING: 0 M A N  = ,0049 + 
DATA COUNT = 100 STD DEV = 1. 33952 + 

COEF 
-0.45 
-0 .12  
0. 12 

-0. 04 
-0.00 
0. 10 

-0.01 
0.  07 

-0.09 
-0.14 
0. 10 
0. 01 

CHI 

+ + +  
COEF 

-0.45 
-0 .41  
-0.21 
-0.17 
-0 23 
-0. 13 
-0 09 
0. 11 
0. 06 

-0.19 
-0. 09 
-0.01 

r - v a  LAC 0 
-4. 40 1 <<<<C<<<<<<<C<<<<<<<<<O 3 
-1.05 2 c <<<<<<O 

1.02 3 c O>>>>>> 
-0 31 4 
-0 62 5 
0 00 6 

-0 06 7 
0 57 0 

-0 70 9 
-1 16 10 

1 42 11 
0 00 12 

-SQUARED* = 

+ + + + + +  
T-VAL LAC 
-4 40 1 
-4 06 2 
-2 07 3 
-1 72 4 
-2.34 5 
-1 34 6 
-0 91 7 

1 07 8 
0 63 9 

-1 94 10 
-0 80 11 
-0 10 12 

c <<0 
c <<<<O 
c O>>>>> 
c 0 
c O>>> 
c <<<<O 
c <<<<<<<o 
c O>>>>>>>>> 
c O> 

32.07 FOR DF - 12 

3 
3 
3 
3 
1 
3 
3 
3 
3 
3 
3 

+ + PARTIAL AUTOCORRELATIONS + + + + + + + + + + + 
0 

C<<<i<<<<<<<C<<<<<<<<<O 3 
<<C<<<<<<<C<<<<<<<<<O 3 

C<C<<<<<<CO 3 
c<<<<<<<<<o 3 

<<C<<<<<<<<<O 3 
c <<<<<c<o I 
c <<<<<o 3 
c o>>>>> 3 
c O>>> 3 
t<<<<<C<<<O 3 
c <<<<O 3 
c <O 1 

+ + + + + + + + + + + + + AUTOCORRELATIONS + + + + + + + + + + + + + 
+ FOR DATA SERIES SIMULATED DATA + 
+ DIFFERENCING 0 M A N  = - 0092 + 
+ DATA COUNT = 100 STD DEV = 1 23945 + 

-0 40 -4 01 1 <<~~~<C<i<c<<,:<<~<<~o 3 
-0 14 -1 25 2 C i<<<<<<O 1 
0 11 0 90 3 c O>>>>> 3 

-0 06 -0 50 4 c <<<O 3 
0 0 5  0 41 5 c O>> 3 

-0 12 -0 90 6 c <<<i.:<0 3 
0 06 0 51 7 c 05 .s > 3 
0 05 0 4 3  0 c O>:>> 1 

-0 06 -0 52 9 c <<<O 1 
0 03 0 25 10 c O> 3 
0 07 0 57 11 c O>>> 1 

-0 04 -0 35 12 I <<O 3 

COEF T-VAL LAC 0 

CHI-SQUARED* = 23 9 5  FOR DF = 12 

+ + + + t + + + + + + PARTIAL AUTOCORRELATIONS + + + + + + + + + + + 
COEF 

-0 40 
-0 36 
-0 16 
-0 10 
-0 06 
-0 21 
-0 13 
-0 07 
-0 00 
-0 06 
0 06 
3 05 

- -  
-0 a3 5 
-2 06 6 
-1 30 7 
-0 72 8 
-0 8 4  9 
-0 56 10 
0 43 11 
0 48 12 

c <:<o 3 
3 

c <<<<<<o 3 
c <<C<0 3 
c C<C<O 3 
c <<CO 3 
c o>i> 3 
c O>> 3 

<i' . , r I r.- ..<.\..O 

Figure 3.9 (Continued). 
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+ + + + + + + + + + + + + AUTOCORRELATIONS + + + + + + + + + + + + + 
+ FOR DATA SERIES SIMULATED DATA + 
+ DIFFERENCINC- 0 E A N  = .oow + 
+ DATA COUNT = 100 STD DEV = 1 08161 + 
C M F  1-VAL LAC 0 
-0 55 -5 50 1 <<<<<<<<<<<<cc<<c<o 3 

0 12 0 93 2 c o>>>> 3 
-0 02 -0 15 3 c (0  3 
-0 13 -1 03 4 c <<<<o 3 

0 25 1 95 5 c 0>>>>>>>3 
-0 18 -1 31 6 c c<c<<<o 3 

0 04 0 31 7 c O> 3 
-0 04 -0 31 8 c ( 0  3 
0 08 0 59 9 c O>>> 3 

-0 06 -0 43 10 c <<O 3 
-0 02  -0 14 11 c (0  3 
0 11 0 80 12 c O>>>> 3 

CHI-SQUARED* = 47 63 FOR DF 9 12 

+ + + i  

COEF 
-0. 55 
-0. 27 
-0. 13 
-0. 27 
0.  05 
0. 01 

-0.05 
-0.11 

0.  06 
-0. 04 
-0. 09 

0. 10 

b + + + + + + + PARTIAL AUTOCORRELATIONS + + + + + + + + + + + 
1-VAL LAC 
-5.50 1 
-2.66 2 
-1.29 3 
-2.75 4 
0 .49  5 
0 . 0 8  6 

-0.47 7 
-1.04 0 
0 .63  9 

-0 .42  10 
-0.93 11 
0.96 12 

0 
<<<<<<C<<<<<C<<<<<O 3 

<<<C<<<<<O 3 
c <<c<o 3 

<<<C<<<<<O 3 
c o>> 3 
c 0 3 
c <<o 3 
c <<<<o 3 
c o>> 3 
c (0 3 
c <<<o 3 
c o>>> 3 

F w e  3.9 (Continued). 

3.3 Statistical inference at the identification stage 

Recall that in classical statistics we may want to know something about the 
population, but getting all relevant information about the population is 
frequently impossible or too costly. Therefore, we infer something about the 
population by using a sample, along with some probability concepts and 
formulas and theories from mathematical statistics. The sample may be used 
to estimate a characteristic of the population or to test u hypothesis about the 
population. This type of inductive reasoning is known as statistical in- 
ference. 

In UBJ-ARIMA analysis we engage in statistical inference at all three 
stages of the method. That is, we infer something about the unknown 
process by using the realization, along with some probability principles and 
statistical concepts. At the identification stage we use the estimated acf and 
pacf, calculated from the realization, to help us tentatively select one or 
more models to represent the unknown process that generated the realiza- 
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tion. The purpose of this section is to discuss and illustrate statistical 
estimation and hypothesis testing. as they occur at the identification stage.* 

Testing autocorrelation coefficients. In Chapter 2 we saw how autocor- 
relation coefficients are calculated from a realization. An estimated autocor- 
relation coefficient (rk) is an estimate of the corresponding (unknown) 
theoretical autocorrelation coefficient ( p,). We do not expect each r, to be 
exactly equal to its corresponding p, because of sampling error. Thus, with 
k = 1 and n = 100, we would get a certain value for rl using (2.5). But if we 
could then obtain another realization with n = 100 and recalculate rl,  we 
would probably get a different value. In turn, another realization would give 
us yet another value for rl. These differences among the various r 's are due 
to sampling error. Th~s was illustrated in the last section where we saw a 
series of estimated acf s and pacf s that were similar to, but not identical to. 
the corresponding theoretical acfs and pacfs. 

If we could calculate rl for all possible reahations with n = 100 we 
would have a collection of all possible rl values. The distribution of these 
possible values is called a sampling disrriburion.' As with other sample 
statistics, these different possible sample values ( rl ) will be distributed 
around the parameter ( p I ) in some fashion. R. L. Anderson [ 131 has shown 
that the r, values are approximately Normally distributed when p, = 0 if n 
is not too small. 

Bartlett [ 111 has derived an approximate expression for the standard 
error of the sampling distribution of r, values. (The standard error of a 
sampling distribution is the square root of its estimated variance.) Th~s 
estimated standard error, designated s(r,), is calculated as follows: 

This approximation is appropriate for stationary processes with Normally 
distributed random shocks where the true MA order of the process is k - 1. 

This expression may be applied to the first three autocorrelations in 
Figure 3.10 in the following way. First, let k = 1. Then sum inside the 
parentheses of expression (3.16) from j = 1 t o j  = 0; since j must increase 

'Calling the second stage the estimation stage is misleading because statistical estimation also 
takes place at the other two stages. 
'You may find it helpful at this point to review the concept of a sampling distribution in an 
introductory statistics textbook such as Wonnacott and Wonnacott [ 121. 
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+ + + + + + + + + + + + + AVTOCORRELATIDNS + + + + + + + + + + + + + 
+ FOR DATA S E R I E S  SIMULATED DATA + 
+ D I F F E R E N C I N G  0 PIEAN = 198333 + 
+ DATA COUNT = 60 S T D  M V  = 1 33895 + 

COEF T-VAL LAC 0 
-0 62 -4 78 1 <‘:/,</c‘.:i<.;~<<cc‘c.(<<<<o 1 

0 35 2 06 2 c O>>>>>>>>>>>l 
-0 01 -0 07 3 c 0 1 
-0 11 -0 58 4 c <<<co 1 

0 01 0 05 5 c 0 1 
0 13 0 70 6 c O>>>> 3 

-0 17 -0 92 7 c <<<<<<o 1 
0 25 1 35 8 c o>>>>>>>> 1 

-0 24 - 1  26 9 c .;<<<<<c<o 1 
0 19 0 94 10 c O>Y>>>> 3 
-0 15 -0 76 11 c <<<c<o 1 
0 06 0 20 12 c 0>> 1 

CHI-SQUARED+ = 49 63 FOR DF = 12 

+ + .+ + + + + + + + + P A R T I A L  AUTOCORRELATIONS + + + + + + + + + + + 

-0 62 -4 78 1 <:</,<<cC<<<<<<<C i i i < i < < O  1 
-0 05 -0 35 2 c ( (0  1 

COEF T-VAL LAC 0 

0 30 2 35 3 c 0>>>>>>>1:,> 
0.04 0 .20  4 

-0.27 -2 .06  5 
0.09 0.71  6 
0 .13  1 . 0 2  7 
0 .21  1.62 0 

-0. 10 -1.36 9 
-0.10 -0 .00  10 
-0.03 -0. 10 11 

0 . 0 4  0.32 12 

c O> 1 
:c<<c<<<<o 1 
c o>>> 1 
c o>>>> 3 
c O>>>>?>il 
c <<<<c<o 3 
c <<<o 1 
c 0 3 
c O> 1 

Figure 3.10 Estimated acf and pacf to illustrate calculation of standard errors of r, 
and 4kk.  

by 1 to perform summation, there is no summation in this case, and we 
replace the summation term with a zero. Thus with n = 60 and k = 1.  

s ( r , )  = ( 1  + O)’’2n-‘/2 

= ( m y  
= 0.13 

Next, let k = 2. Then (3.16) gives this result: 

s(r2) = ( 1  + 2r:)I”n-1/2 

= [ l  + 2(-0 .62) ]  2 I/Z 60- ’ / *  

= (1.33)(0.13) 

= 0.17 
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Then letting k = 3 we obtain 

2 1/2 60-1/2 = [ 1 + 2( -0.62)2 + 2(0.35) 3 
= (1.42)(0.13) 

= 0.18 

Other s( r k )  values are calculated in a similar fashion. 
Now use these estimated standard errors to test the null hypothesis H,: 

p k  = 0 for k = 1,2,3,. . . . It is common when using the estimate s ( r k )  in 
place of the true standard error u(rk)  to refer to the t-distribution rather 
than the Normal distribution, We test the null hypothesis by finding out 
how far away the sample statistic rk is from the hypothesized value p k  = 0, 
where “how far” is a t-statistic equal to a certain number of estimated 
standard errors. Thus we find an approximate t-statistic in this way: 

(3.17) 

Let p k  in (3.17) equal its hypothesized vdue of zero and insert each 
calculated rk along with its corresponding estimated standard error s (rk) .  
Using the rk values in the acf in Figure 3.10, for k = 1 we find 

-0.62 - 0 
0.13 

x 

= -4.78. 

This result says that rl falls 4.78 estimated standard errors below zero.* 
Using a rule of thumb that only about 5 %  of the possible rk would fall two 
or more estimated standard errors away from zero if P k  = 0, we reject the 
null hypothesis p I  = 0 since rl is significantly different from zero at about 
the 5 %  level. 

‘Hand calculations may give results sligbtly different from those printed in Figure 3.10 because 
of rounding. 
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Figure 3.1 1 illustrates these ideas. The label on the horizontal axis shows 
that this is a distribution of all possible values of rl for a certain sample size 
n. That is, Figure 3.1 1 is a sampling distribution for r , .  Ths distribution is 
centered on the parameter pI, which is unknown. Since this is approximately 
a Normal (or r )  distribution with an estimated standard error s ( r I )  given by 
(3.16), the interval pi f 2s(ri) contains about 95% of all possible ri values. 
This is represented by the shaded area under the curve. If pI = 0, then r\ in 
our example (-0.62) is 4.78 estimated standard errors below zero. Instead 
of calculating the r-value, we might look at the square brackets [ ] at lag 1 in 
Figure 3.10. These brackets are about two standard errors above and below 
zero. Since the acf spike at lag 1 extends beyond the bracket on the negative 
side, the autocorrelation at that lag is more than two standard errors below 
zero. Thus whether we use the two standard error limits (square brackets) 
printed on the acf, or calculate a 1-value as we did above, we conclude that 
r I  is significantly different from zero at better than the 5% level. Similar 
calculations for k = 2 and k = 3 give these results:* 

0.35 - 0 
0.17 

- - 

= 2.06 

-0.01 - 0 
0.18 

- - 

= -0.17 

It must be emphasized that these calculations are only approximate since 
they are based on Bartlett's approximation (3.16) for the standard error of 
the sampling distribution of r,. We are taking a practical approach to a 
difficult mathematical problem, giving up some precision to achieve a useful 
procedure. 

In the preceding example, we implicitly were supposing that the true MA 
order of the underlying process was first zero, then one, then two, and so 
forth. That is, equation (3.16) applies when the true MA order of the 
underlying process is k - 1. When calculating s(r2) above, we let k = 1, 
implying that the MA order of the process was k - 1 = 1 - 1 = 0; when 
calculating s(rI)  we let k = 2, implying a true MA order of k - 1 = 2 - 

'Hand calculations may give a slightly different answer due to rounding. 
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f ( r t )  

Shaded area is approximately 
95% of the area under the curve I 

rors below the 

rt 

Figure 3.11 An approximately Normal (or I )  sampling distribution for r , ,  with 
estimated standard error s ( r , )  given by equation (3.16). 

1 = 1; when calculating s(r3)  we let k = 3, implying a true MA order of 
two. All the acf t-values printed in this text are based on standard errors 
calculated in this manner. 

If we let the assumed true MA order increase by one each time we test an 
additional rk coefficient, we see from (3.16) that s(rk) tends to increase as k 
increases. This is illustrated in Figure 3.10, where the square brackets trace 
out a gradually widening band. This occurs because we add an additional r: 
term in (3.16) each time k increases. These additional terms may be quite 
small so that s ( r k )  might not increase noticeably until we cumulate several 
r i  terms. This gradual increase in s(rk) is illustrated in Figure 3.10 where 
the two standard error limits are virtually constant from lags 2 through 9. 

At times we may want to assume that the true MA order of an 
underlying process is a single value. For example, we might maintain the 
hypothesis that the underlymg process is white noise. There would be no 
autocorrelation witbin the process and the true MA order would be zero. 
Then we must replace k - 1 at the top of the summation sign in (3.16) with 
the fixed value of zero. In that case (3.16) tells us that s ( r k )  = n - ’ / 2  = 

60-I’’ = 0.13 for all k. Then we would use the square brackets at lag 1 in 
Figure 3.10 as the two standard error limits for other lags as well. For all 
acfs in this text, the assumed true MA order can be fixed at any desired 
value by extending the printed two standard error limits appropriately. For 
example, if we suppose that the true MA order ( k  - 1) is fixed at 2, then 
k = 3. We would then-extend the square brackets printed at lag 3 to other 
lags. 
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Testing partial autocorrelation coefficients. We can also test the statisti- 
cal significance of estimated partial autocorrelation coefficients. The required 
estimated standard error* is 

s(&&)  = (3.18) 

Let us apply (3.18) to test the significance of the first three partial 
autocorrelation coefficients in Figure 3.10. The i,, shown there were 
calculated from a sample of 60 observations. Inserting n = 60 into (3.18) we 
find that s ( i k k )  = 0.13 for all k. Testing the null hypothesis H,: +, I = 0, we 
get t h s  r-statistic: 

-0.62 - 0 
0.13 

- - 

= -4.78 

Since the absolute value of this t-statistic is greater than 2.0 we conclude 
that ill  is different from zero at about the 54% significance level and we 
reject the null hypothesis +11 = 0. 

Now letting k = 2 and testing the null hypothesis H,: +22 = 0. we get 
this r-statistic: 

-0.05 - 0 
0.13 

= 

= -0.35 

For k = 3, testing the null hypothesis H,: +33 = 0. 

0.30 - 0 
0.13 

= 

= 2.35 

Again we find that our calculations agree with the results printed by 

'For discussion of this result see Quenouille [ 14). Jenkins [ 151. and Daniels [ 161. 
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computer (Figure 3.10) though calculations by hand may give slightly 
different results due to rounding. As with estimated acfs, the square 
brackets printed on estimated pacfs throughout this book are approxi- 
mately two standard errors above and below zero. These brackets provide a 
fast way to find estimated partial autocorrelations that are significantly 
different from zero at about the 5% level. In Figure 3.10, we see immediately 
that the estimated partial autocorrelations at lags 1, 3, and 5 are different 
from zero at about the 5% significance level because their printed spikes 
extend beyond the square brackets. 

Summary 

1. In UBJ-ARIMA analysis a set of time-series observations is called a 
realization. 

2. A reaht ion  is assumed to have been produced by an underlying 
mechanism called a process. 

3. A process includes all possible observations on a time-sequenced 
variable along with an algebraic statement (a generating mechanism) de- 
scribing how these possible observations are related. In practice, generating 
mechanisms are not known. 

We use the UBJ three-stage procedure (identification, estimation, 
and diagnostic checking) to find a model that fits the available realization. 
Our hope is that such a model is also a good representation of the unknown 
underlying generating mechanism. 

AR means autoregressive. Each AR term in an ARIMA process has a 
fixed coefficient (+) multiplied by a past z term. 

MA means mooing average. Each MA term in an ARIMA process 
has a fixed coefficient (8) multiplied by a past random shock. 

4. 

5. 

6. 

7. Two common processes are 

AR(I) :  Z, = c + + l ~ r - l  + a,  

MA(]): z ,  = C - e l a t - ,  + a, 

where z, is the variable whose time structure is described by the process; C 
is a constant term related to the mean p;  +lz,- I is an AR term; B,a,-, is an 
MA term; and a ,  is a current random shock. The label AR(1) means that 
the longest time lag attached to an AR term in that process is one time 
period: the label MA(1) means that the longest time lag attached to an MA 
term in that process is one time period. 
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8. The longest time lag associated with an AR term is called the AR 
order of a process. The longest time lag attached to an MA term is called 
the MA order of a process. 

9. a, is a random-shock term that follows a probability distribution. 
The usual assumption is that the a,’s are identically (for all t), indepen- 
dently, and Normally distributed random variables with a mean of zero and 
a constant variance. 

10. MA terms (past random-shock terms) in an ARIMA process can be 
replaced by AR terms through algebraic manipulation. Thus, all ARIMA 
processes are, directly or indirectly, univariate processes; z, is a function of 
its own past values. We illustrate this point in Chapter 5. 

11. We may thmk of a realization as observations drawn from a 
stationary, joint, Normal probability distribution function. Such a function 
is fully characterized by its mean, variance, and covariances. Because it is 
stationary, it has a constant mean, a constant variance, and constant 
covanances (covariances that depend only on the time span separating the 
variables in question, not on their particular time subscripts.) 

12. Rather than specifying joint distribution functions in detail, we 
summarize a process in the form of a generating mechanism. From t h s  
generating mechanism we may derive the mean, variance, autocovariances 
(and autocorrelation coefficients), and the conditional distribution of future 
z ’s for that process. 

13. A theoretical autocorrelation coefficient ( p k )  is an autocovariance 
( y k )  divided by the variance of the process ( y o  = u:): 

14. The diagonals of the variance-covariance matrix and the autocorre- 
lation coefficient matrix for a stationary process are each composed of a 
constant. 

15. Every ARIMA process has an associated theoretical acf and pacf. 
Stationary AR processes have theoretical acfs that decay toward zero and 
theoretical pacfs that cut off to zero. MA processes have theoretical acfs 
that cut off to zero and theoretical pacfs that decay toward zero. 

16. Estimated acfs and pacfs do not match theoretical acfs and p a d s  
in every detail because the estimated ones are contaminated with sampling 
error. 

17. Because z ,  is stochastic, any given realization is only one which 
might have occurred. Likewise, any estimated autocorrelation coefficient r k  

is only one which might have occurred; that is, a different realization would 
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produce a different value for each rk. The distribution of possible values for 
rk is a sampling distribution. 

18. For large n, when p k  = 0, the sampling distribution for rk is 
approximately Normal with a standard error estimated by equation (3.16). 
The estimated standard error for partial autocorrelation coefficients is given 
by equation (3.18). 

19. Estimated autocorrelation or partial autocorrelation coefficients 
with absolute t-values larger than 2.0 are statistically different from zero at 
roughly the 5% significance level. 

Appendix 3A: expected value rules and definitions* 

Rule I-E expected value of a discrete random variable 

where x is a discrete random variable; E is the expected value operator; 
/ ( x )  is the probability density function of x; p, is the mean of x.  

Rule 11-E: expected value of a constant 

E ( C )  = c 

where C is a constant. 

Rule 111-E expected value of a finite linear combination of random 
variables. If m is a finite integer, 

E ( C , x ,  + c2x2 + . ' . + CmX,) 

= C , E ( x , )  + C 2 E ( x 2 )  + - - -  + C,E(x,) 

where C , ,  C2,. . . , C,,, are constants; x,, x2,. . . , x,  are random variables. 

Rule IV-E expected value of an infinite linear combination of random 
If m = 00, Rule 111-E holds only if X:&Cci (where C, = 1) variables. 

converges (is equal to some finite number). 

'For simplicity, these rules are stated for discrete random variables. For continuous random 
variables. summation signs are replaced by integral signs. 
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Rule V-E: covariance 

where y,, is the covariance of x and u; x, o are discrete random variables; 
p x ,  p ,  are means of x and u. respectively. If x = z, and u = z , - , ,  then yxc is 
an autocovanance denoted as Y k .  where k = lil. 

Rule VI-E: variance 

y,, = u,’ = var, = cov( x, x )  

= € ( x  - p,)2 

Following the notation for autocovariances noted under Rule V-E, if 
x = z,, y,, - yo = a, . 2 

Questions and Problems 

3.1 Explain the relationship among an ARIMA process, a realization, and 
an ARIMA model. 

3.2 Suppose you want to forecast a variable whose ARIMA process is 
known. Would you first have to build an ARIMA model? 

3.3 Consider this ARIMA process: 

z ,  = C - @ , a , - ,  - @2a,-2 + a ,  

(a) How can you tell that this is a process rather than a model? 
(b) What is the AR order of this process? Explain. 
(c) What is the MA order of this process? Explain. 
(d) Is this a mixed process? Explain. 
(e) Why are the B coefficients written with negative signs? 
(f) Is this a univariate process? Explain. 
(g) Contrast the statistical characteristics or attributes of 6, and a,. 
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01) What are the usual assumptions about a, in ARIMA analysis? 
Illustrate graphcally. Are these assumptions always satisfied in prac- 
tice? Why are these assumptions made? 

3.4 Explain the difference between a deterministic relationship and a 
stochastic process. 

3.5 How are estimated acfs and pacfs found? How are theoretical acfs 
and pacf s found? 

3.6 Consider the following pairs of theoretical acfs and pacfs. In each 
case indicate whether the pair of diagrams is associated with an AR or an 

acf 



Questions a d  problems 79 

MA process, state the AR or MA order of the process, and write out the 
process generating mechanism. Explain your reasoning. 

3.7 Explain why estimated acfs and pacf's do not match theoretical acfs 
and pacfs in every detail. 

3.8 Consider the following estimated autocorrelation coefficients calcu- 
lated from a realization with n = 100: 

k 'k 
- 

1 0.50 
2 0.28 
3 0.10 
4 0.05 
5 -0.01 

(a) Calculate an approximate r-statistic for each f k  on the assumption 
that the true MA order increases by one with each additional calcula- 
tion. 
@) Plot the f k  values on an acf diagram. Indicate on the acf how 
large each rk would have to be if it were to be significantly different 
from zero at roughly the 5% level. 
(c) Repeat parts (a) and (b) above on the assumption that the true 
MA order is fixed at zero. 

3.9 Consider these estimated partial autocorrelation coefficients calculated 
from a realization with n = 100: 

1 - 0.60 
2 - 0.32 
3 - 0.2 1 
4 0.1 1 
5 0.03 

(a) Calculate an approximate (-statistic for each 4kk.  
(b) Plot the i,, values on a pacf diagram. Indicate on the pacf how 
large each ikk would have to be if it were to be significantly different 
from zero at about the 5% level. 



AN INTRODUCTION 
TO THE PRACTICE 
OF ARIMA MODELING 

In this chapter we first discuss the general characteristics of a good ARIMA 
model. Then we apply the strategy of identification, estimation, and di- 
agnostic checking to two realizations. 

After reading this chapter you should be ready to start on the case 
studies in Part 11. (See the Preface or the Introduction to the cases for a 
suggested reading schedule.) You must read Chapters 5-12 to, have a full 
grasp of the notation and procedures employed in the case studies. But the 
first few cases are not too complicated; starting them after this chapter will 
help you develop a better understanding of the practice of ARIMA model- 
ing. 

4.1 What is a good model? 

Several times in the first three chapters we have referred to the goal of 
building a good model. Before looking at two examples of UBJ model 
building in the next section, we summarize the qualities of a good ARIMA 
model. 

It is important to remember the difference between a model and a 
process. In practice we never know which ARIMA process has generated a 
given realization, so we must follow a trial-and-error procedure. In the 

Forecasting With Univariate Box- Jenkins Models CONCEPTS AND CASES 
Edited by ALAN PANKRATZ 

Copyright 0 1983 by John Wily & Sons. Inc 
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“trial” part of the procedure (the identification stage) we are guided by the 
estimated acf and pacf calculated from the realization. We select some 
hypothetical ARIMA generating mechanisms, like the AR(1) or MA(1) 
mechanisms shown in equations (3.1) and (3.2), in the hope that they will fit 
the available data adequately. These possible or “ trial” generating mecha- 
nisms are models. A model is different from a process: a process is the true 
but unknown mechanism that has generated a realization, while a model is 
only an imitation or representation of the process. Because the process is 
unknown, we never know if we have selected a model that is essentially the 
same as the true generating process. All we can do is select a model that 
seems adequate in tight of the available data. 

How do we decide if a model is a good one? Following are some 
important points to remember. They are summarized in Table 4.1. 

(1) A good model is parsimonious. Box and Jenkins emphasize a key 
principle of model building called the principle of parsimony, meaning 
“thrift.” A parsimonious model fits the available data adequately without 
using any unnecessary coefficients. For example, if an A w l )  model and an 
AR(2) model are essentially the same in all other respects, we would select 
the AR( 1) model because it has one less coefficient to estimate. 

The principle of parsimony is important because, in practice, parsimoni- 
ous models generally produce better forecasts. The idea of parsimony gives 
our modeling procedure a strong practical orientation. In particular, we are 
not necessarily trying to find the true process responsible for generating a 
given realization. Rather, we are happy to find a model which only 

Taw 4.1 Characteristics of P good ARIMA model 

1. It is parsimonious (uses the smallest number of coefficients needed to 

2. It is stationary (has AR coefficients which satisfy some mathematical in- 

3. It is invertible (has MA coefficients which satisfy some mathematical in- 

4. It has estimated coefficients (4’s and 6’s) of high quality (see Chapter 8): 
(a) absolute I-values about 2.0 or larger, 
@) 6’s and 4 ’s  not too highly correlated. 

5. It has uncorrelated residuals (see Chapter 9). 
6. It fits the available data (the past) well enough to satisfy the analyst: 

(a) root-mean-squared error (RMSE) is acceptable, 
@) mean absolute percent error ( W E )  is acceptable. 

7. It forecasts the future satisfactorily. 

explain the available data). 

equalities; see Chapter 6). 

qualities; see Chapter 6). 
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approximates the true process as long as the model explains the behavior of 
the available realization in a parsimonious and statistically adequate manner. 
The importance of the principle of parsimony cannot be overemphasized. 

Matrix (3.11) is a convenient vehicle for discussing the principle of 
parsimony. For example, consider the theoretical acf for an AR(1) process 
with > 0 in Figure 3.4, Example I. This is simply a plot of the p k  values 
( k  = 1,. . . , n - 1) found in the upper-right triangle of matrix (3.1 1) for that 
particular process. (We need only the pk's in the upper-right triangle since 
(3.1 1) is symmetric.) For the n random variables ( z l , .  . . , 2, )  we can show 
that an AR( 1) process has n nonzero pk values ( po, . . . , p, - ,). However, we 
can represent all this information in a highly parsimonious manner with the 
AR( 1) generating mechanism (3. l), a process containing only two parame- 
ters (C and In fact, as we show in Chapter 6, all the autocorrelation 
coefficients for an AR(1) process are a function of 

In later chapters and in the case studies in Part I1 we see that many 
realizations characterized by a large number of statistically significant 
autocorrelation coefficients can be represented parsimoniously by generat- 
ing mechanisms having just a few parameters. 

(2) A good AR model is slorioMIy. As noted in Chapter 1 the UBJ- 
ARIh4A method applies only to a realization that is (or can be made) 
stationary, meaning it has a constant mean, variance, and acf. Any model 
we choose must also be stationary. In Chapter 6 we learn that we can check 
a model for stationarity by seeing if the estimated AR coefficients satisfy 
some mathematical inequalities. 

(3) A good MA model is im?erribfe. Invertibihty is algebraically similar 
to stationarity. We check a model for invertibility by seeing if the estimated 
MA coefficients satisfy some mathematical inequalities. These inequalities 
and the idea behind invertibility are discussed in Chapter 6. 

(4) A good model has high-quuliw esrimated coeflicients at the estimation 
stage. (This refers to the estimated +'s and 8 3 ,  designated 6 and e, not the 
autocorrelation coefficients rk and partial autocorrelation coefficients 6,, 
found at the identification stage.) We want to avoid a forecasting model 
which represents only a chance relationship, so we want each 6 or 6 
coefficient to have an absolute t-statistic of about 2.0 or larger. This means 
each estimated 6 or 6 coefficient should be about two or more standard 
errors away from zero. If this condition is met, each 6 or 8 is statistically 
different from zero at about the 5% level. 
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In addition, estimated t$ and B coefficients should not be too hghly 
correlated with each other. If they are they tend to be somewhat unstable 
even if they are statistically significant. This topic is discussed in Chapter 8. 

(5) A good model has stat is t idy independnr residuals. An important 
assumption stated in Section 3.2 is that the random shocks ( a , )  are 
independent in a process. We cannot observe the random shocks, but we 
can get estimates of them (designated 6,) at the estimation stage. The 6, are 
called residuals of a model. We test the shocks for independence by 
constructing an acf using the residuals as input data. Then we apply t-tests 
to each estimated residual autocorrelation coefficient and a chi-squared test 
to all of them as a set. These t-tests and chi-squared test are primary tools at 
the diagnostic-checking stage, discussed in detail in Chapter 9. If the 
residuals are statistically independent, this is important evidence that we 
cannot improve the model further by adding more AR or MA terms. 

(6) A good model fits the mi&&& data sufficiently well at tbe estimation 
stage. Of course no model can fit the data perfectly because there is a 
random-shock element present in the data. We use two measures of close- 
ness of fit: the root-mean-squared error (RMSE) and the mean absolute 
percent error (MAPE). These two ideas are discussed in Chapter 8. 

How well is “sufficiently well?” This is a matter of judgment. Some 
decisions require very accurate forecasts while others require only rough 
estimates. The analyst must decide in each case if an ARIMA model fits the 
available data well enough to be used for forecasting. 

(7) Above all, a good model has sufficiently s1114u forecast errom. Al- 
though a good forecasting model will usually fit the past well, it is even 
more important that it forecast the future satisfactorily. To evaluate a model 
by this criterion we must monitor its forecast performance. 

4.2 Two examples of UJM-ARIMA modeling 

In this section we present two examples of the complete UBJ modeling cycle 
of identification, estimation, and diagnostic checking. In both examples the 
data are simulated with a computer: first, a generating mechanism is 
chosen; then, a set of random shocks are generated to represent the purely 
stochastic part of the mechanism. 

Example 1. Consider the realization in Figure 4.1. Inspection suggests 
that the variance of the series is approximately constant through time. But 
the mean could be fluctuating through time. so the series may not be 
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SIHULATED DATA 
--DIFFERENCING: 0 
--EACH VERTICAL AXIS INTERVAL = .212083 
LOW = 
91.62 

MEAN = HIGH = 
97. 1893 101.8 
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I 95.81 
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97. 41 
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97.83 
99.41 
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52 I 
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100.42 
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Figure 4.1 A simulated realization: example 1. 
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stationary. The estimated acf will offer additional clues about the stationar- 
ity of the mean of this realization. If the estimated acf drops quickly to zero, 
this is evidence that the mean of the data is stationary; if the estimated acf 
falls slowly to zero, the mean of the data is probably not stationary. 

Even if the mean is not stationary it is still possible to calculate a single 
sample mean (f) for a given realization. The mean of our realization is 
f = 97.1893, shown in Figure 4.1 as the line running through the center of 
the data. If the mean is stationary it is a fixed, nonstochastic element in the 
data. Our next step is to remove this element temporarily by expressing the 
data in deviations from the mean 2, = z, - f. This allows us to focus on 
the stochastic components of the data. We then employ equations (2.5) and 
(2.9) to find the estimated autocorrelation and partial autocorrelation 
coefficients rk and 4 k k .  

The estimated acf and pacf are shown in Figure 4.2. The estimated 
autocorrelations drop to zero fairly quickly; absolute r-values fall below 1.6 
by lag 3. We conclude that the mean of the realization is stationary and we 
do not difference the data. 

At the identification stage our task is to compare the estimated acf and 
pacf with some common theoretical acfs and pacfs. If we find a match 
between the estimated and theoretical functions, we then select the process 

+ + + + + + + + + + + + + AUTOCORRELATIONS + + + + + + + + + + + + + 
+ FOR DATA SERIES SIflULATED DATA + 
+ D I FFERENC I NG . 0 MEAN = 97 1893 + 
+ DATA COUNT = 60 STD M V  = 2 26619 + 

COEF T-VAL LAG 0 
0 61 4 7 5  1 c 0>>5>>=>3>>>>>>>>>>>> 
0 40 2 33 2 c O>Y>>>>>>>>>l> 
0 19 1 04 3 C O>>>>>> 3 
0 12 0 .65  4 c O>>>> 1 
0 06 0 32 5 c 0>> 1 
0 05 0 25 6 c O>> 3 
0 04  0 21 7 t O> 1 
-0 07 -0 39 8 c <<O I 
-0 09 -6 4 2  9 c <<<O 1 
-0 10 -0 5 5  10 c <c<o 1 

CHI-SQUARED* = 39 54 FOR DF 10 

+ + + + + + + + + + + PARTIAL AUTOCORRELATIONS + + + + + + + + + + + 
COEF 
0. 6 1  
0. 03 

- 0 . 1 0  
0. 06 

-0 .02  
0 .  02 
0 02 

-0.18 
0. 04 
-0 03 

T-VAL LAG 
4 . 7 5  I 
0 26 2 

-0.90 3 
0 . 4 3  4 
-0. 13 5 
0 14 6 
0.12 7 

-1.39 8 
0.35 9 

-0.22 10 

0 
c 0>>>>>>>3>>5>>>>>>>>> 
c o> 3 
c <<<o 3 
c o> > 3 
c co 3 
c O> 3 
c O> 3 
c <<<<<<o 3 
c O> 3 
c <O 3 

Figure 4.2 Estimated acf and pacf calculated from the realization in Figure 4.1. 
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associated with the matching theoretical functions as a tentative model for 
the available data. Keep in mind that we want a parsimonious as well as a 
statistically adequate model. That is, we want a model that fits the data 
adequately and requires the smallest possible number of estimated parame- 
ters. 

The only theoretical acf s and pacf s we have seen so far are those for the 
AR(1) and MA(1) processes shown in Figures 3.4 and 3.5. Can you find a 
theoretical acf and pacf that match the estimated functions in Figure 4.2? 

The closest match is an AR(1) with + I  > 0. As shown in Figure 3.4, the 
theoretical acf for this process decays toward zero on the positive side, while 
the theoretical pacf has a single positive spike at lag 1. This is similar to the 
estimated acf and pacf in Figure 4.2. Therefore, we tentatively select this 
AR( 1) model for our data: 

We now move to the estimation stage. Model (4.1) has two parameters, C 
and requiring estimation. At the estimation stage we obtain accurate 
estimates of these parameters. We now make better use of the available data 
than we did at the identification stage since we estimate only two parame- 
ters. At the identification stage, by contrast, we estimated 21 values (the 
mean plus 10 autocorrelation coefficients plus 10 partial autocorrelation 
coefficients). 

Figure 4.3 shows the results of fitting model (4.1) to the realization in 
Figure 4.1. We get these estimates: 

4l = 0.635 

t = 35.444 

+ + + + + + + + + +€COSTAT UNIVARIATE 8-J RESULTS+ + + + + + + + + + 
+ FOR DATA SERIES: SIMULATED DATA + 
+ DIFFERENCINC: 0 DF = 57 + 
+ AVAILABLE: DATA = 60 BACKCASTS = 0 TOTAL = 60 + 
+ USED TO F I N D  SSR. DATA = 59 BACKCASTS = 0 TOTAL 5 59 + 
+ (LOST DUE TO PRESENCE O F  AUTOREGRESSIVE TERMS: 1 )  + 

COEFFICIENT ESTII 'WTE STD ERROR T-VALUE 
P H I  1 0.635 0. 104 6.  09 
CONSTANT 35.444 10. 1338 3. 49762 

MEAN 97. 1978 . 642306 151. 279 

ADJUSTED RMSE = 1. 79903 MEAN ABS X ERR = 1. 45 
CORRELATIONS 
1 2 

1 1.00 
2 0 . 0 3  1.00 

Figure 4 3  Estimation results for model (4.1 ). 
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I t  happens that is equal to @ ( I  - 6 , )  = 97.1978(1 - 0.635). where p is 
found simultaneously along with 6, by the computer estimation routine.: 
The relationshp between the constant term and the mean is discussed in 
more detail in Chapter 5 .  

Because the absolute value of 6 I is less than 1 .O, we conclude the model is 
stationary. (This topic is discussed further in Chapter 6.) The absolute 
t-values (3.49 and 6.09) attached to are greater than 2.0. so we 
conclude that these estimates are different from zero at better than the 5% 
significance level. 

Next, we subject our tentative model to some diagnostic checks to see if it 
fits the data adequately. Diagnostic checking is related primarily to the 
assumption that the random shocks (a , )  are independent. If the shocks in a 
given model are correlated, the model must be reformulated because it does 
not fully capture the statistical relationship among the i's. That is. the 
shocks are part of the 2's; if the shocks of a model are sigmficantly 
correlated, then there is an important correlation among the i 's that is not 
adequately explained by the model. 

In practice we cannot observe the random shocks. But the residuals ( L i r )  
of an estimated model are estimates of the random shocks. To see how the 
residuals are calculated, solve (4.1) for a,, that is, a, = i ,  - C - q j , ~ , - ~ .  
Although the z values are known, C and 9, are unknown; substitute the 
estimates c = 35.444 and 6l = 0.635. The resulting equation gives estimates 
of the random shocks based on the known 2 ' s  and the estimated parame- 
ten: ci, = i, - C - @li,-l. For t = 1, we cannot find Li, since there is no 
z,- I = io available. But for t = 2 and r = 3. we get the following results: 

and 

1 . .  

Li, = z2 - c - &,z ,  

= 99.08 - 35.444 - 0.635(99.06) 

= 0.733 
- 1  

Li, = z 3  - c - +,i* 

= 98.27 - 35.444 - 0.635(99.08) 

= -0.090 

Other residuals are calculated in a similar manner. 
In diagnostic checking we construct an acf, called a residual acf, using 

the residuals ( 6 , )  of the model as observations. Ths estimated acf is used to 
test the hypothesis that the random shocks ( a , )  are independent. Figure 4.4 

'Some programs first estimate p with the realization mean f and then estimate the 
coefficients. 

and 8 
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shows the residual acf for model (4.1). Because the absolute r-values and the 
chi-squared statistic are all relatively small (none are significant at the 58 
level), we conclude that the random shocks are independent and that model 
(4.1) is statistically adequate. The diagnostic-checking stage is discussed 
more fully in Chapter 9. 

The preceding three-stage procedure is potentially iterative because the 
diagnostic checks might suggest a return to the identification stage and the 
tentative selection of a different model. In this introductory example our 
first try produced an adequate model. Examples of the repetitive application 
of these stages are presented in the case studies in Part 11. Case 2 illustrates 
very well how diagnostic-checking results can send us back to the identifica- 
tion stage to choose an alternative model. When all diagnostic checks are 
satisfied the model is used for forecasting. In Chapter 10 and in several of 
the case studies we show how forecasts are produced. 

Example 2. Consider the data in Figure 4.5. As with the previous 
example, these data were simulated using a computer. Inspection of the data 
indicates that this series has a constant mean and variance. 

Figure 4.6 shows the estimated acf and pacf for this realization. We 
conclude that the mean of the realization is stationary because the estimated 
acf falls off quickly to zero. At the identification stage we tentatively choose 
a model whose theoretical acf and pacf look like the estimated acf and pacf 
calculated from the data. The estimated acf and pacf (in Figure 4.6) are 
similar to the theoretical acf and pacf (in Figure 3.5) associated with an 
MA(1) process where 8 ,  > 0. The estimated acf cuts off to virtually zero 
after lag 1 while the estimated pacf decays toward zero. Therefore, we 
tentatively choose an MA( 1) model to represent this realization. This model 
is written as 

z ,  = c - e,a, - ,  + a, (4.2) 

++RESIDUAL ACF++ 
COEF 5-VAL LAO 

-0.04 -0.31 1 
0. 11 0. 84 2 

-0.09 -0.46 3 
0.04 0. 31 4 

-0.06 -0 .44  5 
0 . 0 0  0 . 0 0  4 
0. 12 0. 88 7 

0 
c<<<o 

O>>>>>>>>>>> 
<<<<<<c<<o 

a>>>> 
<<<<<<O 

0 
O>>>>>>>>>>>> 

-0.11 -0 .84  8 <<<<<<c<<<<o 

-0.01 -0. 07 10 <o 

Figure 4.4 Residual acf for model (4.1). 
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Figure 4.5 A simulated realization: example 2. 
89 



+ + + + + + + + + + + + + AUTOCORRELATIONS + + + + + 
+ FOR DATA SERIES SIMULATED DATA 
+ DIFFERENCIN? 0 MEAN = 
+ DATA COUNT = 60 STD M V  = 

COEF T-VAL L A C  0 
-0 46 -3 53 1 <<<<<.: I*:c:<<Ci<<<i<<C<<<O 
0 01 0 06 2 c 0 

-0 05 -0 34 3 c <<<O 
0 16 1 0 1  4 c O>>>>>>>> 

-0 13 -0 85 5 c <<<<<<<O 
0 01 0 06 6 c 0 
0 00 0 01 7 c 0 
0 0 0  000 8 c 0 
0 06 0 36 9 c O>>> 

-0 16 -1 03 10 c i<<<S':;<O 
CHI-SQUARED* 5 1B 30 FOR DF = 10 

+ + + + + + + +  
+ 

2 5 . 5 2 0 5  + 
1 28263 + 

3 
3 
3 

3 
3 
3 

+ + + + + + + + + + + P A R T I A L  AUTOCORRELATIONS + + + + + + + + + + + 

-0 44 -3 53 1 ;Cii:;~.-:C:.I.iCC<<;<:i<~<<~O 3 
-0 25 -1 94 2 <cc<<<<<<c<<<o 1 
-0 22 -1 67 3 c <<<< ;<c<<cco 3 
0 04 0 32 4 c O>> 1 

-0 05 -0 39 5 c c<<o 3 
-0 07 -0 53 6 c <<<O 3 
-0 05 -0 4 1  7 c <<:<0 3 
-0 07 -0 56 B c cc<co 3 
0 05 0 41 9 c O>>> 1 

-0 15 -1 18 10 c <<<%:<<<<o 1 

Figure 4.6 Estimated acf and pacf calculated from the reahation in Figure 4.5. 

COEF T-VAL LAG 0 

+ + + + + + + + + +ECOSTAT U N I V A R I A T E  B-J RESULTS+ + + + + + + + + + 

+ FOR DATA S E R I E S  S I W L A T E D  DATA + 
+ DIFFERENCING 0 D F  = 58 + 
+ AVAILABLE DATA = 60 BACKCASTS = 0 TOTAL = 60 + 
+ USED TO F I N D  SSR DATA = 60 BACKCASTS = 0 TOTAL = 40 + 
+ (LOST DUE TO PRESENCE OF AUTORECRESSIVE TERMS 0 )  + 

COEFFIC IENT E S T I R A T E  STD ERROR T-VALUE 
T!iETA 1 0 631 0 101 o 27 
CONSTANT 25 5 1 9 4  5 3 7 1 9 2 E - 0 1  475 053 

REAN 25 5194 537192E-01 475 053 

ADJ'JSTED RRSF = 1 10313 MEAN ABS Z ERR = 3 59 
CORRELATIONS 
1 1 

1 1 00 
2 0 00 1 GO 

Figure 4.7 Estimation results for model (4.2). 
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++RESIDUAL ACF++ 
COEF T-VAL LAC 0 
0 00 0 00 1 0 
0 01 0 06 2 O> 
0 00 0 01 3 0 
0 11 0 83 4 O>>>>>>>>>>> 

-0 11 -0 88 5 *:<<':<<<<<<<O 
-0 06 -0 45 6 <<<<<<o 
-0 04 -0 29 7 c<<<o 
-0 03 -0 24 8 <<<o 
-0 03 -0 26 9 <<<O 
-0 17 -1 28 10 i<<<<<<<ci<<<<<<<o 

Figure 4.8 Residual acf for model (4.2). 
CHI-SQUARED* = 4 32 FOR DF = 8 

Now we are ready for the estimation stage, where we reuse the realization 
to estimate C and 8, .  Estimation results appear in Figure 4.7. The estimated 
parameters are 

6, = 0.631 

c = 25.5194 

In this case, 
Because the absolute value of 8, is less than one, we conclude that this 

model is invertible. (The concept of invertibility is explained in Chapter 6.) 
The r-values of 475.05 for c and 6.27 for 6, indicate that these estimates are 
significantly different from zero at better than the 5% level. Thus far the 
model is acceptable. 

Next. we do some diagnostic checking. As in the previous example we 
test the hypothesis that the shocks ( a , )  are statistically independent by 
constructing an acf using the model's residuals (b,). The residual acf is 
shown in Figure 4.8. The r-values and the chi-squared statistic are all 
relatively small, allowing us to conclude that the random shocks of model 
(4.2) are independent. We have found a satisfactory model-one that is 
both parsimonious and statistically adequate. 

You should now be able to read the first several case studies in Part 11. 
although some of the points will not be clear until you have read Chapters 

is equal to f i ,  the estimated mean of the realization. 

5-12. 

Summary 

1. A model is an imitation of the underlying process derived from 
analysis of the available data. 
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2. A good ARIMA model 
(a) is parsimonious; 
(b) is stationary; 
(c) is invertible; 
(d) has high-quality estimated coefficients; 
(e) has statistically independent residuals; 
(0 
(g) forecasts the future satisfactorily. 

fits the available data satisfactorily; and 

Questions and Problems 

4.1 State the principle of parsimony. 

4.2 Why is the principle of parsimony considered important? 

4.3 How do we test whether the random shocks of a tentatively selected 
model are statistically independent? 

4.4 Construct an ARIMA model for the following three realizations by 
subjecting them to the UBJ procedure of identification, estimation. and 
diagnostic checking. Defend your final model in terms of the characteristics 
of a good model (see Table 4.1). You may find this to be a difficult exercise 
since we have not yet discussed all the relevant details. Nevertheless, 
analyzing these realizations should help you develop a better understanding 
of the three stages in the UBJ method. 

Realization I 

t z ,  t z ,  t Z I  t 2 ,  

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 

0.6 1 
0.85 
0.4 1 
1.24 
0.95 
0.94 
0.65 

- 0.04 
0.76 
1.47 
1.39 
0.66 
0.17 

- 0.73 
- 0.52 

16 - 1.45 
17 -2.77 
18 -1.19 
19 0.17 
20 -0.43 
21 - 1.82 
22 -0.47 
23 0.5 
24 -0.33 
25 - 1.33 
26 0.46 
27 0.43 
28 -0.36 
29 - 1.42 
30 - 1.65 

31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 

- 0.42 
- 0.64 
- 1.58 
- 0.74 

0.77 
0.17 
0.75 

-0.18 
- 0.34 

1.29 
1.01 

- 0.23 
- 2.12 

0.48 
0.59 

46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 

0.10 
0.0 1 
0.24 

- 1.46 
- 0.85 
- 1.28 
- 0.92 

0.96 
1.24 
0.17 
0.20 
0.92 
0.86 

- 0.56 
0.12 
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Realization I I 

f z ,  t 2 ,  

1 1.36 

3 0.52 
2 -0.19 

4 -0.07 
5 -0.17 
6 -0.58 
7 1.58 
8 -0.46 
9 0.33 

10 -0.76 
11 0.71 
12 -0.03 
13 1.23 
14 -1.19 
15 1.37 

t z ,  

16 -0.54 
17 0.49 
18 -0.31 
19 0.30 
20 -2.02 
21 1.58 
22 -0.16 
23 -0.68 
24 -0.12 
25 -0.41 
26 0.37 

28 0.04 

30 1.03 

27 - 1.75 

29 -1.31 

31 1.10 
32 -0.16 
33 -0.49 
34 -0.33 
35 -0.62 
36 1.68 
37 - 1.54 
38 0.75 
39 -0.10 
40 -0.99 
41 1.38 
42 - 1.49 
43 0.50 
44 -0.65 
45 0.79 

Realization III 

t zt 7 
- 1  t 

46 -2.62 
47 2.61 
48 0 
49 1.67 
50 - 1.68 
51 1.78 
52 -0.53 
53 -0.21 
54 0.76 
55 -2.25 
56 2.47 
57 -0.93 
58 0.50 
59 1.26 
60 -0.16 

1 -0.36 
2 0.55 
3 0.13 
4 - 1.27 
5 1.36 
6 -0.18 
7 0.11 
8 -0.79 
9 -0.11 

10 0.53 
11 0.39 
12 0.47 
13 -1.30 
14 -2.38 
15 -2.31 

16 -2.49 
17 -2.57 
18 -1.63 
19 -2.03 
20 -1.10 
21 -1.09 
22 -0.42 
23 -2.13 
24 -0.25 
25 1.58 
26 0.29 
27 1.20 
28 0.78 
29 0.29 
30 -1.09 

31 0.04 
32 1.08 
33 1.23 
34 0.13 
35 -0.50 
36 2.19 
37 0.99 
38 0.72 
39 1.35 
40 -0.54 
41 1.24 
42 0.57 
43 1.35 
44 0.30 
45 1.13 

46 1.78 
47 3.24 
48 2.29 
49 0.52 
50 2.22 
51 1.34 
52 1.35 
53 0.17 
54 1.59 
55 - 1.04 
56 1.21 
57 0.06 
58 -0.26 
59 -0.66 
60 -0.24 



5 
NOTATION AND 
THE INTERPRETATION 
OF ARIMA MODELS 

In Chapters 1-4 we introduced the basic definitions, statistical concepts, 
and modeling procedures of the UBJ-ARIMA forecasting method. 

In the present chapter we first discuss some of the terminology and 
notation associated with ARIMA models. You must become familiar with 
this notation in order to read UBJ-ARIMA literature with ease. If you are 
familiar with basic high school algebra you should not have serious diffi- 
culty understanding and using ARIMA notation. The only requirement is 
that you perform the indicated algebraic manipulations yourseu. This takes 
time, but it is necessary and not difficult. 

Next, we consider how ARIMA models can be interpreted in common- 
sense ways. This is especially important for the practicing forecaster who 
must give managers an intuitive explanation of ARIMA models. 

In discussing the interpretation of ARIMA models, we demonstrate a 
very important result-AR terms and MA terms are algebraically inter- 
changeable (though not on a simple one-for-one basis). In Section 5.3 we 
show that an MA(1) process is equivalent to an AR process of infinitely 
high order; in Section 5.4 we show that an AR( 1) process is equivalent to an 
MA process of infinitely high order. This interchangeability of AR and MA 
terms is important in practice since our objective is to find the most 
parsimonious model that adequately represents a data series. If we can 
substitute a few AR terms for many MA terms, or a few MA terms for 
many AR terms, we satisfy the principle of parsimony. 
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In Chapter 6 we return to a discussion of the concepts underlying the 
identification stage of the UBJ method. 

5.1 Three processes and ARIMA( p ,  d,q) notation 

In Chapter 3 we presented the ordinary algebraic form of two common 
ARIMA processes, the AR( 1) and the MA( 1): 

Here are three additional processes to consider: 

Equation (5.3) is called an AR(2) process because it contains only AR 
terms (in addition to the constant term and the current random shock), and 
the maximum time lag on the AR terms is two. Process (5.4) is called an 
MA(2) since it has only MA terms, with a maximum time lag on the MA 
terms of two. Equation (5.5) is an example of a mixed process-it contains 
both AR and MA terms. It is an A M (  1.1) process because the AR order 
is one and the MA order is also one. 

We may generalize from these examples. Let the AR order of a process 
be designated p,  where p is some non-negative integer. Let q, also a 
non-negative integer, be the MA order of a process. Let d, another non- 
negative integer, stand for the number of times a realization must be 
differenced to achieve a stationary mean.* After a differenced series has 
been modeled, it is zntegrured d times to return the data to the appropriate 
overall level. (Integration is discussed in Chapter 7.) The letter “I” in the 
acronym ARIMA refers to this integration step, and it corresponds to the 
number of times (d)  the original series has been differenced; if a series has 
been differenced d times, it must subsequently be integrated d times to 
return it to its original overall level. 

‘Stationarity and differencing were discussed in Chapters 1-3. 
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ARIMA processes are characterized by the values of p ,  d, and q in this 
manner: ARIMA( p, d. q). For example, equation (5.3) is an ARIMA(2,0,0) 
process, or simply an AR(2). Equation (5.4) is an ARIMA(O,O, 2) process, 
or an MA(2). And (5.5) is an ARIMA(l,O, 1) or an ARMA(1,I). This 
notation becomes more complicated when we deal with a certain type of 
seasonal process; but as we will see in Chapter 11 the basic idea remains the 
same for seasonal models also. 

Some coefficients with lags less than the order of a process could be zero. 
For example, if 8 ,  in process (5.4) is zero, that process is written more 
simply as 

z, = C - + a,.  

Equation (5.6) is still an MA(2) process because the maximum lag on past 
random shock terms is two. 

5.2 Backshift notation 

ARIMA models are often written in backshift notation. You must become 
familiar with this notation if you want to thoroughly understand time-series 
literature. 

Some students find backshift notation difficult at first. However, with a 
little patience and some practice you should find backshift notation rela- 
tively easy to understand and convenient to use. The important thing is to 
practice translating ARIMA models written in backshift form into both 
ARIMA( p ,  d, q )  form and common algebraic form. (Take out a pencil and 
some scratch paper. You will need them as you read this chapter.) 
Keep in mind that backshift notation involves no new statistical con- 

cepts. It is merely a convenient way of writing ARIMA processes and 
models. 

We utilize the backshift operator B, which operates in this way: if we 
multiply I, by B ,  we get 2,- ,. That is, 

Bz, = 2,- 1 (5.7) 

The operator may be unlike any other you have seen in algebra. You will 
avoid confusion if you do not think of B as a number. Although we treat B 
like other algebraic terms (e.g., we may raise it to a power), it does not stand 
for a number. 

To make common sense of the B symbol, recall equation (5.7). It states B 
is meaningful because it shifts time subscripts. When you see B in an 
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algebraic expression, remember that B must be multiplied by some other 
variable, such as z ,  or u,. B is meaningful, then, because it alters the time 
subscript on the variable by which it is multiplied, as stated in (5.7).* 

In equation (5.7) the exponent of B is one. Since any number raised to 
the power one is that same number, we need not explicitly write the 
exponent when it is one. But the exponent of B might be two, for example. 
Multiplying z ,  by B 2  gives 

B2z,  = z , - ~  (5.8) 

The same pattern holds for other exponents of B. In general, multiplying 
z ,  by Bk gives z , - ~ .  Thus, by definition, 

Bkz,  =; z I h k  (5.9) 

Multiplying a constant by Bk does not affect the constant, regardless of 
the value of k, because constants lack time subscripts. For example, let C be 
a constant. Then 

BC = C 

B2C = C 

BkC = C (5.10) 

We can extend the above definitions of how B operates to write the 
differencing operator (1 - B ) .  (Recall that some data series must be dif- 
ferenced to induce a stationary mean before being modeled with the 
UBJ-ARIMA method.) Multiplying z, by (1  - B )  produces the first dif- 
ferences of I,: 

(1 - B ) z ,  = i, - z,-, (5.1 1) 

There is really nothing new in equation (5.1 1). It is merely an extension of 
equation (5.7). If we expand the LHS of (5.11) and recall from (5.7) that 
Bz, =: 2,- ,, we get 

(1  - B ) z ,  = 2 ,  - Bz, 

= 2,  - i,-, 

thus showing that (5.11) is indeed correct. 

(5.12) 

'Note that B may not operate on a function of :, or a , .  such as z f .  
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Again, you should not think of B as a number. Thus ( 1  - B )  is not a 
numerical value; it is an operator. ( 1  - B )  has a common-sense meaning 
only when it is multiplied by a variable. When you see the operator (1  - B ) ,  
recall equation (5.1 1). It shows that ( 1  - B )  multiplied by a time-sequenced 
variable is just another way of writing the first differences of that variable. 

In (5.1 1) the differencing operator (1 - B) is raised to the power one. 
Multiplying z ,  by (1 - B ) 2  would produce the second differences of 2,. In 
general, multiplying z ,  by (1 - B ) d  gives the dth differences of z,. Of 
course, if d = 0, then (1 - B)d  is equal to one. In that case we need not 
explicitly multiply z ,  by the differencing operator. 

Let us demonstrate that (1 - B)’z, is the same as the second differences 
of z ,  (designated w,). The first differences of t, are z ,  - z+,. The second 
differences of z ,  are the first differences of the first differences; that is, 
subtract from any given first difference ( z ,  - z,-  I )  the previous first dif- 
ference ( z ,  - - z ,  - ’): 

w, = (2, - Zr-1) - ( Z r - 1  - z , -2 )  

= z ,  - 2z,-1 + z,-2 (5.13) 

To show that (1 - B ) 2 z ,  is identical to (5.13) expand the operator (1  - B)’ 
and apply definition (5.9): 

(1  - B)’z ,  = (1 - 2B + B ’ ) z ,  

= Z, - ~ B z ,  + B’z, 

= z ,  - 2Z,-I + z,-2 (5.14) 

We see that (1  - B ) 2 z ,  is a compact and convenient way of writing the 
second differences of z,. 

In Chapter 2 we introduced the idea of expressing data in deviations 
from the realization mean (Z), defining 2, = z, - i. When writing a process 
in backshift form we write the random variable z, in deviations from the 
process mean ( p ) ,  defining f, = z, - p.  Thus the symbol 2, does double 
duty. When referring to a realization or a model based on a realization, Z, 
stands for deviations from the realization mean Z. When referring to a 
process, Z, stands for deviations from the process mean p. 

We are now ready to write some nonseasonal processes in backshift form. 
The procedure is given by these six steps: 

1. Start with a variable L, that has been transformed (if necessary) so it 
has a constant variance. 
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Write z, in deviations from its mean: 2, = z ,  - p. 
Multiply 2, by the differencing operator (1 - B ) d  to ensure that we 
have a variable whose mean is stationary. 
Multiply the result from step 3 by the AR operafor whose general 
form is (1 - cplB - +zBz - . - .  - +,Bp). For a specific process, 
assign the appropriate numerical value top, the order of the AR part 
of the process. If any cp coefficients with subscripts less than p are 
zero, exclude those terms from the AR operator. 
Multiply the random shock a, by the MA operator whose general 
form is (1 - 8 , B  - 8,B2 - - . .  - OqB9). For a specific process, as- 
sign the appropriate numerical value to q,  the order of the MA 
portion of the process. If any 8 coefficients at lags less than q are 
zero, exclude them from the MA operator. 
Equate the results from steps 4 and 5.  

2. 
3. 

4. 

5. 

6. 

Combining the above six steps, a nonseasonal process in backshift 
notation has this general form (numbers in parentheses represent steps): 

Equation (5.15) can be written in a compact form that often appears in 
time-series literature. Define the following symbols: 

Vd" ( 1  - 

+( B )  = (1 - $ , B  - +zB2 - . . - - +,BP)  

Substituting each of these definitions into (5.15) we get 

Although we do not use this compact notation very often in thls book (it is 
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useful in Chapter ll),  you may see similar notation in other texts or in 
professional journal articles dealing with ARIMA models. Remember that 
(5.16) is merely a compact way of saying that the random variable z, evolves 
according to an ARIMA( p ,  d ,  q )  process. 

We now consider some examples of models in backshift form. We first 
show the common algebraic form of a process, and then we follow the six 
steps to write the process in backshift notation. We then apply rules (5.9) 
and (5.10) to demonstrate that the backshift form and the common alge- 
braic form are identical. 

Example 1. Consider an AR(2) process. Let z, have a constant mean 
and variance so no transformations are necessary. The common algebraic 
form of a stationary AR(2) process, seen earlier in (5.3), is 

(5.17) 2, = c + 4+2,-i + +22f,-2 + a, 

To write this in backshift notation, follow the six steps. Step 1 is satisfied 
by assumption. At step 2, express z, in deviations from the mean f, = z, - p. 
At step 3, multiply this result by the differencing operator (1 - B)d .  
Because I, already has a constant mean, no differencing is required, so 
d = 0. Therefore, (1 - B ) d  = 1 and we need not write out this term 
explicitly. Now multiply t, by the appropriate AR operator (step 4). For an 
AR(2) process, p = 2. Therefore, the required AR operator is (1 - B - 
$2B2). Next, multiply u, by the appropriate MA operator (step 5). Since 
q = 0 for an AR(2), the MA operator collapses to 1. Finally (step 6), equate 
the results from steps 4 and 5 to obtain 

( 1  - C $ ~ B - + ~ B ~ ) I , = U ,  (5.18) 

We want to show that (5.17), the common algebraic form. and (5.18), the 
backshift form, are identical. First, expand the LHS of (5.18) and move all 
terms except 2, to the RHS to obtain 

2, = BZ, + +2 B’Z, + a,  (5.19) 

Next, apply rule (5.9) to get 

2, = + i q - i  + @2f,-, + a,  (5.20) 

The only difference between (5.20) and (5.17) is that in (5.20) z, is 
expressed in deviations from the mean. Substituting (z, - I*) for i, in (5.20) 
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and rearranging terms we get 

Now let C = p(1 - + I  - Cp2) and we have (5.17). 
In this example the constant term is not the same as the mean, but it is 

related to the mean. Th~s is true for all processes containing AR terms. The 
constant term of an ARIMA process is equal to the mean times the quantity 
one minus the sum of the AR coefficients:* 

(5.21) 

According to (5.21) if no AR terms are present the constant term C is 
equal to the mean p. This is true for all pure MA processes. 

Example 2. Consider a process for a variable (z,)  which must be 
differenced once because its mean is not constant. Suppose the first dif- 
ferences of z ,  are a series of independent random shocks. That is, 

z ,  - z,-1 = a, (5.22) 

To write t h s  in backshift form, begin by expressing z, in deviations from 
the mean. Then, to account for the differencing, multiply 2, by the backshift 
operator with d = 1. Both the AR and MA operators collapse to one in this 
example becausep = q = 0, so we may ignore them. Equating terms (step 6) 

(1 - B ) i ,  = a ,  (5.23) 

To show that (5.22) and (5.23) are identical, substitute z, - p for 2, and 
expand the LHS of (5.23): 

Z, - Bz, - p + Bp = CI ,  (5.24) 

Apply (5.9) and (5.10) to (5.24). The p terms add to zero so 

z ,  - Z, - I  = a, (5 .25)  

which is identical to (5.22). 

'As noted in Chapter 1 I .  for certain lunds of seasonal models the constant term is somewhat 
different from (5.21). but the basic idea remains the same. 
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Note that p dropped out when the differencing operator was applied to 
(z, - p). This happens with any process when d > 0. This result for 
processes parallels an earlier statement in Chapter 2 that differencing a 
reahation usually produces a new series with a mean that is not statistically 
different from zero. 

If (5.25) were intended to represent a data series whose first differences 
had a mean significantly different from zero, we could insert a constant 
term on the RHS of (5.25). This point is discussed more fully in Chapter 7. 
For now, we emphasize ths point: in practice, differencing a realization 
often induces a mean of zero so that insertion of a constant term in the 
model after differencing is not needed. This result is especially common for 
data in business, economics, and other social science disciplines. The 
corresponding algebraic result for processes, as shown in equations 
(5.23)-(5.25). is that the p terms add to zero (and the constant term is 
therefore zero) when d > 0. 

Notation and the interpretation of ARIMA models 

Example 3. Consider an ARIMA(1, 1, l )  process. Let the variable I, 
have a constant variance. Because d = 1, the AR terms apply to the first 
differences of z,  rather than to z, itself. Therefore, this process is written in 
common algebra as 

Because d = 1, the LHS variable is not I, but the first differences of z,. 
Likewise, the AR coefficient is attached to the first differences of z,- I rather 
than to 2,- I .  

To write the ARIMA(1, 1 , l )  in backshift notation, follow the same six 
steps defined earlier. Work through those steps yourself to see if you arrive 
at the following result: 

(1 - +,B)(l - B)Z, = ( 1  - 8,B)a, (5.27) 

Start with the deviations of z, from p (step 2). Multiplying 2, by (1 - B) 
gives the first differences of z ,  (step 3). Apply the AR operator to t h s  result 
(step 4) and multiply u, by the MA operator (step 5). Step 6 gives (5.27). 

To show that (5.26) and (5.27) are identical, substitute z ,  - p for f, and 
expand both sides of (5.27) to get 

(5 .28)  
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Apply rules (5.9) and (5.10) to (5.28). The p terms add to zero. Rearrange 
and collect terms to get (5.26). 

Note that C = 0, implying from equation (5.21) that the first differences 
have a mean of zero. This is the same result we obtained in Example 2. If 
this result were not true for a data series whose behavior is otherwise 
well-represented by (5.27). we could insert a nonzero constant term on the 
RHS of that model to reflect the nonzero mean of the differenced data. 

You should check your understanding of ARIMA( p ,  d, q )  and backshift 
notation by doing the exercises at the end of this chapter. 

5.3 Interpreting ARIMA models I: optimal extrapolation of 
past values of a single series 

In this section and the next two sections we discuss the interpretation of 
ARIMA models. This is important since many analysts and managers who 
use statistical forecasts prefer techniques that can be interpreted in a 
common-sense or intuitive way. 

There is no general, definitive interpretation of ARIMA models. How- 
ever, we will discuss some ideas to help you see that many ARIMA models 
can be rationalized. 

We discuss how ARIMA forecasts can be interpreted as optimal extrupo- 
lations of past oaiues of the given series. “Optimal” refers to the fact that a 
properly constructed ARIMA model has a smaller forecast-error variance 
than any other linear univariate model. This optimal quality of ARIMA 
forecasts is discussed further in Chapter 10. 

In ths section we assume that we have a properly constructed ARIMA 
model (one that is parsimonious and statistically adequate). We want to 
show that all three major components of such a model-the constant term, 
the AR terms, and the MA terms-represent past z values with certain 
weights attached. Therefore, we may interpret ARIMA forecasts as optimal 
extrapolations of past values of the series. 

This point is most easily demonstrated for the AR terms. We have 
already seen that the AR portion of an ARIMA model is simply the sum of 
selected past z values, each with a weight (a 9 coefficient) assigned to it. In 
practice we must use estimated @’s (designated 6) found at the estimation 
stage, so we have the AR part of a model equal to 

412,- I + iJ2z,-2 + . . . + 4 p z , - p  

Clearly, a forecast of z, based on this portion of an ARIMA model involves 
the extrapolation of past z ’ s  (z,-- ,, z , - * , .  . . , z , - ~ )  into the future. 
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(5.21) we know that (for a nonseasonal process) the constant term is 
It is also easy to show that the constant term reflects only past 2's. From 

P 

C = p  1 - m) i 1 - 1  

In practice we have only an estimated mean @ and we replace each 9 with 
its estimated value (6). Therefore, the estimated constant term is 

An estimated mean $ is clearly a combination of past' z 's. The quantity 
(1 - Z4,) is simply a weight assigned to @. Therefore, a forecast of t, based 
on the constant term in an ARIMA model also represents an extrapolation 
of past t 's into the future. 

It is more difficult to show that MA terms represent past z 's. Rather than 
prove it rigorously for the general case, we demonstrate it for the MA(1). 
We will find that the MA( 1) process can be interpreted as an AR process of 
infinitely high order. (We show this result using a theorem about geometric 
series, but it can also be shown using ordinary algebraic substitution. See 
problem 5.3 at the end of the chapter.) 

Start with an MA(1) process. In backshift form ths  is 

P, = (1  - e , B ) a ,  (5.29) 

Dividing both sides of (5.29) by (1 - B I B )  gives 

Now, a theorem about geometric series states that if I@,( < 1, then ( 1  - 
6 ,  B ) -  I is the sum of a convergent infinite series: 

Substituting (5.31) into (5.30), we get 

( 1  + e , B  + e p Z  + 8 ; ~ ~  + - . . )P, = U ,  (5.32) 

You should be able to see that (5.32) is an AR process of infinitely high 
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order with the 9 coefficients following this pattern: 

In practice we have only an estimate of 8 ,  (designated el), and estimates 
of the (I, series (designated 6,). Furthermore, we would use the more 
compact MA form (5.29) rather than the expanded AR form (5.32) to 
produce fo:ecasts because the principle of parsimony dictates that we use a 
few MA terms in place of many AR terms whenever possible. Nevertheless, 
we see from (5.32) that an MA( 1) model can be interpreted as an AR model 
of infinitely high order. The same is true for any pure MA model, and for 
the MA portion of any rnixed ARIMA model. Therefore, we can interpret 
the MA portion of a properly constructed ARIMA model as representing a 
large number of past 2’s with certain weights attached. Thus all three parts 
of a properly constructed ARIMA model-the AR terms, the constant 
term, and the MA terms-taken together, can be interpreted as providing 
an optimal extrapolation of past values of the given series. 

5.4 Interpreting ARIMA models 11: rationalizing them from 
their context 

The emphasis in ARIMA forecasting tends to be on finding statistical 
patterns regardless of the reason for those patterns. But it is also true that 
ARIMA models can often provide a reasonable representation of the 
behavior of a data series; that is, they can be interpreted in a common-sense 
way based on insight into the nature of the data. In this section we present 
some examples to show how ARIh4A models can sometimes be rationalized 
from their context. 

Example 1. Suppose there are hundreds of financial analysts studying a 
corporation. They decide to buy or sell shares of this company by compar- 
ing it with the alternatives. These analysts attempt to use all available 
information (as long as the expected benefits exceed the expected costs of 
acquiring the information) as they monitor the price of the company’s stock 
and try to estimate the size and stability of future earnings. News about 
events affecting this firm is disseminated quickly and at low cost to all 
interested parties. The shares are traded continuously in a market with low 
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transaction costs. Under these conditions, it is reasonable to suppose that 
new information will be reflected in the price of the shares quite rapidly. 

These circumstances imply that past prices contain virtually no informa- 
tion that would allow an analyst to forecast future price changes so as to 
repfarly make above-normal trading profits. After all, if past price patterns 
could be exploited in t h s  way, people watchng this stock would learn about 
the patterns and try to take advantage of them. This collective action would 
quickly raise or lower the stock price to a level where the chance for unusual 
gain would disappear. Therefore, past prices would cease to show patterns 
that could be exploited with any consistency. 

From the preceding argument, a stock-price forecasting model bused only 
on pusr prices would state that the change in price ( 2 ,  - z, - , ) is independent 
of past prices; the model would consist of a series of independent random 
shocks. Price changes would reflect only h g s  other than past prices, plus 
the current irregular errors of judgment that the market participants cannot 
avoid entirely. We are not saying that all information about this firm is 
useless; rather, we are saying that knowledge of past prices would not help 
in forecasting future price changes. In backshft form this model is 

( 1  - B ) i ,  = a,  (5.33) 

Expanding the LHS and applying the rules for the backshift operator 
gives the following common algebraic form for this model: 

z ,  - Z,-I = a ,  

or 

2, = z,-1 + a, (5.34) 

(What happened to the p term implicit in &?) Equation (5.34) is the famous 
random-walk model implied by the efficient-markets hypothesis. It has been 
found to be a good model for many stock-price series (see Part 11, Case 6). 

The concept of a random walk plays an important role in the analysis of 
nonstationary data series, discussed further in Chapter 7. According to 
(5.33), the series L, is differenced once: the exponent d of the differencing 
operator (1 - B ) d  is one. In Chapter 2 we noted that many series without a 
fixed mean can be transformed into stationary series by differencing. 
Equation (5.34) describes a series z, that requires differencing because it 
does not have a fixed mean. I t  says that I, moves at random starting from 
the immediately prior value (z,- ,) rather than starting from a fixed central 
value. 



Interpreting ARIMA models I 1  rationalization 107 

Example 2.* A national computer-dating service has a pool of clients. 
The list is updated each week. The number in each week's pool (z,) is 
composed of several parts. We begin with a constant fraction ( G I )  of last 
week's pool (z,-~) that remains in the pool this week. The fraction of last 
week's pool no longer in the pool this week is therefore (1  - G I ) .  Thus 

represents the number of people from last week remaining in the 
pool, and (1 - +l )z , - l  represents the sum of those who cancel their 
registration plus those who are successfully matched with someone else by 
the computer. 

Next, we add a number (C') of new clients registering each week. The 
number of new clients fluctuates randomly about a fixed central value. That 
is, C' has a fixed component C and an additive white-noise (Normal 
random-shock) element a,, and is defined as C' = C + u,. 

Let the fixed number C added each week be equal to the overall mean of 
the weekly pool ( p )  times the fraction (1  - G I )  lost each week due to 
cancellation or a successful match, C = p(l - G I ) .  In other words. we let 
the series mean be stationary; the fixed number added each week (C) is just 
enough to keep the mean level of the pool ( p )  constant through time. But 
because u, is part of C', t, will fluctuate randomly around p. 

Combining the above elements, we get the following AR( 1 )  model: 

whch in backshift form is 

(1 - ~ , B ) Z ,  = a, 

(5.35) 

(5.36) 

Example 3. A chemical process generates an hourly yield (z,) of an 
output. The yield is fixed at a certain level ( p )  if the two input chemicals are 
combined in a 3: 1 ratio. But z, varies around p because the input ratio vanes 
randomly around 3:l due to measurement error. Furthermore, when the 
input ratio is not 3:1, there are several trace by-products left in the 
processing tank that are dispersed gradually over many hours. The exact 
combination of by-products depends on the input ratio. Some of the 
by-products raise future hourly yields, whle other by-products lower future 
yields. 

Any trace by-products are effectively dispersed after q hours. Then the 
hourly yield follows an MA(q) process: 

i, = p - @,a,-, - f32u,-2 - - . -  - 4 p r - q  + a, 

'The next two examples are adapted irom Granger and Newbold 117. pp. 15 and 23-24]. 
Adapted by permission of the authors and publisher. 
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or 

2,s  (1 - BIB - 8,BZ - - * -  - B,B9)a ,  (5.37) 

If the input ratio is always exactly 3:l. all the random shocks are zero 
and z, = p .  When the input ratio varies around 3:1, it causes the yield to 
deviate from p by amount Q,. The resulting by-products cause further 
deviations from p for up to q hours. 

We have rationalized the use of an MA(q) process to represent the above 
situation. But in practice it might be possible to represent realizations 
generated by (5.37) more parsimoniously with an AR model. In order to see 
how this is possible, write the AR( 1) in backshift form: 

(1 - +,B)Z ,  = a, (5.38) 

Divide both sides of (5.38) by (1  - + , B ) :  

if = (1 - + l B ) - l Q ,  (5.39) 

Now apply a mathematical theorem about geometric series, which states 
that if 1 + 1 1  c 1, then (1 - + , B ) - ’  is equivalent to a convergent infinite 
series, that is, 

(1 - + l B ) - l  = (1  + + , B  + +:B2 + +:B3 + -..) ,  if 1+,1 < 1 (5.40) 

Substitute (5.40) into (5.39) to get an MA process of infinitely high order: 

where 

8 ,  = - + I  

e, = -+; 
8, = -+; 

(5.42) 

Therefore, if q in process (5.37) is large, and if (5.42) is a reasonable 
representation of the pattern of the B coefficients in (5.37), an AR( 1) model 
will fit the data generated by (5.37) about as well as an MA(q) model even 
though (5.37) is, strictly speaking, an MA(q) process. In fact. the AR(1) 
model would likely produce more accurate forecasts because it is more 
parsimonious. 

Example 3 illustrates two important points. First, any pure MA process 
can be written as an AR process of infinitely high order. Second, our 
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objective in UBJ modeling is not necessarily to find the true process that has 
generated the data, but rather to find a good model (a parsimonious and 
statistically adequate imitation of the process) as discussed in Chapter 4. 

5.5 Interpreting ARIMA Models III: ARIMA(O,d,q) models 
as exponentially weighted moving averages 

Many practicing forecasters are familiar with a univariate method called the 
exponentially weighted moving aoerage, abbreviated EWMA. This method is 
often used in business planning, especially when forecasts are needed for 
hundreds or thousands of inventory items. It is relatively easy to use and is 
intuitively appealing. But the method is sometimes used largely out of habit, 
with little consideration given to whether an EWMA model is appropriate 
for the data. In this section we explain the idea behind the simplest kind of 
EWMA and show that the ARIMA(O,l, 1) model can be interpreted as an 
EWMA. 

The EWMA model involves a certain kind of averaging of past observa- 
tions. It  may be helpful if we start with a simpler, more familiar averaging 
procedure that could be used for forecasting-the ordinary arithmetic mean 
2. As usual, P is formed by summing n available observations on z, and 
dividing by the number of observations: 

Table 5.1 Calculation of the arithmetic 
mean for a short realization 

t ZrU 

1 10 
2 9 
3 9 
4 12 
5 9 
6 1 1  
7 9 
8 8 
9 1 1  

10 I2 

(5.43) 

T z ,  = loo; z = 1oo/10 = 10. 
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Table 5.1 illustrates these calculations with a short data series. Figure 5.1 
shows a graph of the data. The ten available observations sum to 100. 
Dividing t h s  sum by the number of observations (ten) gives an arithmetic 
mean of 10. It appears that the data are stationary (see Figure 5.1); in 
particular, they seem to move about a constant mean, estimated from the 
available data to be 10. 

Using this method, the forecast for period 11 is the previously calculated 
mean (10). The intuitive idea behnd this type of forecast is that the future 
values of z, may be something like the past values. If the data tend to 
fluctuate around a fixed central value. perhaps the arithmetic mean will give 
fairly good forecasts. (Recall that the mean appears in an ARIMA model as 
part of the constant term.) 

The arithmetic mean is a specific case of a more general idea. the 
weighted mean. In a weighted mean ( fc), each observation is multiplied by a 
weight (c , ) .  Then the weighted observations are summed, and ths  sum is 
divided by the sum of the weights: 

(5.44) 

In the special case of the ordinary arithmetic mean, each weight is equal to 
one and there are n weights; the weights sum to n. 

z I 

:E 2 

I I I I I I l i l l l  * I  

1 2  3 4 5 6 7 8 9 10 

Figure 5.1 
arithmetic mean 2. 

Plot of the realization shown in Table 5.1 and a forecast based on the 
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Now consider the EWMA. Forecasting with an EWMA model also 
involves averaging past observations, but the weights are not all equal to 
one. Instead, the weights applied to recent observations are larger than the 
weights applied to earlier observations. This weighting structure has a 
common-sense appeal; it seems reasonable that the recent past would be a 
better guide to the immediate future than would the distant past. Forecast- 
ing with an EWMA model allows for this possibility. Such an emphasis on 
the recent past is especially appealing if a data series does not fluctuate 
around a fixed central value. For this type of data, a forecast emphasizing 
the last few observations seems more sensible than a forecast emphasizing 
all past observations equally. That is, if the data show little tendency to 
return to the level of earlier observations, then we should not use a forecast 
(such as the arithmetic mean) that gives much weight to early values. 

A common form of the EWMA expresses the forecast for time t (desig- 
nated 2,) as a weighted mean of the latest observation ( z , -  ,) and the last 
forecast (2,- ,): 

where 

8, is a positive fraction. It is the weight applied to the last forecast 2,- ,. 
(1  - el), also a positive fraction, is the weight applied to the last observa- 
tion I,- ,. These weights sum to one, so we need not divide explicitly by the 
sum of the weights on the RHS of (5.45) to find our weighted average, since 
dividing by one would not alter the result. 

Equation (5.45) is a computationally convenient form of the EWMA 
because it requires knowledge of only three items: the weight 8,, the last 
observation 2,- ,, and the last forecast 2,- ,. By making some algebraic 
substitutions, we can express z, in a form less computationally convenient, 
but whch shows that the EWMA is, in fact, a weighted average of all past 
observations.* The result is the following infinite series: 

'Consider that (5.45) implies 

= ( I  - e,)z,-2 + 
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As long as l@,I < 1, it can be shown that the weights ir. (5.46) decline 
geometrically and sum to one. As an example, suppose 8, = 0.6.? Then the 
weights, rounded to two decimals, are 

Notation and the interpretation of ARIMA models 

e:( 1 - e l )  = (0.6)’(0.4) = 0.09 

O f ( 1  - 8,)  = (0.6)4(0.4) = 0.05 

All subsequent weights round to zero. 

Substitute this into (5.45) to obtain 

f, = ( I  - el):,-, + el(]  - el):,-, e; j1-*  

(5.45) also implies 

( I  - + e,i,-, 

Substituting this into the previous result. we get 

: , = ( I  - e , ) ~ , - ,  + e , ( i  - e l ) : , - 2 + e ? ( i  - e , ) ~ , - ~ + e ? i , - ~  

Continue altering the time subscripts on (5.45) and substituting as above to get the infinite 
series (5.46) 
f We have selected this value arbitrarily. In practice various values of 8, are tried and the one 
which best fits the available data, according to some criterion. is selected. 
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Figure 5.2 is a graph of these weights. The weights give the appearance of 
an exponential decay as the time lag increases, which is why this model is 
said to be “exponentially weighted.” The “moving-average” part of the 
name reflects the idea that a new weighted average is calculated as each new 
observation becomes available. 

Table 5.2 shows how these weights could be used to forecast the data in 
Table 5.1 using an EWh4A. These are the calculations needed to find i, 
from equation (5.46). Columns 1 and 2 are a reproduction of Table 5.1. 
Column 3 is the set of EWMA weights calculated previously. (These weights 
sum to 0.99 instead of 1.0 because weights after lag 9 are rounded to zero.) 
Column 4 is each weight times each zf-, observation. for i = 1.2,. . . , 10. At 
the bottom of the table is the sum of the weighted past z ’s, if = i, , , which is 
the EWMA forecast for z l l  as stated in equation (5.46). 

We now show that the EWMA in equation (5.45) is an ARIMA(0, 1, 1) 
model. To do this, first consider an ARIMA(0, 1 , l )  in common algebraic 
form: 

z ,  = 2,- , - e,a,- , + a, (5.47) 

For simplicity, let 8, be known. Since a, is not known when a forecast of z ,  
is formed at time t - 1, assign a, its expected value of zero. Then the 
forecast of z ,  based on (5.47) is 

i= 
Time lag 

on z term 

Figure 5.2 The weights on past z ’s for an EWMA with 0,  = 0.6. 
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Table 5.2 An EWMA forecast for the data in Table 5.1, 
withe, = 0.6" 

I 'r Weight Weight Multiplied by I, 

1 10 
2 9 
3 9 
4 12 
5 9 
6 1 1  
7 9 
8 8 
9 1 1  

10 12 

0.00 
0.01 
0.01 
0.02 
0.03 
0.05 
0.09 
0. I4 
0.24 
0.40 

0.00 
0.09 
0.09 
0.24 
0.27 
0.55 
0.8 I 
1.12 
2.64 
4.80 

"The EWMA forecast is equal to the summation of the weighted 
i's which is equai to 10.61. 

Subtracting (5.48) from (5.47), we see that an observed z value minus a 
forecast z value is simply the random shock for that period: 

L ,  - 2,  = a, (5.49) 

Now return to the EWMA in (5.45). Expand the RHS and rearrange 
terms to get 

Using (5.49), substitute a,- I into (5.50) for (z , -  I - 2, -  I) .  The result shows 
that a forecast from the EWMA (5.50) is identical to a forecast from the 
ARIMA(0, I ,  1) in equation (5.48). 

Thus the EWMA in (5.45) may be interpreted as an ARIMA(0, I ,  1) and 
vice versa.* This fact may be useful to practicing forecasters who must 
interpret ARIMA models for managers. (See Part 11, Case 9 for an example 
of an ARIMA model that is a combination of two EWMA's, one explaining 
the seasonal part of the data and the other explaining the nonseasonal part.) 

EWMA models are sometimes used simply by habit. When using the 
UBJ method, we attempt to find one or more ARIMA models that are 
appropriate in light of the data. Thls procedure may or may not lead us to 

'There are other types of EWMA forecasting models which are ARIMA(0. d .  4) models of 
various orders. as discussed by Cogger 11 81. 
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an EWMA. A clear strength of the UBJ method is that models are not 
chosen arbitrarily. Instead, the UBJ method guides the forecaster to a 
proper model based on some classical statistical estimation procedures 
applied to the available data. The present drawback of the UBJ-ARIMA 
method is that its proper use requires more experience and computer time 
than the habitual application of the EWMA to a forecasting problem. 
However, advances in computer technology tend to reduce that particular 
cost element associated with UBJ-ARIMA modeling. Furthermore, a thor- 
ough reading of this book and practice with numerous data sets should 
make one skilled at building proper UBJ-ARIMA models. 

Summuty 

1. Three common ARIMA processes, in addition to the AR(1) and 
MA(1) are 

AR(2): z ,  = C + + , z , - ,  + & z , - ~  + a,  

2. ARIMA models may be characterized this way: ARIMA( p ,  d. q) ,  
where p is the AR order; d is the number of times the data series must be 
differenced to induce a stationary mean; and q is the MA order. 

It is convenient to write ARIMA models in backshift notation using 
the multiplicative backshift operator B. B is defined such that any variable 
which it multiplies has its time subscript shfted back by the power of B: 

3. 

A constant is unaffected when multiplied by B since a constant has no time 
subscript: 

BkC = C 

4. It  can be shown that (1 - B ) z ,  represents the first differences of z,;  
(1 - B)’z, represents the second differences of z,;  generally, ( 1  - B)dz ,  
represents the dth differences of z , .  
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5. A nonseasonal ARIMA process in backshift notation has tlus general 
form: 

6. To write an ARIMA model in backshift notation, 
(a) transform z, so it has a constant variance; 
(b) write z, in deviations from the mean. 2, = z, - p; 
(c) multiply z, by the differencing operator (1  - B ) d ,  with d as- 
signed the appropriate value; 
(d) multiply the last result by the AR operator (1 - &B - &B2 
- ... - +pBP), with p assigned the proper value; 
(e) multiply a, by the MA operator (1  - 8 , B  - 02B2 - . - - - 
BqB4), with q assigned an appropriate value; 
(0 equate the results of the last two steps. 

7. The constant term in a nonseasonal ARIMA process is related to the 
mean I( of the process and the AR coefficients in this way: 

c = P  1 - i,*,) i I -  

For a pure MA model, p = 0 and C = p. 

8. Differencing (d > 0) causes the mean p to drop out of an ARIMA 
process. The process will therefore have a constant term of zero unless the 
differenced variable is assumed to have a nonzero mean. 

9. The constant term, AR terms, and MA terms all represent weighted 
past z values. Thus ARIMA processes are univariate, and a forecast from an 
ARIMA model may be interpreted as an extrapolation of past observations 
into the future. 

Any MA process is algebraically equivalent to an AR process of 
infinitely hgh order. Any AR process is algebraically equivalent to an MA 
process of infinitely high order. 

11. ARIMA models can sometimes be rationalized (interpreted in a 
common-sense way) through insight into the nature of the situation that has 
produced the data. 

10. 
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12. A commonly used univariate forecasting technique, the exponen- 
tially weighted moving average (EWMA), is algebraically equivalent to an 
ARIMA(O,l, 1) model. An advantage of the UBJ method is that we are 
guided to a proper model through analysis of the available data. The 
appropriate model may, or may not, be an ARIMA(0. I.  1). 

Questions and Problems 

5.1 
algebraic form: 

Write the following in both ARIMA( p ,  d. q )  notation and common 

(a) ( 1  - +]B)(l - B ) i ,  = u, 
(b) (1  - B)’i, = ( 1  - d ,B)u ,  
(c) (1  - +p)q = ( I  - e ,B)a ,  
(a) (1 - ~ ) t ,  = (1 - e , B  - e z B Z ) a ,  
(e) if = (1  - 8 ,B2)u ,  

5.2 Write the following in backshift notation: 
(a) ARIMA( 1,1,1) 
(b) ARIMA(O,2,1) 
(c) ARIMA(Z,O, 2) 
(d) 2, = ~ ( 1  - +I - +z) + @ i z t - ~  + + z Z , - ~  + 0, 
(e) z ,  = ~ ( 1  - 9,) + + l z f - l  - e l ~ f - l  + a, 
(f) z, = i f - ,  + +,(z,-1 - 2 , - 2 )  + +z(z,-2 - 2 1 - 3 )  + 0 ,  

(h) z, = 22 , - ,  - - Bla,-l + a ,  

5.3 Show that an MA(1) process is equivalent to an AR process of 
infinitely high order in the following way: (i) write the MA(I) in common 
algebraic form; (ii) solve t h s  form for a,; (iii) use the expression for a, to 
write expressions for 0,- ,, u , - ~ ,  u,- 3,  . . . ; (iv) substitute the expressions for 
u,- ,, u , - ~ ,  . . . into the original MA( 1) model one at a time. 

5.4 Consider the AR form of the MA( 1). How is +4 related to 8,? 

5.5 Is an EWMA an AR model or an MA model? How does the principle 
of parsimony influence your answer? 

5.6 Suppose an analyst presents ttus AR(4) model for a given realization: 

(g) 2, = z , -  I - etaf -  I - eZa,-, + 0, 

(1 + 0.488 + 0.22BZ + 0.14B3 + 0.05B4)2, = a, 
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in this model, 

6, =: -0.48 

& = -0.22 

6, = -0.14 

& = -0.05 

Can you suggest an alternative, more parsimonious model? Explain. 



IDENTIFICATION: 
STATIONARY MODELS 

In Chapters 1-4 we introduced the fundamental statistical concepts and 
modeling procedures of UBJ-ARIMA forecasting. In Chapter 5 we ex- 
amined the special notation used for ARIMA models and considered how 
ARIMA models can be interpreted. 

In this chapter we return to a discussion of the iterative, three-stage UBJ 
modeling procedure (identification, estimation, and diagnostic checlung). 
Our emphasis in this chapter is on the identification of models for sta- 
tionary realizations. Until Chapter l l  we will focus on models that do not 
have a seasonal component. 

Before getting into the detail of this chapter, it may help to review some 
of the basic ideas presented in Chapters 1-4. 

1. We begin with a set of n time-sequenced observations on a single 
variable (I,, zz, z 3 , .  . . , 2").  Ideally, we have at least 50 observations. 
The realization is assumed to have been generated by an unknown 
ARIMA process. 

2. We suppose the observations might be autocorrelated. We measure 
the statistical relationship between pairs of observations separated by 
various time spans ( z , ,  z , , ~ ) ,  k = 1,2,3,. . . by calculating estimated 
autocorrelation and partial autocorrelation coefficients. These coeffi- 
cients are displayed graphically in an estimated autocorrelation func- 
tion (acf) and partial autocorrelation function (pacf). 
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3. 

4. 

5. 

6. 

7. 

The UBJ-ARIMA method is appropriate only for a data series that 
is stationary. A stationary series has a mean, variance, and autocorre- 
lation coefficients that are essentially constant through time. Often. a 
nonstationary series can be made stationary with appropriate trans- 
formations. The most common type of nonstationarity occurs when 
the mean of a realization changes over time. A nonstationary series 
of t h s  type can frequently be rendered stationary by differencing. 
Our goal is to find a good model. That is, we want a statistically 
adequate and parsimonious representation of the given realization. 
(The major characteristics of a good model are introduced in Chapter 
4.) 
At the identification stage we compare the estimated acf and pacf 
with various theoretical acf s and pacf s to find a.match. We choose, 
as a tentative model, the ARIMA process whose theoretical acf and 
pacf best match the estimated acf and pacf. In choosing a tentative 
model, we keep in mind the principle of parsimony: we want a model 
that fits the given realization with the smallest number of estimated 
parameters. 

At the estimation stage we fit the model to the data to get precise 
estimates of its parameters. We examine these coefficients for 
stationarity, invertibility, statistical significance, and other indicators 
of their quality. 

At the diagnostic-checking stage we examine the residuals of the 
estimated model to see if tbey are independent. If they are not, we 
return to the identification stage to tentatively select another model. 

Identification is clearly a critical stage in UBJ-ARIMA modeling. and a 
thorough knowledge of the most common theoretical acfs and pacfs is 
required for effective identification. Knowing the association between the 
common theoretical acf s and pacf s and their corresponding processes does 
not guarantee that we will identify the best model for any given realization, 
especially not at the first try. But familiarity with the common theoretical 
acfs and pacfs greatly improves our chances of finding a good model 
quickly. 

There is an infinite number of possible processes within the family of 
ARIMA models proposed by Box and Jenkins. Fortunately, however, there 
also seems to be a relatively small number of models that occur commonly 
in practice. Furthermore, studying the common processes carries a substan- 
tial spillover benefit: uncommon ARIMA processes display certain char- 
acteristics broadly similar to those of the more ordinary ones. Thus we need 
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to examine the properties of only a few common processes to be able to 
intelligently identify even unusual models. 

In this chapter we first present and discuss the theoretical acf s and pacf s 
for these five common models: AR(l), AR(2), MA(l), MA(2), and 
ARMA( 1 ,  1). Next, we discuss the ideas of stationarity and invertibility. We 
then derive the theoretical acfs for the MA( 1) and AR( 1). 

6.1 Theoretical acf's and pacf's for five common processes 

We have already encountered five common ARIMA models for stationary, 
nonseasonal data. In Chapter 3 we introduced the AR(1) and MA(1) 
models. Then in Chapter 5 we introduced the AR(2), MA(2), and 
ARMA(1, 1) models. In backshift form these five models are written as 
follows: * 

AR(1): (1 - + , B ) i ,  = U ,  

AR(2): (1  - + , B  - + 2 B 2 ) f ,  = U ,  

(6.1) 

(6.2) 

MA(2): f, = (1 - 8 , B  - d 2 B 2 ) u ,  (6.4) 

ARMA(1,l): (1 - +,B)Z, = (1 - 8 ,B)a ,  (6.5) 

In this section we examine the theoretical acf s and pacf s associated with 
each of these processes. We discussed the acfs and pacfs associated with 
the AR(1) and MA(1) in Chapter 3, but we present them again for 
convenience. 

Keep in mind that in this section we are loolung at fheorelical acfs and 
pacfs derived from processes. Estimated acfs and pacfs calculated from 
realizations never match theoretical acfs and pacf s in every detail because 
of sampling error. 

Table 6.1 states the major characteristics of theoretical acf s and pacf s 
for stationary AR, MA, and mixed (ARMA) processes. As we proceed we 
will discuss the acfs and pacfs of the above five processes in greater detail. 
In practice, however, a UBJ analyst must sometimes temporarily ignore the 
details and focus on the broader characteristics of an estimated acf and 

' 2 ,  is ;, expressed in deviations from the mean: i, = zr - p. 
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Table 6.1 primary distinguishing characteristics of theoretical ad‘s 
and pad’s for stationary processes 

Process acf pacf 

AR Tails off toward zero Cuts off to zero 
(exponential decay or 
damped sine wave) 

(after 1% 9) 

(after lag p) 

MA Cuts off to zero Tails off toward zero 
(exponential decay or 
damped sine wave) 

ARMA Tails off toward zero Tails off toward zero 

pacf. As Table 6.1 shows, the three major types of ARIMA models have 
some primary distinguishing characteristics: 

1. Stationary AR processes have theoretical acfs that decay toward 
zero rather than cut off to zero. (The words “decay”, “die out”, 
“damp out”, and “tail off’ are used interchangeably.) The autocorre- 
lation coefficients may alternate in sign frequently, or show a wave- 
like pattern, but in all cases they tail off toward zero. By contrast, 
AR processes have theoretical pacfs that cut off to zero after lag p ,  
the AR order of the process. 

2. The theoretical acfs of M A  processes cut off to zero after lag q, the 
M A  order of the process. However, their theoretical pacfs tail off 
toward zero. 

3. Stationary mixed (ARMA) processes show a mixture of AR and M A  
characteristics. Both the theoretical acf and the pacf of a mixed 
process tail off toward zero. 

Now we consider each of the three major process types in greater detail. 
Table 6.2 summarizes the detailed characteristics of the five common 
processes we are considering in this chapter. 

AR processes. All AR processes have theoretical acfs which tail off 
toward zero. This tailing off might follow a simple exponential decay 
pattern, a damped sine wave, or more complicated decay or wave patterns. 
But in all cases, there is a damping out toward zero. 

An AR theoretical pacf has spikes up to lag p followed by a cutoff to 
zero. (Recall that p is the maximum lag length for the AR terms in a 
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Table 6.2 Detailed characteristies of five common stationary processes 

Process acf PXf 

AR( I )  Exponenual decay: (i) on the ps i -  
tive side if +, > 0; (ii) alternating 
in sign starting on the negative side 
if +, < 0. 

A mixture of exponential decays or 
a damped sine wave. The exact 
pattern depends on the signs and 

Spike at lag I .  then cuts off to 
zero: (i) spike is positive if 8 ,  < 0; 
(ii) spike is negative if 8, > 0. 

AR(2) 

sires of $ 1  and +*. 
MA(I) 

MA(2) Spikes at lags 1 and 2, then cuts off 
to zero. 

ARMA(I. I )  Exponential decay from lag I :  (i) 
sign of p ,  = sign of (+, - 8 , ) ;  (ii) 
all one sign if +, > 0; (iii) alternat- 
ing in sign if < 0. 

Spike at lag I .  then cuts off to 
zero; (i) spike is positive if +, > 0: 
(ii) spike is negative if 9, < 0. 

Spikes at lags 1 and 2. then cuts off 
to zero. 

Damps out exponentially: (i) alter- 
nating in sign. starting on the posi- 
tive side, if 8, < 0: (ii) on the 
negative side, if 8, > 0. 

A mixture of exponential decays or 
a damped sine wave. The exact 
pattern depends on the signs and 
sizes of 8, and 8,. 

Exponential decay from lag I :  (i) 
= p , :  (ii) all one sign if 8, > 0; 

(iii) alternating in sign if 6 ,  < 0. 

process; it is also called the AR order of a process.) In practice, p is usually 
not larger than two or three for nonseasonal models. 

Figure 6.1 shows the theoretical acfs and pacfs for two types of 
stationary AR(1) processes. The key point to remember is that any sta- 
tionary AR( 1) process has a theoretical acf showing exponential decay and a 
pacf with a spike at lag 1. If +I  is positive, the acf decays on the positive side 
and the pacf spike is positive. This is illustrated by Example 1 at the top of 
Figure 6.1. If is negative, the AR(1) acf decays with alternating signs, 
starting from the negative side, while the pacf spike is negative. This is 
illustrated at the bottom of Figure 6.1 by Example 11. (See Part 11, Case 1. 
for an example of an estimated acf and pacf that resemble the theoretical 
ones in Figure 6.1 with 

The exact numerical values of the coefficients in both the theoretical acf 
and pacf of an AR(1) are determined by the value of 9,. At lag 1, both the 
autocorrelation coefficient (p  , ) and the partial autocorrelation coefficient 
( $ I , )  are equal to $q. All other theoretical partial autocorrelations are zero. 
The theoretical autocorrelations at subsequent lags are equal to + I  raised to 

> 0.) 
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Example I: 9, > 0 

t 
i' 

- 1.o-L 

Pacf 

I 1 1 1 , .  t * t 
k= Lag 

acf 

7 '  &=Lag 

- 1.0- 

- 1.01 - 1.01 

Figure 6.1 
processes. 

Examples of theoretical acfs and pacfs for two stationary AR(1) 

1 .o- 

t 

the power k, where k is the lag length. For example, if = 0.8, then 
p ,  = +11 = 0.8, pz = (0.8)2 = 0.64, p3 = (0.8)3 = 0.51, p4 = (0.8)4 = 0.41, 
and so on. In general, pk = +!. This particular process is written in 
backshift form as 

1 .o- 

Pad 

I 1 * t 
I " '  

* 
k =  b g  

acf 

k=Lag 

( 1  - 0.8B)Z, = 4, (6.6) 

A greater variety of patterns is possible with AR(2) processes than with 
AR(1) processes. Figure 6.2 shows &he theoretical acfs and pacfs for four 
types of AR(2) processes. In general, a stationary AR(2) process has an acf 
with either a mixture of exponential decays or a damped sine wave, and a 
pacf with spikes at lags 1 and 2. The exact pattern depends on the signs and 
sizes of + I  and +2.* (See Part 11, Case 3, for an example of an estimated acf 
and pacf resembling the theoretical ones in Figure 6.2.) 

'For the mathematically inclined: to determine the general nature of these patterns. use the 
AR(2) operator to create the characteristic equation ( 1  - cp,B - +2B2) = 0. wherc B is now 
treated as an ordinary variable. Then the following cao be shown for the acf of the AR(2): 
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Note that some AR(2) acfs are roughly similar in appearance to AR( 1) 
acfs. In particular, the first two AR(2) acfs at the top of Figure 6.2 look 
much like the two AR(1) acfs in Figure 6.1. These broad similarities 
between AR(1) and AR(2) acfs can cause difficulties at the identification 
stage: we may not be able to tell from an estimated acf whether to consider 
an AR(1) or an AR(2) model. This is where the estimated pacf is especially 
useful: an AR( 1) process is associated with only one spike in the pacf, while 
an AR(2) has two pacf spikes. In general. the lag length of the last pacf 
spike is equal to the order ( p) of an AR process. In practice, p is usually not 
larger than two for nonseasonal data. 

MA processes. An MA process has a theoretical acf with spikes up to 
lag q followed by a cutoff to zero. (Recall that q is the maximum MA lag, 
also called the MA order of the process.) Furthermore, an MA process has a 
theoretical pacf which tails off to zero after lag q. This tailing off may be 
either some kind of exponential decay or some type of damped wave 
pattern. In practice, q is usually not larger than two for nonseasonal data. 

Figure 6.3 shows two MA(1) theoretical acfs and pacfs. They illustrate 
the rule that any MA(1) process has a theoretical acf with a spike at lag 1 
followed by a cutoff to zero, and a theoretical pacf whch tails off toward 
zero. If 8, is negative, the spike in the acf is positive, whereas the pacf 
decays exponentially, with alternating sign, starting on the positive side. 
This is illustrated by Example I at the top of Figure 6.3. Alternatively, if O1 
is positive, the acf spike is negative, while the pacf decays exponentially on 
the negative side. This is illustrated at the bottom of Figure 6.3. [Cases 7-9 
in Part I1 show estimated acf's and pacfs similar to the MA(1) theoretical 
acf s and pacf's in Figure 6.3.1 

The exact numerical values of the coefficients in the theoretical acf and 
pacf of the MA( 1) depend on the value of 8,. Unlike the AR( 1) process, 
which has p,  = c#q, the absolute value of p1 for the MA( 1) is not equal to dl. 

In Figure 6.4 we have examples of theoretical acf s and pacf s for MA(2) 
processes. All illustrate the rule that an MA(q)  acf has spikes up to lag q 
( q  = 2 in these examples) followed by a cutoff to zero, while the pacf tails 

( i )  If the roots of ( 1  - + , B  - +2B2) = 0 are real. so that +! + 4+* 2 0. and the dominant 

(ii) If the roots are real. but the dominant root is negative. the acf decays toward zero while 

(iii) If the roots are complex, 50 that +: t 49, < 0. and +, is positive, the acf has the 

(iv) If the roots are complex, but +, is negative. the acf has the appearance of a damped sine 

root is positive. then the acf decays toward zero from the positive side. 

alternating in sign. 

appearance of a damped sine wave starting from the positive side. 

wave starting from the negative side. 
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off toward zero. [Case 11 in Part I1 shows an estimated acf and pacf 
suggestive of an MA(2) process.] 

1.0 

t 
'i 
- 1.0 

ARMA processes. Mixed processes have theoretical acfs with both AR 
and MA characteristics. The acf tails off toward zero after the first q - p 
lags with either exponential decay or a damped sine wave. The theoretical 
pacf tails off to zero after the first p - q lags. In practice. p and q are 
usually not larger than two in a mixed model for nonseasonal data. 

Figure 6.5 shows theoretical acf s and pacf s for six types of A R M (  I ,  1) 
processes. The important thing to note is that both the acf and pacf tail off 
toward zero (rather than cut off to zero) in all cases. The acf and pacf may 
alternate in sign. 

Because q = 1 and p = 1 for these examples, q - p = 0, and each acf in 
Figure 6.5 tails off toward zero starting from lag 1. Likewise, p - q = 0 in 
these examples, so each pacf in Figure 6.5 also tails off toward zero starting 
from lag 1. 
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In Chapter 2 we stated that the UBJ method applies only to stationary 
realizations, or to those which can be made stationary by suitable transfor- 
mation. In this section we discuss the conditions that AR coefficients must 
satisfy for an ARIMA model to be stationary, reasons for the stationarity 
requirement, and how to determine if a realization or model is stationary in 
practice. 

Table 63 Summary of stationarity conditions 
for AR coefficients 

Model Type Stationarity Conditions 
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Conditions on the AR coefficients. Stationarity implies that the AR 
coefficients must satisfy certain conditions. These conditions, summarized 
in Table 6.3, are of great practical importance in UBJ modeling. You should 
regularly check the estimated AR coefficients (at the estimation stage) to see 
if they satisfy the appropriate stationarity conditions. 

If p = 0, we have either a pure MA model or a whtte-noise series. All 
pure MA models and white noise are stationary, so there are no stationarity 
conditions to check. 

For an AR(1) or ARMA(I,4) process, the stationarity requirement is 
that the absolute value of + I  must be less than one: 

In practice we do not know Instead, we find an estimate of it, designated 
i,, at the estimation stage. Therefore, in practice we apply condition (6.7) to 
6 ,  rather than to +,. [Case 1 in Part 11 is an example of a model where 41 
satisfies condition (6.7). Case 5 shows a model where 4, meets condition 
(6.7), but it is not significantly different from 1.0, so the data are dif- 
ferenced.] 

For an AR(2) or ARMA(2, q )  process, the stationarity requirement is a 
set of three conditions: 

All three conditions must be satisfied for an AR(2) or ARMA(2,4) model 
to be stationary. Again, in practice we apply conditions (6.8) to the 
estimates of and +2 ( 6 ,  and &) obtained at the estimation stage. [Cases 3 
and 13 in Part I1 contain models satisfying the AR(2) stationarity condi- 
tions. Case 15 shows an AR(2) model that fails to meet these conditions.] 

The stationarity conditions become complicated when p > 2. For- 
tunately, ARIMA models with p > 2 do not occur often in practice. When p 
exceeds 2 we can at least check this necessary (but not sufficient) stationar- 
ity condition: 

+ +2 + * . .  + +p < 1 (6.9) 

(See Appendix 6A for a discussion of the formal mathematical requirements 
for stationarity for any value of p.) 
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Now consider an ARMA(l.1) model: (1 - @ , B ) 2 ,  = (1 - O,B)a,.  Sup- 
pose we fit t h i s  model to a realization and get these estimation results: 
6, = -0.6 and 8, = 0.5. Then the model can be written this way: (1 + 
0.6B)2, = (1 - 0.5B)d,. Is this model stationary? The answer is yes. be- 
cause l6,l = 0.6 < 1, thus satisfying condition (6.7). We need not check 
any conditions on 8, to ensure stationarity; stationarity conditions apply 
only to AR coefficients. (However, we must check 8, to see that it satisfies 
the invertibility requirement. This is discussed in the next section.) 

As another example, consider an AR(2) model: (1  - + , B  - @2B2)2 ,  = 0,. 

Fitting this model to a realization gives these estimation results: 6, = 1.5 
and & = -0.4. Thus, our fitted model is (1 - 1.5B + 0.4B2)Zf = 6,. In- 
serting the estimated values of @, and 92 into (6.8) gives 

6 2  + 6, = -0.4 + 1.5 = 1.1 > 1 

62 - 6 ,  = -0.4 - 1.5 = -1.9 < 1 

This model is not stationary. Although the first and third conditions in (6.8) 
are satisfied, the second condition is not met since the sum of +2 and +, is 
greater than 1. 

Reasons for the stationarity requirement. There is a common-sense 
reason for requiring stationarity: we could not get useful estimates of the 
parameters of a process otherwise. For example, suppose a process has a 
mean that is different each time period. How could we estimate these 
means? As usual, we must use sample information. But typically we have 
only one observation per time period for time-series data. Therefore, we 
have only one observation at time r to estimate the mean at time r ,  one 
observation at time r + 1 to estimate the mean at time r + 1, and so forth. 
An estimate of a mean based on only one observation is not useful. 

The situation becomes even worse if the variance also is not constant 
through time. In th is  case we would have to estimate up to 2n parameters ( n  
means and n variances) with only n observations.* 

It can also be shown that a model whch violates the stationarity 

'If the mean and variance are changing according to a known pattern. then it might be possible 
to get useful estimates of the n means and n variances from only n observations. This leads to 
the idea of variable-parameter ARIMA models. an area of research beyond the scope of this 
text. 
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restrictions will produce forecasts whose variance increases without limit. an 
undesirable result. . 

Checking for stationarity in practice. Suppose we have a realization in 
hand and we want to develop an ARIMA model to forecast future values of 
this variable. We have three ways to determine if the stationarity require- 
ment is met: 

(i) Examine the realization visually to see if either the mean or the 
variance appears to be changing over time. 

(ii) Examine the estimated acf to see if the autocorrelations move rapidly 
toward zero. In practice, “rapidly” means that the absolute t-values of the 
estimated autocorrelations should fall below roughly 1.6 by about lag 5 or 6. 
These numbers are only guidelines, not absolute rules. If the acf does not 
fall rapidly to zero, we should suspect a nonstationary mean and consider 
differencing the data. 

(iii) Examine any estimated AR coefficients to see if they satisfy the 
stationarity conditions (6.7), (6.8), and (6.9). 

You should rely most heavily on the appearance of the estimated acf and 
on the values of any estimated AR coefficients in deciding if the mean of a 
series is stationary. The only exception is when p > 2, so that the set of 
stationarity conditions on the AR coefficients becomes complicated. In that 
case. rely more on visual inspection of the data and the estimated acf, while 
also checking the necessary condition on the AR coefficients (6.9). Visual 
inspection of the data is perhaps the most practical way of gauging 
stationarity of the variance. The identification of models for nonstationary 
realizations is discussed more fully in Chapter 7. 

6.3 Invertibility 

Conditions 011 the MA coefficients. There is another condition that 
ARIMA models must satisfy called invertibility. This requirement implies 
that the MA coefficients must satisfy certain conditions. These conditions, 
summarized in Table 6.4, are algebraically identical to the stationarity 
requirements on AR coefficients. 

If q = 0, we have a pure AR process or a whte-noise series. All pure AR 
processes (or white noise) are invertible, and no further checks are required. 

For an MA(1) or ARMA(p, 1) process, invertibdity requires that the 
absolute value of 8, be less than one: 

I41 -= 1 (6.10) 
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Table 6.4 Summary of invertibility conditions 
for MA coefficients 

Model Type Invertibility Conditions 

For an MA(2) or ARMA( p ,  2) process the invertibility requirement is a 
set of conditions on 8 ,  and 9,: 

P 2 l  c 1 

e 2 + e ,  < 1 (6.1 1) 

All three of the conditions in (6.11) must be met for an MA(2) or 
ARMA( p, 2) process to be invertible. 

In practice the invertibihty conditions are applied to the estimates of 8,  
and 0, (6, and 6,) obtained at the estimation stage because 8,  and 0, are 
unknown. (See Cases 5 ,  7-9, and 11 in Part I1 for examples.) The invertibil- 
ity conditions become complicated when q > 2, but ARIMA models with 
q > 2 do not occur frequently in practice. If q > 2, we can at least check 
this necessary (but not sufficient) condition for invertibihty: 

e, + e2 + - . -  + eq < I (6.12) 

(See Appendix 6A for a discussion of the formal mathematical conditions 
for invertibility for any value of 4.) 

Suppose we estimate an A m (  1.2) model, (1 - 9, B ) I ,  = (1  - 8,  B - 
62B2)a,. Fitting this model to a realization produces these results at the 
estimation stage: 6, = 0.4, 6, = 0.8, and = -0.5. It is easy to show that 
this model is stationary since l6,l = 0.4 < 1; thus condition (6.7) is satis- 
fied. As with all ARIMA models, the stationarity conditions apply only to 
the AR coefficients. 
To check this model for invertibility, we must apply the three conditions 

in (6.11) to the estimated MA coefficjents; invertibility conditions apply 
only to MA coefficients, not AR coefficients. We find that all three 
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conditions are met. and hence the model is invertible: 

= 0.5 < 1 

8, + S, = -0.5 + 0.8 = 0.3 

S2 - S ,  = -0.5 - 0.8 = - 1.3 < 1 

1 

A reason for invertibility. There is a common-sense reason for the 
invertibility condition: a noninvertible ARIMA model implies that the 
weights placed on past t observations do not decline as we move further 
into the past; but common sense says that larger weights should be attached 
to more recent observations. Invertibility ensures that this result holds.* 

It  is easy to see the common sense of the invertibility condition as it 
applies to the MA(1). In Chapter 5 we showed how the MA(1) could be 
written as an AR process of infinitely high order: 

( I  + e , B  + e p Z  + 6 ' ; ~ ~  + --+, = u,  

or 

Z, = c - e,Z, - ,  - e;z,-2 - e;z,-3 - . . . (6.13) 

The 6' coefficients in (6.13) are weights attached to the lagged z terms. If 
condition (6.10) for the MA(1) is not met, then the weights implicitly 
assigned to the z's in (6.13) get larger as the lag length increases. For 
example, for 6,  = 2, the weights ( 8 ; )  have the following values ( k  is lag 
length): 

On the other hand, suppose condition (6.10) is satisfied. For example, let 
8 ,  = 0.8. Then the weights on the time-lagged z's in (6.13) decline as we 

'InvertibiEty also ensures a unique associalion between processes and theoretical a d s .  See 
Appendix 6 8  for a discussion of this point. 
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move further into the past: 

1 8, = 0.8 
2 
3 
4 

e: = (0.8)~ = 0.64 
e; = (0.8)~ = 0.51 
e: = (0.8)~ = 0.41 

We could show the same result for any MA process that we have shown 
here for the MA(1). First, we could write it as an AR process of infinitely 
high order. Then, we could show that the coefficients on the past z 's will not 
decline as we move further into the past unless the invertibility conditions 
are met. 

6.4 Deriving theoretical acf's for the MA( 1) process 

We saw in Chapter 2 how estimated acfs are calculated from realizations 
using equation (2.5). In the next two sections we derive the theoretical acfs 
for the MA(1) and AR(1) processes. These derivations require numerous 
algebraic manipulations. We wil l  explain the derivations in detail, but you 
should write out each step to make sure you understand it. 

Throughout these two sections we apply certain rules about mathematical 
expectations stated earlier, in Appendix 3A. Since we make extensive use of 
three of them, we repeat them here for convenience: 

Rule 11-E expected value of a constant 

E ( C )  = c 
where C is a constant. 

Rule 111-E expected value of a finite linear combination of random 
variables. If rn is a finite integer, 

E ( C , X l  + c2x, + . . *  + C,,,.,,,) = C , E ( x , )  

+ C 2 E ( x 2 )  + - . .  + C,E(x,, ,) ,  

where C,, C2,. . . , C,,, are constants; xI, x 2 , .  . . , x,,, are random variables. 
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Rule IV-E expected value of an infiiite linear combination of random 
variables. If m = 00, Rule 111-E holds only if Z?-,C, (where C, = 1) 
converges (is equal to a finite number). 

We also make extensive use of the assumptions about the random shocks 
stated in Chapter 3. We repeat them more formally for convenience: 

Ia: The a, are Normally distributed. 
Ha: E ( a , )  = 0. 

IIIa: cov(u,, 
IVa: 

First, consider the MA(1) process with a constant term C and a 8, 
coefficient that are each a finite constant and with random shocks satisfying 
Assumptions Ia-IVa above. In backshift notation t h i s  process is 

Z, = (1 - e , B ) a ,  (6.14) 

Using the rules for backshift notation stated in Chapter 5 and replacing i, 
with z, - p,  we can write this process in common algebraic form as 

2, = c - e,a,- , + a,  (6.15) 

where the constant term (C) is equal to p. 
Recall that (6.15) is a population function: it is aprocess which is the true 

mechanism generating observations of z,. Therefore, (6.15) is the source 
from which we can derive the theoretical acf for the MA(1). 

We begin by finding the mean and the variance of the MA(1). Then we 
find its autocorrelation function. We expect to find that the MA(1) has a 
theoretical acf with a spike at lag 1 followed by a cutoff to zero. All pure 
MA processes have theoretical acf s described by the following equations: 

P k  = , k = 1 , 2  ..... q 

= 0; that is E(a,a,-k)  = 0. 
= u,' (a finite constant for all 1 ) .  

- @ k  + e,ek, ,  + . . . + eq-keq 
( I  + e; + e; + - . .  + e;) (6.16) 

P k p o ,  k > q  

As we will see, the MA( 1) acf is described by these equations when q = 1. 
We also show that the MA( 1) process is stationary if its mean, variance, and 
MA coefficient (8,) are finite constants. l&s result holds for all MA 
processes. 

Mean. We have assumed that process (6.15) has a finite constant term 
C. Therefore, it seems we already know the mean of the process, C = p ,  and 
we seem to have guaranteed that this mean will be stationary since C is a 
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finite constant. However, it will be an instructive exercise to show that C is, 
indeed, the mean of the process by finding the mathematical expectation ( p) 
of (6.15). We can do this in a straightforward way, without imposing any 
special conditions on 8, beyond the assumption that it is a finite constant. 

We find the mathematical expectation ( p )  of (6.15) by applying the 
expected value operator to both sides of the equation. Because the RHS 
terms are additive, the operator is applied separately to each term according 
to Rule 111-E: 

E ( z , )  = p = E ( C )  - O , E ( a , - , )  + € ( a , )  (6.17) 

Because C is fixed, E ( C )  = C from Rule 11-E. Applying Assumption IIa, 
that € ( a , )  = 0 for all t ,  the last two RHS terms in (6.17) are zero and we 
are left with 

E ( z , )  = p = c (6.18) 

Since C is by assumption a finite constant, (6.18) states that the mathe- 
matical expectation ( p )  of process (6.14), which is the mean, exists and does 
not change over time. Thls is a necessary condition for stationarity. 

Variance and autocovariances. Next, we find the variance and autoco- 
variances of process (6.14). We need them to derive the theoretical acf, and 
we want to determine the conditions under which the variance and autoco- 
variances of the MA( 1) are stationary. 

For convenience we work with I, expressed in deviations from p: 2, = z, 
- p. The process generating 2, is identical to the process generating t,, 
except that the mean of the 2, process is zero. To see this, write (6.14) in 
common algebraic form: 

2, = u, - 8 ,a , - I  (6.19) 

Inspection shows that (6.19) is identical to (6.15) except that the mean (ie., 
the constant term) of (6.19) is zero. Therefore, (6.19) and (6.15) have 
identical variances, autocovariances, and autocorrelations since these mea- 
sures depend on the size of deviations from the mean and not on the size of 
the mean itself. 

To find the variance and autocovariances of (6.19). use Rules V-E and 
VI-E (stated in Appendix 3A), to write the variance-covariance function for 
2,: 

(6.20) 
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We know that E(i,) = 0, and since we have just shown that (6.19) has a 
stationary mean, this condition holds for all I .  Thus (6.20) simplifies to 

Y& = E(2rfr-k) (6.21) 

- 81u, - l -k  for Now use (6.19) to substitute a, - 8,a,- ,  for 2, and 
f,-,, and apply Rule 111-E: 

To find the variance of (6.19), let k = 0. Applying Assumptions IIIa and 
IVa to (6.22) gives 

yo = 0; = .: + e+: 
= u:(l + 6 : )  (6.23) 

Note from (6.23) that the variance (yo  = u:) of 2, depends on the 
variance (a:) of a,. This is not surprising since it is the presence of the 
random-shock component that makes z ,  stochastic in the first place. Note 
also that u,' exists and is constant through time because both u,' and 8, are 
finite constants by assumption. So (6.23) says that an MA(]) process 
satisfies a necessary condition for stationarity-the variance is a finite 
constant. 

Next, we find the autocovariances of (6.19). Let k = 1.2, . . . and apply 
Assumptions IIIa and IVa to (6.22) to find that all the autocovariances 
except y, are zero: 

y, = -eIu; (6.24a) 

y k = O ,  k >  1 (6.24b) 

Note that all the autocovariances are finite constants (since 8, and u,' are 
finite constants). Thus the MA(1) satisfies a necessary condition for 
stationarity.* 

'Equations (6.23) and (6.24) give the elements in the variance-covariance mauix of the MA( 1 ). 
We have the variance (u:) which is a constant on the main diagonal. There is one autocovari- 
ance ( 7 , )  which is a constant on the first diagonal. both above and below the m a n  diagonal. 
All other elements in the MA( 1) variancecovariance matrix are zero. 
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Autocorrelations. Dividing the variance (6.23) and the autocovariances 
(6.24) by the variance (6.23) translates the yk's into autocorrelation coeffi- 
cien ts: 

yo 1 

Y1 - 4  
Yo 1 + 9: P I = - = -  (6.25) 

We see that the theoretical acf for an MA(1) process has a distinct 
pattern: the autocorrelation at lag zero (po) is always one; p1 is nonzero 
because y, is nonzero; all other autocorrelations are zero because the 
relevant yk are zero. 

Consider an MA(]) process with 8, = -0.8. In backshift form this 
process is 

if = (1 + 0.8B)af (6.26) 

Although 8, is negative, it appears in (6.26) with a positive sign since we 
follow the convention of writing MA coefficients with negative signs. Thus 
the negative of our negative coefficient is positive. 

Use (6.25) to calculate the theoretical autocorrelations for process (6.26): 

These values are graphed in an acf in Example I at the top of Figure 6.6. 
Note that this theoretical acf looks like the MA( 1) theoretical acfs pre- 
sented in Chapter 3 and earlier in this chapter. They all have a spike at lag 1 
followed by a cutoff to zero. 

As another example consider an MA( 1) process with 8, = 0.5: 

2, = (1  - 0.5B)a,  (6.27) 
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Example I :  'i ,=(l+O.BBL, 

- 'I 1.0 

Example I I :  2t=(l-0.58k, 

l'O T 

-1.0 1 

Figure 6.6 Theoretical acfs for two MA( I )  processes. 

From (6.25) we find these theoretical autocorrelation coefficients for process 
(6.27): 

Po = 1 

- 0.5 - 0.4 -01 
PI = -2 = - = 1 + 8 ,  1.25 

These values are plotted in Example I1 at the bottom of Figure 6.6. Once 
again, we see that the theoretical acf for an MA( 1) process has a single spike 
at lag 1. 

[Nore: Estimated acfs never match theoretical acfs exactly because of 
sampling error. We saw examples of this in Chapter 3 where we simulated 
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some realizations. However, if we see an estimated acf with a spike at lag 1 
followed by statistically insignificant autocorrelations at the remaining lags, 
we should consider representing the available data with an MA(1) model. 
See Part 11, Cases 5 and 7-9 for examples.] 

6.5 Deriving theoretical acf‘s for the AR( 1) process 

In this section we consider a stationary AR( 1) process with a mean p and +, 
coefficient that are each a finite constant, and with a random-shock term 
satisfying Assumptions Ia-IVa. This process is sometimes referred to as a 
Murkoc process. In backshift notation the process is 

(1 - + l B ) q  = a, (6.28) 

Applying the rules for backshift notation, we can also write the process 

(6.29) 
as 

z ,  = C + $ J , Z , - ~  + a, 

where 

c = p( l  - +A 
As we did with the MA(1) generating mechanism in the last section, we 

derive the mean, variance, autocovariances, and acf of the AR( 1). 

Mean. In the last section we demonstrated rather easily that the ex- 
pected value ( p )  of z, for the MA( 1) process was the finite constant (C). In 
particular, we did not have to impose any special conditions on 8 ,  except 
that it be a finite constant. By contrast, the expected value of the AR( 1) is 
equal to C/(1 - 
must meet an additional condition or the assumption that p is a finite 
constant (i.e., stationary) becomes untenable. In fact, we have already seen 
in Section 6.2 that +, must satisfy this condition for stationarity: 

rather than C. Furthermore, the AR coefficient 

(6.30) 

We can justify condition (6.30) intuitively with an example. Consider 
process (6.29). Suppose +, = 2 and p = 0, and suppose the initial value for 
z is z,, = 1. With I$q1 > 1, the subsequent values of z, tend to “explode” 
away from the initial value; realuations generated by this process will not 
return to a fixed central value, and the assumption that the mean p is fixed 
at zero is contradicted. 
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To show this, suppose the first six random shocks have these values: 
(4, - 1, 1 ,  - 3, - 1, -5). Process (6.29) along with the above conditions 
would produce this realization: 

zo = 1 

zI  = 2(1) + 4 = 6 

= 2(6) - 1 = 11 

z3 = 2(11) + 1 = 23 

to = 2(23) - 3 = 43 

zS = 2(43) - 1 85 

z6 = 2(85) - 5 = 165 

This realization is moving further and further away from zero, suggesting 
that it was generated by a nonstationary process. In this section we show 
formally that the mean of an AR(1) process is not stationary unless 
condition (6.30) is met. 

To find the mean p of the AR(l), find the mathematical expectation of 
(6.29). In doing this we encounter a problem we did not meet when finding 
the mean of the MA(1): one of the terms to be evaluated on the RHS of 
(6.29), € ( z , - ~ ) ,  is unknown. To solve the problem, use (6.29) to write 
expressions for z , -  ,, I,- *, . . . and substitute these back recursively into 
(6.29). Rearrange terms to amve at this infinite series: 

z ,  = c(1 + l#q + +; + +: + - - )  + a ,  + +,a,-1 + +L + ... 

(6.31) 

We can find the expected value of an infinite series by taking the 
expected value of each term separately only if the sum of the coefficients in 
that series converges. From Rule IV-E, we require that 

m c @‘I = K 
I-0 

(6.32) 

where K is a finite constant. 
If condition (6.32) does not hold, then (6.31) is an explosive (divergent) 

infinite series; its sum does not exist and we cannot find its mathematical 
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expectation. It can be shown that if the stationarity condition (6.30) holds, 
then condition (6.32) also holds. Then the first term in (6.31) converges to 
C/( 1 - 9 ,  ), and we may apply Assumption IIa separately to each remain- 
ing term. By doing so we find* 

C 
9 I911 < 1 E ( z , )  = p = - 

1 - 9 ,  
(6.33) 

From (6.33) we find C = p(1 - 9,) .  This is a specific case of the more 
general result, shown in Chapter 5 ,  that C = p(l - E+;). 

We began by writing a supposedly stationary AR( 1) process. A stationary 
process has, among other things, a finite, constant mean. We have shown 
that this supposition is contradicted unless 19, I < 1, so (6.30) is a condition 
for stationarity of an AR(1). Similar restrictions on 8, are not necessary to 
ensure that the mean of the MA( 1) is stationary. 

Variance and autocovariances. Next, we derive the variance and autoco- 
variances of the AR(1) to see if they are stationary. We also need them to 
find the theoretical acf of the AR(1). We find the variance and autocovari- 
ances simultaneously. The variance yo = u,' and first autocovariance y ,  are 
found by solving two simultaneous equations; the remaining autocovari- 
ances are then found recursively. 
These derivations are easier if we work with the deviations of z, from p ,  

that is, I, = t, - p .  The process generating f, is identical to the process 
generating z,, except the mean and constant term of the 2, process are zero: 

2, = 9,,?,-, + (I, (6.34) 

Since the two processes are identical except for the means, the variances and 
autocovariances for the two processes are identical because the variances 
and the autocovariances depend on deviations from the mean rather than 
the value of the mean. 

We now use (6.34) to find the variance and autocovariances of the AR( 1). 
As we did in the last section, use Rules V-E and VI-E (from Appendix 3A) 
and the fact that the expected value of t, is zero to write the variance- 
covariance function for ,?,: 

Y& E ( f r z r -  k 1 (6.35) 

*A faster way to arrive at (6.33) is to find the mathematical expectation of (6.29) and substitute 
€( z , )  for E(z , -  ,) on the assumption that these must be equal if the process is stationary. The 
result is easily solved to arrive at (6.33). Our purpose above, however, was not only to find 
(6.33) but also to demonstrate that (6.30) is required for stationarity. 
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To evaluate (6.35), multiply both sides of (6.34) by 2,-& and find the 
expected value of the result using Rule 111-E: 

yk = E (  2r2r-k ) 

= € ( + 1 2 r - , z r - &  + a r l r - k )  

= + lE( f r - l f f -k )  + E(a , z , - , )  (6 -36) 

Letting k = 0, 1,2,. . . , (6.36) yields the following sequence: 

Yo = IJ-' = +lYI  + IJo 2 (6.37a) 

Y1 = +lYO 

Y2 = +IYI 

Y3 = 91Yz 

(6.37b) 

(6.37~) 

(6.37d) 

To see how we arrive at equations (6.37), recall from Chapter 5 that the 
AR(1) can be written in MA form. Thus, each of the following is an 
acceptable way of writing (6.34): 

2, = a, + +lar- I + +:a,-2 + . * .  

2 , - ,  = 0,- I + +1ar-2 + +:ar-3 + * .  * 

(6.38a) 

(6.38b) 

(6.38~) 2r-z - - ar-2 + +lar-3 + +:a,-, + * .  . 

These equations differ only in their time subscripts. 
To find the variance of (6.34) let k = 0. Then the first term in (6.36) is 

+ l ~ ( 2 r 2 r - l )  = +lyI. Making this substitution, and substituting the MA 
form of 2, using (6.38a) in the second RHS term in (6.36) gives 

Y O = + ~ Y I  + ~ [ a r ( a r + + l a , - l  + + : ~ , - 2 + - - - ) ]  

= + I Y I  + E ( u , ~ ,  + +larar-l + +:araf-2 + m - 0 )  
(6.39) 

By Assumption IIIa, all expectations except E(a,a,)  in the second RHS 
term in (6.39) are zero; E ( a , a , )  is IJ,' by Assumption IVa. Thus we have 
arrived at (6.37a). 
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To find y1 let k = 1. Then the first term in (6.36) is + l E ( . f f -  ~f,- I )  = ~ I Y O  
Making this substitution, and substituting the MA form of . f f W l  = 

using (6.38b) in the second RHS term in (6.36) gives 

YI = +IYO + E [ o , ( a , - ,  + +10,-2 + +:ar-3 + 4 1  
= +IYO + E ( a , a , - ,  + +1ara,-2 + ++faf-3 + a * * )  (6.40) 

By Assumption IIIa, all expectations in the second RHS term are zero and 
we have arrived at (6.37b). 

Letting k = 2,3, . . . and following similar reasoning leads to the expres- 
sions for the remaining autocovariances in (6.37). 

Now solve (6.37a) and (6.37b) simultaneously for the variance yo: 

(6.41) 

From (6.41), and u,' must both be finite constants, as we assume they 
are, if the variance of the AR(1) process is to exist and be stationary. In 
addition, the stationarity condition 1 + 1 1  < 1 must be satisfied if yo is to 
exist. That is, if I = 1, the denominator of (6.41) is zero and the variance 
is undefined. If 1 + 1 1  > 1, the denominator of (6.41) is negative and there- 
fore yo is negative-an impossible result for a variance. 
All autocovariances y , ,  y2,  . . . are now found recursively. Having found 

yo we substitute it into (6.37b) to find yI. This result is substituted into 
(6.37~) to find y2, which is then substituted into (6.37d) to find y3, and so 
forth. Thus the variance and all autocovariances for the AR(1) can be 
written compactly as a function of and yo: 

uk = +:yo, k = 0,1,2, . . . (6.42) 

Since yo does not exist if lgll 3 1, then from (6.42) none of the 
autocovariances exist if the stationarity condition 1 + 1 1  < 1 is violated 
because they all depend on yo. And just as with yo, all autocovariances are 
stationary only if u,' and are finite constants. Again we see the impor- 
tance of our assumptions about the properties of the random shocks and the 
constancy of parameters in UBJ-ARIh4A models. 

Autocorrelations. Dividing (6.42) by yo = u: yields a compact autocor- 
relation function for the AR(1): 

pk=+:, k = 0 , 1 , 2  ,... (6.43) 
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If I@, I < 1, the autocorrelation coefficients for an AR(1) decline exponen- 
tially as k increases. This important result states that the theoretical acf for 
a szufionary AR(1) process has a pattern of exponential decay as the 
autocorrelation lag length (k) grows. Figure 6.7 shows two examples of this. 
In Example I at the top of the figure, @ I  = 0.7. From (6.43). the autocorre- 
lations for this AR( 1) process have these values: 

po = & = (0.7)' = 1 

p ,  = $Il = (0.7)' = 0.7 

pt = @: = (0.7)* = 0.49 

p3 = 4; = (0.7)3 = 0.34 

Example I: (1 -0.7B);,=ut 

"i - 1.0 

Example 11: (1 + 0 . 5 B ) ~ 1 = u 1  

'.O T 

- 1 . 0 1  

Figure 6.7 Theoretical acf's for two AR( I )  processes. 
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In Example I1 at the bottom of Figure 6.7, +, = -0.5. Using (6.43) we find 

po = +: = (-0.5)' = 1 

= +'I = (-0.5)' = -0.5 

pz = +: = ( -0 .5)*  = 0.25 

p3 = # = ( - 0 ~ ) ~  = -0.125 

Note that if +* is positive, all decay is on the positive side of the acf. But 
if is negative the autocorrelation coefficients alternate in sign, while their 
absolute values decay exponentially. Thus if we see an estimated acf that 
decays exponentially, either from the positive side or with alternating signs 
starting from the negative side, we may make an educated guess that a 
stationary AR( 1) is a good model to represent the data. (See Part 11, Case 1 
for an example.) 

Equation (6.43) also suggests that a nonstutionuty AR(1) process will 
produce a theoretical acf which does not damp out. For example, if = 1, 
the pk follow the pattern I , ] ,  1, . . . Thus if we see an estimated acf whose 
autocorrelations die out dowly at higher lags, this is a clue that the underly- 
ing process may be nonstationary. Note that the estimated autocorrelations 
need not all be near 1.0 to suggest nonstationarity; they need merely damp 
out slowly. (Case 8 in Part I1 shows an example of an estimated acf which 
decays slowly from relatively small values.) 

Summary 

Stationary AR processes have 
(a) theoretical acfs that tail off toward zero with either some type 
of exponential decay or a damped sine wave pattern; and 
@) theoretical pacfs that cut off to zero after lag p (the AR order 
of the process). 
MA processes have 
(a) theoretical acfs that cut off to zero after lag q (the MA order of 
the process); and 
@) theoretical pacfs that tail off toward zero with either some type 
of exponential decay or a damped sine wave pattern. 
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3. Stationary mixed (ARMA) processes have 
(a) theoretical acfs that tail off toward zero after the first q-p lags; 
and 
(b) theoretical pacf s that tail off toward zero after the first p-q lags. 

4. An AR( 1) or ARMA( 1,9) process must meet the following condition 

5. An AR(2) or ARMA(2,9) process must meet the following three 
to be stationary: I + ,  I < 1. 

conditions to be stationary: 

6. The stationarity requirement ensures that we can obtain useful 
estimates of the mean, variance, and acf from a sample. If a process mean 
were different each time period, we could not obtain useful estimates since 
we typically have only one observation available per time period. 
7. To check for stationarity in practice: 

(a) examine the realization visually to see if the mean and variance 
appear to be constant; 
(b) examine the estimated acf to see if it drops to zero rapidly; if it 
does not, the mean may-not be stationary and differencing may be 
needed; and 
(c) check any estimated AR coefficients to see that they meet the 
relevant stationarity conditions. 

8. The stationarity conditions on the @ coefficients are complicated 
when p ? 2. We can at least use this necessary (but not sufficient) condition 
to check for stationarity when p > 2: 

1 

9. If p > 2, we rely primanly on visual inspection of the data and the 
behavior of the estimated acf to check for stationarity. If the estimated acf 
does not fall rapidly to zero at longer lags, we suspect nonstationarity. 

10. An MA( 1) or ARMA( p,  1) process must meet the following condi- 
tion to be invertible: 10, I < 1. 
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conditions to be invertible: 
11. An MA(2) or ARMA( p, 2) process must meet the following three 

12. The invertibility requirement produces the common-sense implica- 

13. Theoretical acfs and pacfs are derived from processes by applying 

14. The autocorrelation function for a pure MA process is 

tion that smaller weights are attached to observations further in the past. 

expected value rules and the assumptions about the random shocks. 

-e, + e,e,+ I + - - - + eq-&eq 
( I  + e; + e; + - - . + e;) P& , k = 1 , 2  )..., q 

P k Z o ,  k ' q  

15. The autocorrelation function for an AR( 1) process is 

P& = +f, k = 0, 172, I . .  

Appendix 6A: The formal conditions for stationarity and 
invertibility 

In this appendix we discuss the formal mathematical conditions for 
stationarity and invertibility of any ARIMA process. 

Stationarity. Use the AR operator to form the characteristic equution 

(1 - + l B  - &B2 - - * *  - @pBP) = 0 (6A.1) 

where B is now treated as an ordinary algebraic variable. Stationarity 
requires that aIl roots of (6A.1) lie outside the unit circle (in the complex 
plane). 

Although this formal condition for stationarity is conceptually clear, the 
implied restrictions on the AR coefficients may not be easy to find in 
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practice. For the AR(l), it is easy to show that 19, I < 1 must hold if B is to 
lie outside the unit circle. For the AR(2), we may apply the standard 
quadratic formula to (6A.1) to derive the conditions on +, and +* shown in 
equation (6.8) and Table 6.2. 

For p = 3 or 4 there are general solutions for the roots of (6A.1), but 
they are cumbersome. There are no general solutions for polynomials of 
degree five or higher. In these cases, the range of root values of (6A.1) 
satisfying stationarity may be found numerically. Then the implied range of 
acceptable values for the + coefficients may be found. This procedure is 
relatively difficult and time-consuming and is often not done. 

Occasionally, some analysts express ARIMA models in a multiplicative 
rather than additive form to ease examination of stationarity and invertibil- 
ity condtions. Writing the AR operator in multiplicative form gives this 
characteristic equation: 

In this case, the set of stationarity conditions on the coefficients reduces to 

< I .  for all i (6A.3) 

In Chapter 1 I we discuss a common type of multiplicative ARIMA model 
containing both seasonal and nonseasonal elements. 

invertibility. The formal mathematical requirements for invertibility are 
identical to those for stationarity except we begin with the MA operator to 
form this characteristic equation: 

( I  - e , B  - e,B2 - ... - eqBq) = 0 (6A .4) 

Invertibility requires that all roots of (6A.4) lie outside the unit circle (in the 
complex plane). All earlier comments about the ease or difficulty of finding 
the restrictions on cp coefficients apply here, but in this case they pertain to 8 
coefficients. Likewise, the MA operator may be expressed in multiplicative 
form: 

(1 - ell?)( 1 - e#) - .  . ( 1  - eqB') = 0 (6A.5) 

where the set of invertibility conditions becomes 

18,1 .c 1 ,  for all; (6A .6) 
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Appendix 6B. Invertibility, uniqueness, and forecast 
performance 

In Section 6.3 we emphasized the common-sense appeal of the invertibility 
requirement. Some further comments about this requirement are in order, 
though they involve mathematical proofs beyond the scope of this book. 

Invertibility guarantees that, for stationary processes, any given theoreti- 
cal acf will correspond uniquely to some ARIMA generating mechanism. 
(This result holds only up to a multiplicative factor-a point discussed 
further under the topic of parameter redundancy in Chapter 8.) This unique 
correspondence increases the attractiveness of the Box-Jenkins identifica- 
tion procedure: there is only one stationary ARIMA process consistent with 
any particular theoretical acf. Of course, uniqueness does not ensure that 
correctly choosing the theoretical acf corresponding to an estimated acf will 
be easy in practice. 

An example may help to clarify the idea of uniqueness. Suppose we have 
an MA(1) theoretical acf with p ,  = 0.4 and pk = 0 for k > 1. We see from 
(6.25) that these autocorrelations are consistent with either 8, = 0.5 or 
8, = 2. Restricting 8, to satisfy the invertibility condition IS, I < 1 provides 
a unique correspondence between the autocorrelations and the value of 8,. 
The same conclusion holds for any MA process: the pk may give multiple 
solutions for MA coefficients, but a unique correspondence between the 
theoretical acf structure and the process is assured if the invertibility 
conditions are satisfied. The problem of multiple solutions does not arise 
with AR models. It can be proven that the coefficients of a pure AR process 
are uniquely determined by the corresponding theoretical acf. 

Achieving uniqueness by restricting our analysis to invertible processes 
may seem arbitrary. In particular, perhaps we should consider dropping the 
invertibility requirement whenever a noninvertible form produces better 
forecasts than the invertible one. It  turns out, however, that this cannot 
happen. There is a theorem, proven elsewhere, whch states the following: in 
practice, the noninvertible form of a model cannot produce better forecasts 
than the invertible form based on a minimum mean-squared forecast-error 
cri tenon. 

Questions and Problems 

6.1 Consider the following pairs of theoretical acf's and pacfs. Indicate 
whether each pair is associated with an AR, MA, or A R M  process, and 
state the orders of each process. Explain your reasoning in each case. 
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6.2 Consider this AR(1) process with (PI = 0.8: 

( 1  - 0.8B)T, = U ,  

where 

u,” = 1 

(a) What are the numerical values of the first five autocovariances? 
(b) What are the numerical values of the first five theoretical autocor- 
relation coefficients? 
(c) What are the numerical values of the first five theoretical partial 
au tocorrela tion coefficients? 
(d) Sketch the theoretical acf and pacf of this process. 

6.3 Which of the following processes are stationary and invertible? Ex- 
plain. 

(a) (1 - 1.05B + 0.4B2)2, = u, 
(b) (1 - l.OSS)Z, = 4, 
(c) (1 + 0.8B)f ,  = (1 - 0 . 2 5 B ) ~ ,  
(d) 2, = (1 + 0.7B - 0 . 5 B 2 ) ~ ,  
(e) 2, = (1 - 0.8B)at 
(f) (1 - 0.4B2)i ,  = U ,  

(g) (1 + 0.6B)T, = (1 + 0.9B2)u, 

6.4 Calculate and plot in an acf the first five theoretical autocorrelation 
coefficients for this MA( 1) process: 

z, = (1 + 0.6B)u, 

6.5 Show that C = p for the MA(2) process. 

6.6 Show that C = p(1 - +I  - &) for a stationary AR(2) process. Use 
the faster method referred to in the footnote in Section 6.5. 

6.7 Derive the theoretical acf for the MA(2) process. Calculate and plot in 
an acf the first five theoretical autocorrelations for this MA(2) process: 

2, = ( 1  + 0.8B - 0.4B2)u, 



7 
IDENTIFICATION: 
NONSTATIONARY MODELS 

In Chapter 1 we said that a data series had to be stationary before we could 
properly apply the UBJ modeling strategy, and till now we have focused on 
stationary models. Stationary realizations are generated by stationary 
processes. If the random shocks ( a , )  in a process are Normally distributed, 
then the process will be stationary if its mean, variance, and (theoretical) 
autocorrelation function are constant through time. Thus, if we consider 
segments of a realization generated by a stationary process (the first and 
second halves, for example), the different segments will typically have 
means, variances, and autocorrelation coefficients that do not differ signifi- 

In practice, however, many realizations are nonstationary. In this chapter 
we consider how we can (often, but not always) transform a nonstationary 
realization into a stationary one. If such transformations can be found. we 
may then apply the three-stage UBJ strategy of identification, estimation, 
and diagnostic checking to the transformed, stationary series. After model- 
ing the transformed series, we may reverse the transformation procedure to 
obtain forecasts of the original, nonstationary series. 

cantly. 

7.1 Nonstationary mean 

The most common type of nonstationarity is when the mean of a series is 
not constant. Figures 7.1, 7.2, and 7.3 are examples of three such realiza- 
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AT&T STOCK P R I C E  
- -DIFFERENCING: 0 
--EACH V E R T I C A L  A X I S  I N T E R V A L  = ,252604 
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.................................................. 

61.625 
61 
64 
63. 75 
63. 375 
63. 875 
61. 875 
61. 5 
61.625 
62. 125 
61.625 
61 
61. 875 
61.625 
59. 625 
58.75 
58.75 
58. 25 
58. 5 
57.75 
57. 115 
57.75 
58.875 
58 
57.875 
58 
57. 125 
57. 25 
57.375 
57.125 
57. 5 
58.375 
58.125 
56.625 
56.25 
56.25 
55. 125 
55 
55. 125 , 

53 
52.375 
52. 875 
53. 5 
53.37s 
53.375 
53. 5 
53.75 
54 
53. 12s 
51. 875 
52. 25 

Figure 7.1 
stock prices. 

Example of a realization with a nonstationary mean: AT&T closing 
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tions. Figure 7.1 shows weekly observations of the closing price of a stock 
whose overall level (mean) is trending downward through time. Figure 7.2 
shows the weekly availability of an industrial part. The level of this series 
appears to rise and fall episodically rather than trending in one direction. 
Figure 7.3 is a series of commercial bank real-estate loans. The level of this 
series shows a trend, much like the stock-price series in Figure 7.1, but the 
loan series is trending up rather than down. Note also that the loan series 
changes both slope and level, whereas the stock-price series has a roughly 
constant slope. 

Homogeneous nonstationarity. Each of the above three realizations has 
an important characteristic called homogeneous nonstarionarity. That is, 
different segments of each series behave much like the rest of the series after 
we allow for changes in level and/or slope. This characteristic is important 
because a homogeneously nonstationary realization can be transformed into 
a stationary series simply by differencing. 

We can visualize the idea of homogeneous nonstationarity by considering 
the rectangular frames superimposed on the three series, shown in Figures 
7.4, 7.5, and 7.6. In Figure 7.4 the observations in the left-hand frame trace 
out a path very similar to the data path in the right-hand frame. The only 
difference is that the two frames are drawn at different levels. The same is 
true of the three frames superimposed on the data in Figure 7.5. 

Likewise, the two frames in Figure 7.6 are drawn at different levels. But 
we must also draw these frames at different angles to make the data paths 
within each frame look similar. When these two frames are placed next to 
each other, as shown in Figure 7.7, both segments of this realization appear 
to have the same level and slope. The similar behavior of the data within the 
two frames in Figure 7.7 suggests that the nonstationarity in the loans series 
is of the homogeneous variety; different segments of t h s  series are similar 
afier we remove the differences in level and slope. 

Differencing. Realizations that are homogeneously nonstationary can 
be rendered stationary by differencing. (Remember that differencing is a 
procedure for dealing with a nonstationary mean, not a nonstationary 
variance.) We introduced the mechanics of differencing in Chapter 2 and 
the associated notation in Chapter 5.  For convenience we review the 
fundamental ideas here. 

To difference a series once (d = 1). calculate the period-to-period changes. 
To difference a series twice (d = 2), calculate the period-to-period changes 
in the first-differenced series. For example, consider the short realization 
(z,)  shown in Table 7.1, column 2. The first differences of L, (designated 
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Figure 7.2 Example of a realization with a nonstationary mean: parts availability. 
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Figure 7.2 (Continued) 
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F w  73 Example of a realitation with a nonstationary mean: real-estate loans. 

101 I \* 87. 6 
I+++++*+*++**+++++++++++*++*.++++*+**++++*+++++*++ 



AT&T STOCK PRICE 
--DIFFERENCING: 0 
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Figure 7.4 Figure 7. I with superimposed rectangular frames to illustrate homoge- 
neous nonstationarity. 
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Figure 7.5 Figure 7.2 with superimposed rectangular frames to illustrate homoge- 
neous nonstationarity. 
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Figure 7.7 Rectangular frames from Figure 7.6 placed side-by-side. 

vz,) are the changes in z,: vz, = z, - z,-~. Thus VZ, = z2 - zI = 1 1  - 8 
= 3. Other calculations of the first differences are shown in column 3. 

The second differences of I, (designated VZz,) are the changes in the first 
differences: V’z, = 01, - Vz,-, = (z, - 2,- ,) - (z,- I - z , - ~ ) .  Thus 
0’2, = VZ, - vz2 = 4 - 3 = 1. Further calculations of second dif- 
ferences appear in column 4. 

We lose one observation each time we difference a series. For example, 
there is no observation zo to subtract from z,, so we have only nine first 
differences in Table 7.1 although there are 10 original observations on z,. 

Table 7.1 Numerical examples of first and second differencing 

First Differences of :,: Second Differences of z,: 
2.  Ti:, = :, - :,. I h  ’., - vz, - v z r -  ,d  

- “  
- I  I 

1 z 1 = X  

2 :, = I 1  

3 :? = I5 

4 :,, = 16 

5 :5 = 17 

6 :h = 19 

7 :, = 23 

X :,, = 28 

9 :v 5 27 

10 :,,, = 29 

v’:, = 02, - v:” = ma. 

V’Z, - v z 2  - v:, = ma. 

c2:3 * c:, - Ti:2 = 4 - 3  = I 

G ? Z 4  = vz4 - Ti:, = I - 4  = -3 

V?Z, = VL-5 - v:, = I - 1 = 0 

t-:o = v:, - v:s = 2 - I = 1 

v-:” = v:* - v:, = 5 - 4  = I 

v-;, = VZ, - v:, 6 4 - 2  = 2 

V’:y= Vz,- v:x= - 1  - 5 -  - 6  

o ’ z , ,  = v:,o - tz, = 2 - ( -  1 )  = 3 

“Mean = 18.3. 
’Mean = 2.3. 
‘n.a. = not available. 
dMean = -0.13. 
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Since there are only nine first differences, there are only eight second 
differences. That is, there is no first difference Vzl = (zl - zo) available at 
r = 1 to subtract from the first difference VZ, = ( z 2  - I , )  at t = 2, so we 
cannot calculate a second difference for t = 2. 

Note that the means of the three series (z,, VZ,, v 2z,) get closer to zero 
the more we difference. (The means are shown at the bottom of Table 7.1 .) 
This is a common result, especially for data in business, economics, and 
other social sciences. We discuss this point further in Section 7.3. 

Let w, stand for a differenced series. Although we may build an ARIMA 
model for the differenced series ( w, ) when the original series ( I , )  is not 
stationary, we are often interested in forecasting the undifferenced ( I , )  
series. Whde the w 's are differences of the z 's, the z 's are sums of w 's. We 
can obtain the z, series by inregtaring (summing) successive w, values. 
Integration is discussed further in Appendix 7A. 

Backshift notation for differencing. Backshift notation for differenced 
variables is as follows: (1  - B ) z ,  or (1 - B)Z, represents the first dif- 
ferences of z,. (1  - B ) 5 ,  or (1 - B)%, represents the second differences of 
I,. In general, (1 - B)dz,  or (1 - B)dZ, represents the dth differences of z,. 

It is easy to demonstrate these conclusions by applying the rules for the 
backshift operator B stated in Chapter 5. For example, we can show that 
(1 - B ) i ,  is the Same as z, - 2,- I by expanding the expression (1 - B ) i ,  
and applying rules (5.9) and (5.10) from Chapter 5: 

( I  - B)Z,  = (1  - B ) ( z ,  - p )  = Z, - z,B - y + B/J. 

= z, - Z,-I - y + /J. 

The y terms add to zero when z, is differenced, so we could write the 
differenced series as either (1 - B)%, or (1 - B)dZ-,. This result is the 
algebraic analog of our statement above that a differenced realization often 
has a mean that is statistically zero. This topic is discussed further in Section 
7.3. 

Identification procedures. Let w, represent a differenced series: 

= ( 1  - B ) 9 ,  
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After a nonstationary series z, has been transformed into a differenced, 
stationary series w,, then w, is modeled with the same UBJ-ARIMA 
procedures that apply to any stationary series. For example, suppose the 
estimated acf of the differenced series w, decays exponentially while the 
estimated pacf has a spike at lag 1. According to our discussion of 
theoretical acfs and pacfs in Chapters 3 and 6, we should then entertain an 
AR(1) model for w,: 

(1  - +tB)w,  = a, (7.3) 

Since w, and z, are linked deterministically by definition (7.2), (7.3) also 
implies a model for z,. Use (7.2) to substitute (1 - B ) d i ,  for w, in (7.3) to see 
that (7.3) implies an ARIMA (1. d, 0) model for z,: 

(1  - + , B ) (  1 - = u, (7.4) 

In general, any ARMA( p ,  q )  model for a differenced series w, is also an 
inregrured ARIMA( p, d, q )  model for the undifferenced or integrated series 
z,, withp and q having the same values for both models. In fact, the AR and 
MA coefficients are the same for the two models. The link between the two 
models is definition (7.2), whch states that the w's  are obtained from 
differencing the L 's d times, and the z 's are obtained by integrating the w 's 
d times. 

For any realization we must select an appropriate degree of differencing 
(the value of d )  before choosing the AR and MA terms to include in the 
model. If the original series z, is stationary, we do not difference, so d = 0. 
When segments of a series differ only in level, as with the stock-price series 
in Figure 7.1 or the parts availability series in Figure 7.2, differencing once 
is sufficient to induce a stationary mean, so d = 1. When a series has a 
time-varying level und slope, as with the loans series in Figure 7.3, differenc- 
ing twice will induce a stationary mean, so d = 2. 

In practice, first &fferencing is required frequently while second dif- 
ferencing is needed only occasionally. Differencing more than twice is 
virtually never needed. We must be careful not to difference a series more 
than is needed to achieve stationarity. Unnecessary differencing creates 
artificial patterns in a series and tends to reduce forecast accuracy. On the 
other hand, Box and Jenkins suggest that, in a forecasting situation, a series 
should be differenced if there is serious doubt as to whether the stationary 
or nonstationary formulation is appropriate: 

In doubtful cases there may be advantage in employing the nonsta- 
tionary model rather than the stationary alternative (for example, in 
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treating a +,, whose estimate is close to unity, as being equal to unity). 
This is particularly true in forecasting and control problems. Where @, 
is close to unity, we do not really know whether the mean of the series 
has meaning or not. Therefore, it may be advantageous to employ the 
nonstationary model whch does not include a mean p. If we use such 
a model, forecasts of future behavior will not in any way depend on an 
estimated mean, calculated from a previous period, which may have 
no relevance to the future level of the series. [ I .  p. 192, emphasis in 
original. Quoted by permission.] 

How do we choose the value of d? As noted in Chapter 6, there are three 
complementary procedures: 

1. 

2. 

3. 

Examine the data visually. Th~s often gives a clue to the appropriate 
degree of differencing. For example, it is difficult to look at the 
stock-price series in Figure 7.1 without seeing that the level of the 
data is trending down. However, the slope of the series does not 
appear to be changing through time. Therefore, setting d = 1 (dif- 
ferencing once) would seem appropriate. While such visual analysis 
can be helpful, we should not rely on it exclusively to determine the 
degree of differencing. 
Examine the estimated acf s of the original series and the differenced 
series. The estimated acf of a nonstationary series will decay only 
slowly. While the estimated acf for a series with a nonstationary mean 
might decay slowly from a very high level, with r, close to 1.0, this is 
not a necessary characteristic of such series. The estimated acf could 
start out with rather small values of r ,  (less than 0.5, for example). 
The critical point is that the estimated acf decays toward zero very 

Check any estimated AR coefficients at the estimation stage to see if 
they satisfy the stationarity conditions discussed in Chapter 6. 

slowly.* 

Example 1. The above modeling steps may be illustrated using the three 
realizations in Figures 7.1, 7.2, and 7.3. Visual analysis of the stock-price 
series suggests that its mean is nonstationary because the series trends down. 
The estimated acf for this realization, shown in Figure 7.8, declines very 
slowly. This behavior is consistent with the mean being nonstationary, and 
differencing at least once is proper. 

‘See Box a d  Jenkins [ l ,  p. 200-2011 for an example of a nonstationaq process whose 
estimated acfs decay slowly from approximately rl = 0.5. 
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+ + + + + + + + + + + + + AUTOCORRELATIONS + + + + + + + + + + + + + 
+ FOR DATA SERIES: ATLT STOCK PRICE + 
+ DIFFERENCING: 0 MEAN = 57. 7957 + 
+ DATA COUNT = 52 STD DEV = 3.4136 + 

COEF T-VAL LA6 0 
0 . 9 3  6 .74  1 c O>>j>>I>>>>>>>>>>>>>>>>> 
0.86 3 . 7 5  2 c O>>)>>>>>>>>I>>>>>>>>>> 
0.81 2 .  85 3 c O>>>>>>>>>>>>>I>>>>>> 
0 . 7 5  2 . 2 9  4 c O>>>>>>>>>>>>>>>I>>> 
0.68 1 . 9 1  5 c 0>>>>>>>>>>>>>>>>>3 
0 .  62 1. 62 6 c O>>>*>>>>$>>>>Y>>> 3 
0. 55 1. 38 7 L O>>>>>>>>>>>>>> 3 
0 . 4 9  1. 19 8 c O>>>>>>>>>>>> 1 
0 . 4 4  1 . 0 3  9 C O>>>>>>>>>>> 3 
0. 38 0.  87 10 C O>>>>>>>>> 3 
0 . 2 9  0. 65 11 t O>>>>>>> I 
0 .22  0.49 12 c O>>>>> I 
0. 18 0.39 13 C O>>>> 3 

CHI-SQUARED* = 280 .32  FOR DF = 13 

Figure 7.8 Estimated acf for the stock-price realization in Figure 7.1. 

The first differences of the stock-price realization appear in Figure 7.9. 
The differenced series no longer has a noticeable trend. Instead it fluctuates 
around a fixed mean of nearly zero (the mean is - 0.17). Differencing once 
appears to have induced a stationary mean, so the nonstationarity in the 
original series was apparently of the homogeneous variety. 

The estimated acf of the differenced stock-price series is shown in Figure 
7.10. It dies out to zero quickly, suggesting that the mean of the first 
differences is stationary. It has no significant t-values; the acf shows neither 
the decaying pattern suggestive of a pure AR or mixed A R M  model, nor 
the spike and cutoff pattern associated with MA models. Therefore, the first 
differences appear to be a white-noise series, suggesting the following 
ARIMA model for the differenced data: 

Wf = u, (7.5) 

Substituting wf = (1 - B ) i ,  into (7.5) leads to this model for the origmal 
series: 

( 1  - B ) i ,  = a,  

In Case 6 in Part I1 we see that estimation and diagnostic checking confirm 
model (7.6) as appropriate for the stock-price series. 

Example 2. We saw in Figure 7.2 that the parts-availability data also 
appear to have a nonstationary mean. The estimated acf for this series, 
shown in .Figure 7.1 1, is consistent with this conclusion. The estimated 



ATbT STOCK PRICE 
--DIFFERENCING 1 

JERTICAL A X I S  INTERVAL = 106771 

L1 

31 

--EACH 1.- _ _  - . 

LOW = MEAN = H16H = 

-2 - 375 

131 
141 

-. 625 
,875 

21 I 
22 I 
23 I 
24 I 

-_ 75 -_ 625 
625 

I .  125 

31 I 
32 I 
33 I 
34 I 
351 
36 I -*. 
37 I 
38 I 
39 I 
40 I 
41I*- 
42 I 
43 I 
44 I 
451 
46 I 
47 I 
48 I 

J 

I 
-I-*, 

-I-* 
I 

-* 

-~ 
49 I 
50 I 
51 I 
52 I 

-. 25 
,375 
875 

-. 25 
-1.5 
-. 375 
0 

-1. 125 
-. 125 

. 125 
-2. 125 
-. 625 

. 5  

. 625 
-. 125 
0 
. 125 
. 2 5  
. 25 

-. 875 
-1.25 
375 

1+++++++++++++++++++++++++++++++++++++++++++++++++ 

Figure 7.9 First differences of the stock-price realization in Figure 7.1 
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+ + + + + + + + + + + + + AUTOCORRELATIONS + + + + + + + + + + + + + 
+ FOR DATA SERIES: ATLT STOCK PRICE + 
+ DIFFERENCINC: 1 K A N  = -_ 171569 + 
+ DATA COUNT = 51 SiD M V  = ,046221 + 
COEF T-VAL LAC 0 

-0.04 -0.31 1 cccco 
-0.20 -1 43 2 ccc<<c<c<cccccccc<cco 
0. 13 0. 88 3 O>>>>>>>>>>>>> 

-0. 11 -0 71 4 ccccc<ccccco 
-0.07 -0. 50 5 ccccccco 
-0.03 -0. 17 6 ccco 

0 . 0 0  -0.02 7 0 
-0. 14 -0.96 8 cc<c<<<<<c<ccco 
0.08  0. 50 9 O>>>>>>>> 
0.20 1.33 10 O>>>>>>>>>>>>>>>>>>>> 

-0. 17 -1.09 11 <ccccccccc<cc<ccco 
-0. 17 -1.05 12 ccccccccccccc<ccco 
0. 12 0.74 13 O>>>>>>>>>>>> 

CHI-SQUARED* 13.81 FOR DF = 13 

Figure 7.10 Estimated acf for the first differences of the stock-price data in Figure 
7.9. 

+ + + + + + + + + + + + + AUTOCORRELATIONS + + + + + + + + + + + + + 
+ FOR DATA SERIES PARTS AVAILABILITY + 
+ DIFFERENCING: 0 MEAN = 82 1211 + 
.+ DATA COUNT = 90 STD DEV = 2 36796 + 

0 . 4 7  3 46 3 [ 0~.3.'.:.:1->>>>>;.::.; 3 >-,>>>>>>> 
0 .37  2 . 4 7  4 c 
0. 36 2. 23 5 t a,.J.- .  ,. ...; I>> 
0.24 1 52 6 c 0>>?>:.>>:::'.:->2> 3 
0 26 1 52 7 c O>'.".>;.:..)>>:,.::>>> 1 
0 . 1 5  0 .85  8 c o>:" j>?:>> 1 
0. 12 0 65 9 c O>:':?>;-> 1 
0 . 2 0  1 11 10 r O>>>:::.:>>>>:> 1 
0.  08 0 42 11 c O>>>> 1 
0 . 0 7  0 .40  12 c O>:>:>> 3 

-0 04 -0 22 13 c ((0 3 
-0 05 -0 27 14 c .:<0 3 
-0. 11 -0. 59 15 c Ci<<<O 1 
-0. 10 -0 54 16 c <:Ci<<O 3 

1 -0 17 -0 90 17 c ,...%<-< .'.<O 
-0.18 -0 94 18 c <<<;:<<<<<0 1 

3 -0.21 -1 11 19 c ..A..<<<*:<<co 
-0. 14 -0. 75 20 c <i<<<<<O 3 
-0.28 -1 46 21 c <:i<<<<<<<<C<<<O 1 
-0.24 - 1  34 22 c C C < < C < i < ~ < i < < < O  1 
-0. 27 -1.  35 23 1 <<<<<c::<.<':<<.:<o 3 

o>:?>~~>:.>>?:..~>~~>]>>> 
O,..,Y ..-,,-.>->-,,>-,- . 

.+*,-,.-. 

<- I_ c ,- ~ 

CHI-SQUARED* = 143.16 FOR DF = 23 

Figure 7.11 Estimated acf for the parts-availability realization in Figure 7.2. 
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Figure 7.12 First differences of the parts-availability realization in Figure 7.2. 
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+ + + + + + + + + + + + + AUTOCORRELATIONS + + + + + + + + + + + + + 
+ FOR DATA SERIES: PARTS AVAILABILITY + 
+ DIFFERENCING: 1 M A N  = .955056E-01 + 
+ DATA COUNT = 89 STD DEV = 2. 56563 + 

-0 47 -4. 45 1 e ~ ~ < ~ < ( < ( < < < ~ < c < ~ < < < ( t c t o  3 
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-0 05 -0 42 
0 09 0 72 

-0 04 -0 30 
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-0 10 -0 75 
0 05 0 39 

-0 04 -0 29 
0 03 0 21 

-0 04 -0 28 
0 01 0 06 

-0 07 -0 48 

-0 11 -0 a4 

-0 oa -0 62 

2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 

c 
c 
c 
c 
f 
c 

c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 

<<<O 

c<o 

C<<<<O 

<<<O 
<<<<O 

0>>>>>>1> 
<c<<co 

O>>>>> 
i<<<<O 

O>>i 
<<O 

O', 
<<0 

0 
<<<O 

O>>>>> 

O>>> 

0>:>>>> 

3 
3 
3 
3 
3 
3 

3 
3 
3 
3 
3 
3 
3 
3 
3 
1 
3 
3 

0 19 1 42 20 c O>;>>>>>:b>> 3 
-0 12 -0 aa 21 c <c<<<<o 3 
-0 01 -0 04 22 1. 0 3 
0 02 0 16 23 c O> 3 

CHI-SQUARED* = 38 93 FOR DF = 23 

Figure 7.13 Estimated acf for the first differences of the parts-availability data in 
Figure 7.12. 

autocorrelation coefficients actually rise for the first few lags and remain 
moderately large (absolute t-values > 1.6) until about lag 7. 

After differencing once, the parts availability series appears to have a 
stationary mean. The first differences (plotted in Figure 7.12) seem to 
fluctuate around a fixed mean of about zero (the mean is 0.096). The 
estimated acf of the first differences (Figure 7.13) dies out to zero quickly, 
with only the autocorrelation at lag 1 being significant. f i s  suggests an 
MA( 1) model for the first differences: 

wr = ( 1  - B,B)a ,  (7.7) 

Since wr = (1 - B)Z,, (7.7) corresponds to an ARIMA(0, 1,l)  model for the 
original series 2,: 

Estimation and diagnostic checking of model (7.8). discussed in Case 8 in 
Part 11, show that it provides a good representation of the parts-availability 
data. 
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Example 3. The real-estate-loans realization shown in Figure 7.3 ap- 
pears to change both level and slope, suggesting that differencing twice is 
needed. The estimated acf of the original data (Figure 7.14) fails to damp 
out rapidly toward zero, thus confirming the nonstationary character of the 
realization mean. 

The first-differenced data appear in Figure 7.15. This differenced series 
looks much hke the original parts availability realization-its level rises and 
falls episodically. The estimated acf for the first-differenced data is shown in 
Figure 7.16. It does not damp out toward zero rapidly, so further differenc- 
ing seems appropriate. 

The twice-differenced data are plotted in Figure 7.17. This series fluctuates 
around a constant mean of approximately zero (the mean is 0.0176). In 
Figure 7.18 we see that the estimated acf for t b ~ s  series moves quickly to 
zero. The sigmficant spike at lag 1, followed by the cutoff to zero, suggests 
an MA( 1) for the second differences: 

wr = ( 1  - e,z+, (7.9) 

We know that y stands for the second differences of I,: w, = (1  - B ) 2 =  & I .  

Therefore, (7.9) implies that the original series I, follows an ARIMA(O.2,l). 
That is, substitute (1 - B ) Z i ,  into (7.9) for w, to get 

(1 - B)*z,  = (1 - e , B ) a ,  (7.10) 

+ + - L + + - + - - + I ~ \ : . , ; ~ ? ; ~ R R E L A T I ~ S  + + + + + + + + + + + + + 
+ FDi? DA?A SERIES REAL E S T A T E  LOAN5 + 
+ DIFFERENCING. 0 HEAN = 6 2 . 7  + 
+ DA?A COUNT = 70 STD DEV = 9 42795 + 

COEF T-VAL LAG 0 
0 93 7 74 1 c 
0 85 4 33 2 c 
0 76 3 20 3 r 
0 71 2 57 4 c 
0 .65  2 16 5 c 
0 59 1 85 6 c 
0 .54  1 00 7 c 
0 49 1 . 4 0  8 c 
0 44 1 23 9 c 
0 . 3 9  1.07 10 c O>:>,>:>?>>>> 3 
0 . 3 5  0.93 11 c O>>>>>.>>>? 3 
0. 30 0. 80 12 c o>>,'.r>>;:>:> 3 
0.26 0.69 13 c 3 
0. 22 0. 57 14 c 3 
0. 18 0.48 15 c 3 
0 15 0 . 3 9  16 C 0>:\>> - 3  
0 12 0 . 3 2  17 c o>;.> 3 
0 10 0. 26 18 c 0>:,: 3 

CHI-SQUARED* = 370 57 FOR DF = 18 

Figure 7.14 Estimated acf for the loans realization in Figure 7.3. 
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Figure 7.15 First differences of the loans realization in Figure 7.3. 
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+ + + + + + + + + + + + + AUTOCORRELATIONS + + + + + + + + + + + + + 

+ FOR DATA SERIES: REAL. ESTATE LOANS + 
+ DIFFERENCING: 1 MEAN = 595652 + 
+ DATA COUNT = 69 STD DEV = 525973 + 

COEF T-VAL LAG 0 
0 . 8 0  6 . 6 5  1 c 
0.73 4 03 2 c 
0. 65  2. 94 3 c 
0. 50 2 03 4 c 
0.  44 1 67 5 c 
0.35  1 30 6 c 
0.34  1 . 2 1  7 c 
0 . 3 1  1 08 8 c 
0.32 1 11 9 c 
0 . 3 7  I 25 10 c 
0 . 3 3  1 . 1 1  11 c 
0 . 2 9  0 . 9 6  12 c 
0 . 2 6  0 . 8 5  13 c o>>:>>:>:, :> 3 
0. 18 0. 58 14 c O:>:>:>:>> 1 
0 . 1 1  0 . 3 7  IS c O>>> 1 
0.  05 0 .  14 16 c O> 1 

-0. 05 -0. 16 17 c (0  1 
-0 12 -0 .37  18 c i ,<O 1 

Figure 7.16 Estimated acf for the first differences of the loans data in Figure 7.15. 

CHI-SQUARED* = 224 76 FOR DF = 10 

Estimation and diagnosticchecking results in Part 11, Case 7. confirm that 
(7.10) is an acceptable model for the loans data. 

7.2 Nonstationary variance 

Some realizations have a variance that changes through time. This occurs 
most frequently with business and economic data covering a long time span, 
especially when there is a seasonal element in the data. Such series must be 
transformed to induce a constant variance before being modeled with the 
UBJ-ARIMA method. It is possible that no suitable transformation will be 
found. 

Series with a nonstationary variance often have a nonstationary mean 
also. A series of th is  type must be transformed to induce a constant variance 
and differenced to induce a fixed mean before being modeled further. 

Figure 7.19 is an example of a series whose mean and variance are both 
nonstationary. These data, which are analyzed in Part 11, Case 11, are 
monthly armed robberies in Boston from 1966 to 1975. The rising trend 
suggests that the mean is nonstationary, and the variance also seems to get 
larger as the overall level rises. 

The first differences of the original data are shown in Figure 7.20. The 
first differences appear to fluctuate about a fixed mean which is close to 
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Figure 7.17 Second differences of the loans realization in Figure 7.3. 
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Figure 7.18 Estimated acf for the second differences of the loans data in Figure 
7.17. 

zero. However, the variance of the differenced data still seems to be 
increasing over time. 

Logarithmic transformation. Often a series with a nonstationary vari- 
ance will be stationary in the natural logarithms. This transformation is 
appropriate if the standard deviation of the original series is proportional to 
the mean, so that the percenr fluctuations are constant through time. 

The natural logarithms of the armed-robbery realization are plotted in 
Figure 7.21. This transformation appears to have made the variance of the 
series stationary. The first differences of the natural logarithms, plotted in 
Figure 7.22, c o n f m  this conclusion. (Note that we calculated the natural 
logarithms before differencing the data. Differencing first would have caused 
problems because the differenced series has some negative values, and the 
natural logarithm of a negative number is undefined.) 

We have created a new series, w,, which is the first differences of the 
natural logarithms of the original series: 

w, = (1 - B)( ln  z r )  (7.1 1) 

We may now model the series w, using the standard UBJ method. However, 
our real interest may be in forecasting the original series z,, not the natural 
logarithms of 2,. It might seem that we could forecast z, by merely finding 
the antilogarithms of forecasts of the logged series. However, there are some 
complications in this procedure, as discussed in Chapter 10. 
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Example of a realization with a nonstationary mean and variance: 
Boston armed robberies. 
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Figure 7.19 (Continued) 
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BOSTON ARMED ROBBERIES 
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Figure 7.20 First differences of Boston armed-robberies realization in Figure 7.1! 
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LOGie) BOSTON ARMED ROBBERIES 
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Figure 7.21 Natural logarithms of Boston armed-robberies realization in Figure 
7.19. 
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Figure 7.22 First differences of the natural logarithms of Boston armed-robberies 
data in Figure 7.21. 
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Other transformations. Sometimes a logarithmic transformation will not 
induce a stationary variance-it may overtransform or undertransform a 
series. Many analysts rely on visual inspection of the transformed data to 
decide whether the logarithmic transformation is adequate. Some other 
transformations, such as calculating the square roots of the orignal data, 
may be appropriate instead. 

There is another approach, known as the Box-Cox transformation, 
whxh involves estimating an appropriate transformation from the data. This 
procedure is beyond the scope of this text, but the interested reader may 
consult Box and Jenkins [ 1, p. 3281 for a brief introduction, or Box and Cox 
[19] for a fuller discussion. 

7.3 Differencing and deterministic trends 

When the mean fi of an original data series z, is stationary so that 
differencing is not required, fi will generally not be zero. Therefore, a model 
representing such an undifferenced series will generally have a nonzero 
estimated constant term (e). As shown in Chapter 5 ,  = fi (1 - Z&). 
Thus, if fi is not statistically zero, then e will typically be nonzero.* 

Suppose instead that z, must be differenced ( d  > 0) to achieve a sta- 
tionary mean. The resulting series w, often has a mean ( f i w )  that is not 
statistically different from zero. A model representing a differenced series 
therefore often has a constant term of zero. That is, if the estimate of 1.1, 
(@,) is statistically zero, then = f i ,  (1 - ZG,) will typically also not differ 
significantly from zero. 

But occasionally when d > 0 the resulting differenced series wr has a 
mean that is significantly different from zero. Then it may be proper to 
assume that p w  * 0. The resulting model for wr will therefore usually have a 
constant term that is different from zero. The corresponding model for the 
integrated series z, then has a deterministic trend element. 
To illustrate this idea, start with a process with no deterministic trend. 

(For simplicity we refer to processes rather than estimated models.) Let w, 
be the first differences of 2,: w, = ( 1  - l?).Tr. Suppose initially that p w  = 0. 
For simplicity, let wr consist of white noise. Then the ARIMA process for wr 

*It is possible for c to be insignificantly different from zero wen though I; differs significantly 
from zero. This is because the variance of C depends not only on the variance of but also on 
the variances and covariances of-the estimated (J coefficients. In practice. however. if i is 
significantly different from zero, C is nearly always significant also. 
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is 

w, = a,  (7.12) 

Substituting ( 1  - B ) f ,  for w, in (7.12). we see that z ,  follows a random walk 
without a constant term: 

( I  - B)Z,  = a, 

(7.13) 

As a random walk, z, in (7.13) shows no affinity for a fixed central value. 
Furthermore, because (7.13) has no constant term, z, does not move 
persistently in any particular direction. Instead, I, moves at random. as 
dictated by the random shock a,, starting from the previous value ( i f -  ,). 

Now suppose instead that p,. = 0. Then it is proper to write (7.12) with 
w, in deviations from its mean: 

(7.14) 

Substituting (1 - B).?, for w, shows that z ,  still follows a random walk, but 
with a constant term: 

(.; - P , )  = 0 ,  

( 1  - B ) f ,  - p, = a, 

2, = c + z , - ,  + a, (7.15) 

where C = p,. 
As a random walk (7.15) states that z ,  does not tend toward a fixed 

central value. But unlike (7.13), process (7.15) states that z ,  will move 
persistently in a particular direction starting from z , - , .  That is, starting 
from 2,- I ,  z, will trend upward each time period by amount C if C > 0, or 
downward each period by amount C if C < 0. Because C is a constant. this 
trend component is deterministic. 

For models with iugher degrees of differencing (d > I )  and additional 
AR and MA terms, the algebraic manipulation and the mathematical nature 
of the deterministic trend become more complicated than in the preceding 
example, but the basic conclusions, stated below, remain the same: 

1. When the mean of a differenced variable w, is zero (p,, = O), the 
processes for both w, and t, have constant terms of zero. In such 
cases, any trend element present in forecasts of z, is stochastic; that 
is. the trend element depends only on past z values that appear in the 
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2. 

equation because of the differencing and subsequent integration 
steps. For example, model (7.13) results from integrating model 
(7.12); neither of these models has a constant term because ph, = 0. 
Any trend element in forecasts of z, depends on the behavior of z,-  , 
on the RHS of (7.13), and z , - ,  is a stochastic variable. 
When the mean of a differenced variable is nonzero (p,,, * 0), the 
resulting processes for both w, and L, have a nonzero constant term. 
Forecasts of z, then have a deterministic trend component in addi- 
tion to whatever stochastic trend is introduced by the differencing 
and integration procedures. Thus (7.15) contains a deterministic 
trend component because C (equal to p,  in this case) is nonzero. 
These forecasts may also display a stochastic trend because z,-  , 
appears on the RHS of (7.15). 

In practice, when d > 0, the UBJ analyst must decide whether or not to 
include a nonzero constant term (i.e., whether p, f 0). In business and in 
economics and other social sciences, p, = 0 is often the proper assumption. 
However, there are several guidelines for making this decision. 

1. The most reliable procedure is to include a nonzero mean (and 
therefore a constant term) in the model at the estimation stage to see if they 
are statistically nonzero. Some (but not all) computer programs estimate p 
simultaneously along with the AR and MA coefficients. These programs 
usually also provide t-statistics indicating whether f i  and are sigmficantly 
different from zero. If the absolute r-value of the estimated constant term is 
large (e.g., I r (  =. 2.0), an estimated mean (and therefore a constant term) 
might be included in this model. 

2. Consider the nature of the data. The analyst may know from 
experience, or from a theoretical understanding of the data source, that the 
data have a deterministic trend component so that p, - 0 is a proper 
assumption. This approach is especially helpful in the physical and engineer- 
ing sciences where one might conclude that a deterministic element is 
present from knowledge of the physical or mathematical structure underly- 
ing the data. 

Use a preliminary statistical test (before the estimation stage) to see 
if p w  = 0 is a proper assumption. Some computer programs provide rough 
preliminary tests of the hypothesis H,: p,,, = 0 based on the sample statistic 
J and its approximate standard error.* If iij is large compared to its 
standard error (e.g., 111 > 2.0), a nonzero mean might be included in the 
model. 

3. 

'Box and Jenkins discuss the approximate standard error of 5 in [ 1. pp. 193-1951, 
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4. Estimate two models, one with a nonzero mean (and constant) and 
one without, and check the forecasting accuracy of both models. 

Finally, however, it is important to remember that models with determin- 
istic trends are relatively uncommon outside the physical sciences. Accord- 
ing to Box and Jenluns, 

In many applications. where no physical reason for a deterministic 
component exists, the mean of w can be assumed to be zero unless 
such an assumption proves contrary to facts presented by the data. I t  
is clear that, for many applications, the assumption of a stochastic 
trend is often more realistic than the assumption of a deterministic 
trend. This is of special importance in forecasting a time series, since a 
stochastic trend does not necessitate the series to follow the identical 
pattern which it has developed in the past. [l,  pp- 92-93. Quoted by 
permission.] 

(Case 2 in Part I1 has an example of a model with a statistically 
significant deterministic trend; this model is rejected because the nature of 
the data suggests that a deterministic trend makes no sense. Case 15 
contains a model with a deterministic trend that can be rationairzed.) 

Summary 

1. The UBJ method applies only to stationary realizations (i.e., those 
with a mean, variance, and acf that are constant through time.) 

2. In practice many realizations are nonstationary. Fortunately, nonsta- 
tionary realizations can often be transformed into stationary data series. 

3. The mean of a realization may change over time. If different parts of 
a realization behave in a similar fashion except for changes in level and 
slope, the realization is said to be homogeneously nonstationary. 

4. A homogeneously nonstationary realization can be made stationary 
by differencing. First differencing is needed if the level is changing over 
time; second differencing is needed if the level and slope are changing over 
time. 

5. Avoid unnecessary differencing. I t  creates artificial patterns in a data 
series and reduces forecast accuracy. However, Box and Jenkins suggest 
differencing when there is a serious question as to whether a stationary or 
nonstationary model is appropriate. 

6. After differencing, we construct an A R M (  p ,  q )  model for the 
differenced series (w , ) .  
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7. We may recover the original values ( 2 , )  by integrating a differenced 
series. Integration involves summing successive values in a differenced 
series. 

8. An ARMA( p ,  q )  model for a differenced series ( w , )  implies an 
ARIMA( p. d, q )  model for the integrated (original. undifferenced) series z,. 
The AR and MA coefficients and the constant term are the same for the two 
models. 

9. The appropriate degree of differencing may be chosen by 
(a) inspecting the realization visually; 
(b) examining the estimated acfs of the original realization and of 
the differenced series; 
(c) checking any estimated AR coefficients- at the estimation stage 
to see if they satisfy the stationarity conditions stated in Chapter 6. 

10. Some realizations have a variance that changes over time. Such 
realizations must be transformed to induce a constant variance before the 
UBJ method may be used. It is possible that no suitable transformation will 
be found. 

11. Some realizations have both a nonstationary mean and variance. 
Such realizations must be transformed to induce a constant variance, then 
differenced to induce a stationary mean. 

12. A common transformation to induce a constant variance involves 
taking the natural logarithms of the original realization. This is appropriate 
if the variance of the original realization is proportional to the mean. 

13. If the mean ( p , )  of a differenced series (w, )  is assumed to be zero. 
the resulting ARIMA model for both w, and the integrated series z, has a 
constant term of zero. Any trend element in forecasts from such a model is 
stochastic, not deterministic. 

If p,, is assumed to be nonzero, the resulting model for both w, and 
z ,  has a nonzero constant term. Forecasts from such a model contain a 
deterministic trend component in addition to any stochastic trend that may 
be present. 

15. ARIMA models with deterministic trend components are uncom- 
mon outside the physical sciences. 

14. 

Appendix 7A: Integration 

A differenced variable w, is linked deterministically to the orignal variable 
z, by the differencing operator (1 - B ) d :  

d 
w, = ( 1  - B) i ,  (7A.1) 
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While w ’ s  are differences of the z’s. the z’s are sums of the w’s. We may 
therefore return to the Z’S by integrating (summing) the w’s. Thus, an 
ARMA( p. 4 )  model for w, is an integrated ARIMA( p .  d, 4)  model for 2, .  

Ths is an important concept because after building an ARIMA model for 
the stationary series w,, we often want to forecast the original nonstationary 
series z,. 

To show that the z ’s are sums of the w ’s. consider the case when d = 1. 
Solving (7A.1) for i, gives 

iI = ( 1  - B ) - ’ w ,  (7A.2) 

(1  - B ) -  ’ can be written as the infinite series ( 1  + B + B 2  + B3 + . . . ), 
so we have 

Z, = ( 1  + B + B‘ + B3 + -*-)w, 
= w, + W , - I  + W,-’ + w1-3 + . .  

I 

= c w, 
1 -  - x  

(7A.3) 

If i, is differenced d times, then the dth difference wl must be integrated 
d times to obtain 1,. In the example above, d = 1, so z ,  results from 
integrating w, once. Alternatively, if d = 2. w, is the second difference of L ,  

and we may solve (7A.1) for L, to obtain 

2 
Z,‘ ( 1  - B ) -  w, 

= ( 1  - B ) - ’ ( l  - B)- ’W,  ( 7A .4) 

To obtain i, from the second differences, (7A.4) says that we first 
integrate the second differences w, to get the first differences (designated 
x ,  ): 

x ,  = ( I  - B ) - ’ w ,  (7A.5) 

Substituting this into (7A.4). we then integrate the first differences x ,  to 
obtain the original series 2,: 

(7A .6) 1 
i, = ( 1  - B ) -  X ,  
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Much of Chapters 1 through 7 deals with the first stage of the Box-Jenkins 
methodology, identification. In this chapter we focus on the second stage, 
estimation; in Chapter 9 we discuss the third stage, diagnostic checking; and 
then in Chapter 10 we consider certain elements of forecasting. 

Some aspects of ARIMA model estimation involve technical details. 
Knowledge of these details is not essential for the reader whose primary 
interest is in the practice of UBJ-ARIMA modeling. Some of these techni- 
cal matters are treated in two appendixes at  the end of this chapter. In the 
main body of the chapter we focus on the fundamental elements of ARIMA 
model estimation and on the practical question of how to use estimation 
results to evaluate a model. 

8.1 Principles of estimation 

At the identification stage we tentatively select one or more models that 
seem likely to provide parsimonious and statistically adequate representa- 
tions of the available data. In making this tentative selection, we calculate a 
rather large number of statistics (autocorrelation and partial autocorrelation 
coefficients) to help us. For example, with n observations, we will often 
estimate about n/4 autocorrelation and partial autocorrelation coefficients. 
Estimating so many parameters is not really consistent with the principle of 
parsimony. This nonparsimonious procedure is justifiable only as an initial, 
rough step in analyzing a data series. Our hope is that the broad overview of 
the data contained in the estimated acf and pacf will get us started in the 
right direction as we try to identify one or more appropriate models. 
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By contrast, at the estimation stage we get precise estimates of a small 
number of parameters. For example, suppose we tentatively choose an 
MA(2) model, 2, = (1 - BIB - 82B2)u,, at the identification stage based on 
n/4 estimated autocorrelation and partial autocorrelation coefficients. Then 
at the estimation stage we fit h s  model to the data to get precise estimates 
of only three parameters: the process mean p and the two MA coefficients 

Although we make more efficient use of the available data at the 
estimation stage than at the identification stage by estimating fewer parame- 
ters, we cannot bypass the identification stage. We need the somewhat crude 
preliminary analysis at the identification stage to guide us in deciding which 
model to estimate. But once we have a parsimonious model in mind, we 
then want to make more efficient use of the available data. That is what we 
do at the estimation stage: we get accurate estimates of a few parameters as 
we fit our tentative model to the data. 

ARIMA estimation is usually carried out on a computer using a nonlinear 
least-squares (NLS) approach. In the next two sections we introduce the 
most basic ideas about NLS estimation, bypassing many technical matters. 
The reader interested in these technical aspects may consult the appendixes 
at the end of this chapter.* 

el and e2. 

Maximum likelihood and least-squares estimates. At the estimation stage 
the coefficient values must be chosen according to some criterion. Box and 
Jenkins [l] favor estimates chosen according to the maximum likelihood 
(ML) criterion. Mathematical statisticians frequently prefer the ML ap- 
proach to estimation problems because the resulting estimates often have 
attractive statistical properties. It can be shown that the likelihood function 
(of a correct ARIMA model) from whch ML estimates are derived reflects 
all useful information about the parameters contained in the data.’ 

However, finding exact ML estimates of ARIMA models can be 
cumbersome and may require relatively large amounts of computer time. 
For this reason. Box and Jenkins suggest using the leart-squares (LS) 
criterion. It can be shown that if the random shocks are Normally distrib- 
uted (as we suppose they are) then LS estimates are either exactly or very 
nearly ML estimates.* 

‘Box and Jenkins 11, Chapter 7 and pp. 500-5051 provide examples and the estimation 
algorithm. 
*See Box and Jenkins’ comments on the “likelihood prindple” and their references on this 
matter [ l .  p. 2091. 
* I f  we begm with the conditional likelihood function and the a, are Normal. the LS method 
gives exact ML estimates. If we start with the unconditional likelihood function. then the LS 
method gives very nearly ML estimates if the a ,  are Normal and if the sample size is fairly 
large. 
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“Least squares” refers to parameter estimates associated with the smal- 
lest sum of squared residuals. To explain this idea we first show what is 
meant by the term residuals. Then we illustrate the calculation of the sum of 
squared residuals (SSR). Finally. we consider how we can find the smallest 
SSR. 

We will use an AR(1) model to illustrate these ideas, but the same 
concepts apply to the estimation of any ARIMA model. The AR( 1) model 
we will use is 

( I  - $+)f, = a ,  

2,  = P(1 - + I )  + @,Z,-I + a ,  

or 

(8.1) 

where p(1 - +,) is the constant term. 

Residuals. Suppose for simplicity that we know the parameters ( p ,  &) 
of model (8.1), and suppose we are located at time r - 1. Consider how we 
could predict z, using our knowledge of the RHS variables in equation (8.1). 
We cannot observe the random shock a ,  during period t - 1, but we do 
know p, and z,- I at time t - 1. Assign a ,  its expected value of zero and 
use p,  t#q, and z,- I to find the calculated value of z , ,  designated 2,: 

2 ,  = 4 1  - $ 1 )  + +IZ,.-I (8.2) 

Later, at time t, we can observe I,. We can then find the random shock a ,  
by subtracting the calculated value if [calculated from known parameters, 
equation (8.2)] from the observed value I, [equation (8.1)) 

z ,  - 2, = a ,  (8.3) 

So far we have assumed that p and are known. In practice we do not 
know the parameters of ARIMA models; instead. we must estimate them 
from the data. Designate these estimates in the present case as fi and 4,. 
Modifying (8.2) accordingly, the calculated value 2,  now is: 

2,  = fi(1 - G I )  + G I Z , - l  (8.4) 

When i, is calculated from estimates of parameters rather than known 
parameters, (8.3) does not give the exact value of the random shock a, .  
Instead, when we subtract (8.4) from (8.1) we get only an estimate of the 
random shock a, ,  denoted 6, and called a residual: 

z ,  - 2, = 6, (8 .5 )  
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Table 8.1 Calculation of a sum of squared residuals for an AR(l), with 
6, = 0.5 

. .  
1 - 1  - 0  2, = i ,  - f b  I, = +,T I . .  , 6, = f, - I, 

- - - - - 0 
I 80 20 
2 60 0 10 - 10 100 
3 30 - 30 0 - 30 900 
4 40 - 20 - 15 - 5  25 
5 70 10 - 10 20 400 
6 80 20 5 15 225 

- - - 

Equation (8.5) is the definition of a residual for any ARIMA model. In 
general, 2, depends on p and the estimated AR and MA coefficients (along 
with their corresponding past 2’s and past residuals, which are estimated 
random shocks). Thus our example above was an AR( 1). so 2, depends on p 
and 61, along with z,-,, as shown in equation (8.4). For an MA(l), 2, 
dependsonfiand8,,alongwithrir-,: 2,  = p - 6 , r i r - , .  ForanARMA(1,l). 
2, depends on p. and 8,. along with zr- and i f -  ,: 2, = p(l - 6 , )  + 
6 , 2 , - ,  - 816,- l .  

Sum of squared residuals. Next consider the idea of the sum of squared 
residuals (SSR). Table 8.1 illustrates the calculation of an SSR. 

Suppose we have the realization shown in column 2 of Table 8.1. (A 
realization with n = 6 is much too small to use in practice; we use it only 
for illustration.) We have tentatively identified an AR( 1) model as shown in 
(8.1) to represent this realization. 

We want to find estimates (p  and 6,) of the two unknown parameters (p 
and +,)- We could estimate p and 9, simultaneously: however. with a large 
sample it is acceptable to first use the realization mean i as an estimate of p 
and then proceed to estimate the remaining AR and MA coefficients.* In 

‘When p and the cp’s and 8’s are estimated simultaneously. the resulting estimate 6 is usually 
very close to i. The advantage of estimatingp e d  the 9’s and 8’s simultaneously is that we can 
then test both and the estimated constant C to see if they are significantly different from 
zero. All examples and cases in this text are based on simultaneous estimation of p with the 9.s 
and 8’s. The only exception is in t h i s  chapter where we first ux i to estimate p to simplify the 
numerical examples. 
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this example, we find I = 60 as shown at the bottom of column 2 in Table 
8.1.j 

Having settled on P as our estimate of p. we remove this element 
temporarily by expressing the data in deviations from the mean. that is, 
I, = z, - i. Recall that the 2, series has the same stochastic properties as 2,; 
we have merely shifted the series so its mean is identically zero. Thus in 
column 3 of Table 8.1 we calculate 2, = z ,  - 2. As expected the 2, series 
adds to zero and thus has a mean of zero. Therefore, if we rewrite model 
(8.1) in terms of 2, we have a model with a constant term of zero: 

Now we want to find a set of residuals for t h s  model using the 
realization in column 3 of Table 8.1. Following our earlier discussion, 
replace @, in (8.6) with its estimated value 6,.  and replace u, with its 
expected value of zero to obtain this equation for the calculated 2’s: 

(8.7) 

Subtracting (8.7) from (8.6) we obtain this equation for the residual ci, 
(column 5 in Table 8.1): 

6 ,  = 2, - P, (8.8) 

where 2, is observed (column 3 in Table 8.1) and i, is calculated using 6 ,  
(column 4 in Table 8.1). 

To illustrate the calculation of the SSR, suppose we arbitrarily choose 
6 ,  = 0.5. Later we consider whether this is the best (i-e., least-squares) 
estimate of Column 4 in Table 8.1 shows the calculated values 2, based 
on 6 ,  = 0.5. For example, 

i, = &TI = (0.5)(20) = 10 

i, = 4,i ,  = (0.5)(0) = 0 

*I f  the data are differenced ( d  =. 0). setting the estimated mean S of the differenced series H; 

equal to zero is often appropriate. Setting Z equal to a nonzero value introduces a deterministic 
trend into the model. This topic is discussed in Chapter 7. 
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In column 5 of Table 8.1 we find the residuals as shown in equation (8.8) 
by subtracting each i, from each 2,: 

82 = 22 - Z? = o -  ]O= -10 

Each 8, is squared in column 6: 

C i f  = ( - lo)* = 100 

Finally, summing column 6 we obtain the sum of squared residuals 
26: = 1650. Th~s is the SSR given the estimates fi = 60 and 6 ,  = 0.5. If fi  
and 6 ,  were different, we would get a different SSR. To get LS estimates of 
our parameters, we need to find the values of fi and 6 ,  that give the smallest 
SSR. In the present example our task is to find the value of &, that 
minimizes the SSR given fi = i = 60. 

8.2 Nonlinear least-squares estimation 

In general, least-squares estimation of ARIMA models requires the use of a 
nonlinear least-squares method. Readers may be familiar with the linear 
least-squares (LLS) method (also known as ordinary least squares or classi- 
cal least squares) since t h s  is the estimation method applied to regression 
models encountered in introductory statistics texts. The LLS estimator is 
derived by applying the calculus to the sum of squared residuals function.* 
This produces a set of linear equations which may be solved simultaneously 
rather easily. But proceeding in the same fashion with an ARIMA SSR 
function produces a set of equations which are, in general. highly nonlinear 
and solvable only with a nonlinear, iterative search technique? 

Wonnacott and Wonnacott [9. Chapter 121 show how this is done. 
‘The only exception is a pure AR model with no multiplicative seasonal AR terms. (Multiphca- 
tive seasonal models are discussed in Chapter I I . )  
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Grid search. One search technique is the grzd-search method. This 
method is not often used, but we present the idea because it provides a 
simple illustration of an iterative search procedure. 

Some computer programs for estimating ARIMA-model parameters pro- 
ceed as we have by first using f to estimate p;  the remaining parameters are 
then estimated. In the case of the AR(1) model in the last section, for 
f = 60, each possible 6 ,  produces a different SSR since each 6 ,  gives a 
different set of i, values (column 4, Table 8.1) and therefore a different set 
of 6, values (column 5, Table 8.1). According to the LS criterion, we want to 
choose the value of 6 ,  that gives the smallest SSR. We can imagine trying all 
possible values of 6 ,  between - 1 and + 1 (the values of 6 ,  permitted by the 
stationarity condition 16, I < I )  and comparing the resulting SSRs. This is 
the grid-search method. 

For example, suppose we arbitrarily choose the series of values 6 ,  = - 0.9, 
-0.8,. , . , 0,. . . , 0.8, 0.9. Performing the same sequence of calculations 
shown in Table 8.1 with each of these 6 ,  values produces the results shown 
in Table 8.2. Figure 8.1 is a plot of the pairs of numbers in Table 8.2. The 
vertical axis in Figure 8.1 shows the SSR corresponding to the values of 6 ,  
shown on the horizontal axis. To read this graph, first find a value of 6 ,  on 
the horizontal axis; then find the corresponding SSR on the vertical axis by 
reading from the SSR function drawn on the graph.* It appears that the 
smallest SSR occurs somewhere between 6 ,  = 0.2 and 4, = 0.5. Further 
calculations are required to find a more accurate value of 6 , .  For example, 
we could now apply the grid-search method to the values 0.20, 0.21,. . . . 
0.49, 0.50. (In fact, the LS estimate of 6 ,  turns out to be (0.3333.) 

The grid-search procedure can be time-consuming because there are so 
many possible values for 6,. This problem becomes worse when more than 
one parameter is estimated. For example, estimating an AR(2) model 
requires considering all possible combinations of 6 ,  and &, not just the 
possible values of each coefficient separately. 

Algorithmic a o n l i i  least squares. The grid-search method is a nonlin- 
ear least-squares (NLS) method but it is rarely used. The commonly used 
NLS method is similar to the grid-search approach because both involve a 
trial-and-error search for the least-squares estimates. However, the com- 
monly used NLS method follows an algorithm to converge quickly to the 
least-squares estimates using a computer. 

' T h i s  function depends on the value of G. If we had used some value other than G - i - 60. we 
would get a different SSR function in Figure 8.1. 



Table 8.2 Schedule of sum of squared residuals for various 
values of & , applied to the realization in Table 8.1 

-~ ~ 

i l  SSR 

- 0.9 4338 
- 0.8 3912 
-0.7 3522 
- 0.6 3168 
- 0.5 2850 
- 0.4 2568 
- 0.3 2322 
- 0.2 21 12 
-0.1 1938 

0 1 800 
0.1 1698 
0.2 1632 
0.3 1602 
0.4 1608 
0.5 1650 
0.6 1728 
0.7 1842 
0.8 1992 
0.9 2178 

4338 

1602 6, 
a, w I- a v) w m N - o - N w, g w I-. 9 
o d o o d d o ~ o  o o o o o o o o o  

1 1 1 1 1 1 1 1 1  

Figure 8.1 
8.1. 

Sum of squared residuals as a function of 4, for the realization in Table 
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The NLS technique most commonly used is a combination of two NLS 
procedures, Gauss-Newton linearization and the gradient method. This 
combination is often referred to as “Marquardt’s compromise.”* The basic 
idea is that given some initial “guess” values for the coefficients, Marquardt’s 
method selects new coefficients which (i) produce a smaller SSR and whch 
(ii) usually are much closer to the minimum SSR coefficient values. in other 
words, in choosing new coefficients, this method not only moves in the right 
direction (moves toward a smaller SSR), it also chooses a good coefficient 
correction size (moves rapidly to a minimum SSR). Unlike the grid-search 
method which involves an arbitrary search, Marquardt’s method uses a 
systematic search procedure that makes efficient use of the computer and 
usually converges quickly to the least-squares estimates. (The reader inter- 
ested in the details of this method should consult Appendix 8A.) 

8 3  &timation-stage results have we found a good model? 

In Chapter 4 we introduced the following characteristics of a good model: 

1. it is parsimonious; 
2. it is stationary; 
3. it is invertible; 
4. it has estimated coefficients of high quality; 
5. it has statistically independent residuals; 
6. it fits the available data satisfactorily; and 
7. it produces sufficiently accurate forecasts. 

The typical computer printout of estimation-stage results provides the 
information needed to evaluate items (2), (3), (4), and (6). In this section we 
discuss how estimation-stage results are used to evaluate a model according 
to these four criteria. [We consider item ( 5 )  in Chapter 9 where we examine 
the third stage of UBJ modeling, diagnostic checking. item (7), forecast 
accuracy, can be evaluated only by using a model to produce real forecasts. 
Item (l) ,  parsimony, is an overriding principle in UBJ-ARIMA modeling 
whose role is illustrated in the case studies.] 

As an example to illustrate the use of criteria (2), (3), (4), and (6),  
consider the estimation results for an ARMA(1,l) model, shown in Figure 
8.2. 

*This combination is named after Donald W. Marquardt who developed the algorithm for an 
optimal interpolation between the Gauss-Newton method and the gradient method in [20]. 
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+ + + + + + + + + +€COSTAT U N I V A R I A T E  B-J RESULTS+ + + + + + + + + + 
+ FOR DATA SERIES: SIMULATED DATA + 
+ DIFFERENCING: 0 DF = 56 + 
+ AVAILABLE: DATA = 60 BACKCASTS 0 TOTAL = 60 + 
+ USED TO F I N D  SSR: DATA = 59 BACKCASTS = 0 TOTAL = 59 + 
+ (LOST DUE TO PRESENCE OF AUTORECRESSIVE TERHS: 1 )  + 

COEFFICIENT ESTIMATE STD ERROR T-VALUE 
PHI 1 0. 908 0 .070 13. 04 
THETA 1 0 .605  0. 145 4. 18 
CONSTANT 9. 15733 

ADJUSTED R I S E  = . 92857 MEAN A B S  Z ERR = 0. 71 
CORRELATIONS 
1 2 

1 1.00 
2 0 .68  1.00 

Figure 8.2 Estimation results for an A R M (  1 , l )  model. 

Checking coefficients for stationarity and invertibility. The most obvious 
items included in estimation-stage output are the estimated coefficients. In 
Figure 8.2 we see that the estimate of +I  is 6, = 0.908 and the estimate of 8 ,  
is 6, = 0.605. Thus the model may be written in backshift form as (1 - 

The mean of the data series used in this example is i = 99.44, so our 
estimate of p is fi = i = 99.44. We know from Chapter 5 that the estimated 
constant term (c)  for th is  model is F(1 - 6,). Therefore, the printed 
constant term in Figure 8.2 is k = 99.44 (1 - 0.908) = 9.15733. (Hand 
calculations gwe slightly different results because of rounding.) 

The estimated coefficients can be used to check for both stationarity and 
invertibility. The stationarity requirement applies only to the autoregressive 
portion of a model; therefore, the relevant condition for an ARMA(l.1) is 
the same as that for an AR(1): is unknown, we examine 
4, instead. We find the stationarity condition is satisfied since 16, I = 0.908 
< 1. However, we must be careful in reaching this conclusion. Although 
16,l is less than 1, it is fairly close to 1. In fact, it is only about 1.31 
standard errors below l.* This makes the AR operator for this model, 
(1 - 0.908B), almost identical to the differencing operator ( 1  - B). As 
pointed out in Chapter 7, it is good practice to difference a realization if 
there is serious doubt about its mean being stationary. We will not pursue 
the matter further in this case, but this example illustrates how estimation- 
stage results provide clues about stationarity and how a model might be 
reformulated. 

0.908B)i, = (1 - 0.605B)ri,. 

I .c 1. Since 

' T h i s  number is obtained by dividing the difference between i, and I by the estimated 
standard error of the coefficient, printed in Figure 8.2 as 0.070: (0.908 - 1)/0.070 = - 1.31. 
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The invertibility requirement applies only to the moving-average part of 
a model. The requirement for an ARMA(1,l) is the same as that for an 
MA(1): I@, 1 < 1. The estimated coefficient 6, = 0.605, shown in Figure 8.2, 
clearly satisfies this requirement. 

Coefficient quality: statistical significance. Included in Figure 8.2 along 
with each estimated coefficient is its standard error and r-value. Each 
estimated coefficient has a standard error because it is a statistic based on 
sample information. A different sample would presumably give different 
estimates of $J, and 61. Thus each estimated coefficient has a sampling 
distribution with a certain standard error that is estimated by the computer 
program.* Most ARIMA estimation routines automatically test the hy- 
pothesis that the true coefficient is zero. An approximate r-value to test this 
hypothesis for each coefficient is calculated in this way: 

(estimated coefficient) - (hypothesized coefficient value) 
estimated standard error of the coefficient 

r =  

In our example, these calculations are 

0.908 - 0 
'& = 0.070 

= 13.04 

and 

0.605 - 0 
0.145 

t i ,  = 

= 4.18 

As a practical rule we should consider excluding any coefficient with an 
absolute r-value less than 2.0. Any coefficient whose absolute r-value is 2.0 
or larger is significantly different from zero at roughly the 5% level. 
Including coefficients with absolute r-values substantially less than 2.0 tends 
to produce nonparsimonious models and less accurate forecasts.+ 

Coefficient quality: correlation matrix. Most ARIMA estimation pro- 
grams print the correlations between the estimated coefficients. We cannot 

'It must be emphasized that the estimated standard errors are only approximations. The 
manner in which these approximations are found i s  discussed in Appendix 8A. 
'Applying r-tests to one coeffiaent at a time is a very approximate way of gauging the precision 
of the estimates. The coefficients may also be tested jointly using a chi-squared or /=-test. See 
Box and Jenkins' [ I ,  pp. 224-23 I ]  discussion of approximate confidence regions for parame- 
ters. 
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avoid getting estimates that are correlated, but very high correlations 
between estimated coefficients suggest that the estimates may be of poor 
quality. When coefficients are highly correlated, a change in one coefficient 
can easily be offset by a corresponding change in another coefficient with 
little impact on the SSR. Thus if estimated coefficients are highly correlated, 
the final coefficient estimates depend heavily on the particular realization 
used; a slightly different realization could easily produce quite different 
estimated coefficients. If different realizations from the same process could 
easily give widely different estimated coefficients, the resulting estimates are 
of rather poor quality. Under these conditions, estimates based on a given 

. realization could be inappropriate for future time periods unless the behav- 
ior of future observations matches the behavior of the given realization very 
closely. 

As a practical rule, one should suspect that the estimates are somewhat 
unstable when the absolute correlation coefficient between any two esti- 
mated ARIMA coefficients is 0.9 or larger. When this happens we should 
consider whether some alternative models are justified by the estimated acf 
and pacf. One of these alternatives might provide an adequate fit with more 
stable parameter estimates. Figure 8.2 shows that the correlation between 6, 
and 8, is 0.68 in the present example. Therefore, the estimated model is 
satisfactory in this regard. 

Coefficient quality: coefficient near-redundancy. Mixed (ARMA) mod- 
els are frequently useful, but they sometimes present a problem known as 
coefficient near-redundancy. A model with near-redundant coefficients pre- 
sents two problems: it tends to be nonparsimonious, and it is difficult to 
estimate accurately. The resulting estimated coefficients are typically of low 

To understand the idea of coefficient near-redundancy, consider first an 
= 0.6 and 8, = 0.6: 

quality. 

ARMA(1,l) process with 

( 1  - 0.6B)2,  = ( 1  - 0.6B)a ,  (8.9) 

There is nothing theoretically unacceptable about process (8.9), but note 
that the AR operator on the LHS (1 - 0.6B) exactly cancels the MA 
operator on the RHS (1 - 0.6B) leaving I, as a white-noise process, I, = a,. 
The parameters 9, and 8, are perfectly redundant. Thus we could not 
distingush (8.9) from a white-noise process based on estimated acfs since 
they would, on average, yield no sigruficant autocorrelations. Th~s is not a 
problem in and of itself since the model Z, = u, requires the estimation of 
fewer parameters than an ARMA(1,I) model, yet it should fit a typical 
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realization generated by (8.9) just as well as a less parsimonious A R M (  1 , l )  
model. 

But now consider an ARMA(1,l) process with +, = 0.6 and 8, = 0.5: 

(1  - 0 . 6 B ) i ,  = (1  - 0 . 5 B ) ~ ,  (8.10) 

The term (1  - 0.6B) nearly cancels (1 - 02%). The AR and MA coeffi- 
cients are not perfectly redundant, but they are nearly so. Therefore, 
estimated acfs based on process (8.10) will, on average, be close to (though 
not identical to) white-noise acfs. How closely they would approximate 
white noise would depend on the number of observations. With a relatively 
large sample size, estimated acfs based on (8.10) would more frequently 
provide evidence about the existence of an A m (  1 , l )  process. 

Unfortunately, if we did identify an ARMA(1, 1) from a realization 
generated by (8.10) it would be difficult to get good estimates of +, and 8, 
with the least-squares method. The reason is there would be a set of 
near-minimum points on the sum-of-squares surface rather than a clear, 
well-defined minimum. Figure 8.3 shows an example of this for an 
ARMA(I.1) model. The numbers recorded on the contours are the SSRs 

1 .o 

1 .o 

A 

81 

0.0 - 
0.0 

A 

61 

Figure 83 Residual sum-of-squares contours for an A R M (  1, I )  with near-redun- 
dant coefficients. 
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associated with the various combinations of 6 ,  and 8,. We see that a large 
number of 6 ,  and 6, values have nearly identical SSR's in the neighborhood 
of the minimum SSR. Estimation results in a case like this are quite 
unstable, heavily dependent on the individual realization. Again, the larger 
the sample size the better the quality of the estimates, but we might be 
better off with the more parsimonious 2, = a, model than with a less 
parsimonious ARMA( 1 , l )  with estimated coefficients of poor quality. 

Coefficient near-redundancy may not be nearly so obvious as in the last 
example. Consider the following ARMA(2,l) process with t#q = 1.2, $ J ~  = 
-0.32, and 8 ,  = 0.5: 

(1 - 1.28 + 0.32Bz)Z, = ( 1  - 0 . 5 B ) ~ ,  (8.11) 

Factoring the AR operator on the LHS, we get 

( 1  - 0 bP)( 1 - 0.8B)2, (1 - 0.5B)i1,  (8.12) 

The AR term (1 - 0.4B) nearly cancels the MA term (1 - OM), so (8.1 1) 
is very nearly this AR( 1) process: 

(1 - 0.8B)2, = a, (8.13) 

Thus we would expect estimated acfs calculated from realizations generated 
by process (8.1 1) to look much like AR( 1) acf s, especially with moderate 
sample sizes. Following the usual identification procedures, the analyst 
might arrive at an AR(1) like (8.13) as an adequate representation of the 
data. Even if an ARMA(2, I)  were identifiable from an estimated acf, an 
AR( 1) might be preferable, since the latter is more parsimonious, might fit a 
typical realization about as well, and would not have the unstable coeffi- 
cient estimates associated with the near-redundant ARMA(2,l) in (8.1 1). 

The estimated model in Figure 8.2 does not appear to suffer from 
coefficient near-redundancy. The AR operator (1 - 6 ,  B )  = ( 1  - 0.9088) 
does not come very close to canceling the MA operator (1  - 8,B) = (1  - 
0.6058). Figure 8.4 shows the residual sum-of-squares contours for this 
model. Unlike the SSR contours in Figure 8.3, the one in Figure 8.4 has 
only a limited range of 6 ,  and 8, values that are consistent with the 
minimum SSR. 

The practical lesson here is that we should construct a mixed model with 
great care; avoid including both AR and MA terms in a model without solid 
evidence that both are needed, and check estimation results for coefficient 
near-redundancy. This will help produce better forecasts by avoiding non- 
parsimonious models with unstable estimated coefficients. 
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Figure 8.4 Residual sum-of-squares contours for the A R M (  1,I) model in Figure 
8.2. 

Closeness of fit root-mean-squared error. There is no guarantee that a 
properly constructed ARIMA model will fit the available data closely. Some 
data sets have a large amount of statistical “noise” that cannot be removed 
with AR or MA terms. That is, the variance of the underlying random 
shocks (u:) may be large. It could be that the best ARIMA model will not 
fit the available data well enough to satisfy the UBJ analyst. 

Since we cannot observe the random shocks, we cannot measure their 
variance directly. But we have the estimation-stage residuals ( ~ t )  and we 
can use them to estimate the variance of the random shocks with this 
formula: 

c 6: (8.14) - 2  = - 1 
‘0 n - m  

where the summation is across all n available squared residuals and m is the 
number of parameters estimated. By subtracting m from n, we are adjusting 
62 for degrees of freedom. 



Evaluating estimation-stage results 207 

The square root of 15; is interpreted as the estimated standard deviation 
of the random shocks. On the computer printout in Figure 8.2, this statistic 
is referred to as the adjusted root-mean-squared error (adjusted RMSE). Its 
value in this instance in 0.92857. 

The adjusted RMSE is useful for comparing different models estimated 
from the same realization. Two or more models could give essentially the 
same results in most respects. That is, they could be equally parsimonious, 
equally justifiable based on the estimated acf s and pacf s, and so forth. But 
if one model has a noticeably lower RMSE, we prefer that one because it 
fits the available data more closely. And importantly, as we see in Chapter 
10, the model with the smaller RMSE tends to have a smaller forecast-error 
Variance. 

Closeness of f i t  mean absolute percent error. Another measure of how 
well a model fits the available data is the mean absolute percent error 
(MAPE). If a residual is divided by the corresponding observed value. we 
have a percent residual. The W E  is simply the mean of the absolute 
values of these percent residuals: 

(8.15) 

where the summation is across all n available absolute percent residuals. 
Dividing ii, by I, gives the percent residual. The two vertical lines (11) 
indicate that we are considering the absolute values of the percent residuals. 
Dividing the sum by n gives the mean absolute percent residual, and 
multiplying by 100 merely relocates the decimal. Applying (8.15) to the 
residuals for the model in Figure 8.2 gives a MAPE of 0.71%. 

The MAPE generally should not be used for choosing among alternative 
models that are equivalent in other respects. The adjusted RMSE is used for 
that purpose since it is related to the forecast error variance. Instead, the 
MAPE may be useful for conveying the accuracy of a model to managers or 
other nontechnical users. 

Using the example shown in Figure 8.2, we could report that this model 
fits the available data with an average error of +0.71%. The MAPE 
suggests, very roughly, the kind of accuracy we could expect from forecasts 
produced by rhls model. However, the preferred way of conveying forecast 
accuracy is to derive confidence intervals for the forecasts. This latter topic 
is discussed in Chapter 10. 
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Summaty 

1. At the identification stage we obtain somewhat rough estimates of 
many autocorrelation and partial autocorrelation coefficients as a guide to 
find an appropriate model. 

2. At the estimation stage we make more efficient use of the available 
data by obtaining precise estimates of just a few parameters (the mean and 
some AR and/or MA coefficients). 

3. Box and Jenkins favor choosing coefficient estimates at the estima- 
tion stage according to the maximum likelihood (ML) criterion. Assuming a 
correct model, the likelihood function from which ML estimates are derived 
reflects all useful information about the parameters contained in the data. 

4. Finding exact ML estimates can be computationally burdensome, so 
Box and Jenkins favor the use of least-squares (LS) estimates. If the random 
shocks are Normally distributed, LS estimates are computationally easier to 
find and provide exact, or very nearly, ML estimates. 

5. LS estimates are those which give the smallest sum of squared 
residuals (SSR = D:). 

6. A residual (8,) is an estimate of a random shock (u,). It is defined as 
the difference between an observed value ( 2 , )  and a calculated value (2,). In 
practice the calculated values are found by inserting estimates of the mean 
and the AR and MA coefficients into the ARIMA model being estimated, 
with the current random shock assigned its expected value of zero, and 
applying these estimates to the available data. 
7. Linear least squares (LLS) may be used to estimate only pure AR 

models without multiplicative seasonal terms. All other models require a 
nonlinear least-squares (NLS) method. 

8. One NLS method is the grid-search procedure. In this approach, 
each AR and MA coefficient is assigned a series of admissible values and an 
SSR is found for each combination of these values. The combination of 
coefficients with the smallest SSR is chosen as the set of LS estimates. This 
method is not often used because evaluating the sum of squared residuals 
for each combination of coefficient estimates can be very time-consuming. 

The most commonly used NLS method is algorithmic in nature. I t  is 
a combination of two NLS procedures: Gauss-Newton linearization and 
the gradient method. Ths combination, sometimes called “ Marquardt’s 
compromise,” involves a systematic search for LS estimates. Given some 
initial coefficient estimates, this algorithm chooses a series of optimal 
coefficient corrections. Ths method converges quickly to LS values in most 
cases. 

9. 
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10. Estimation-stage results may be used to check a model for stationar- 
ity and invertibility. The estimated AR and MA coefficients should satisfy 
the conditions stated in Chapter 6. 

11. Most computer programs for estimating ARIMA models provide 
approximate t-values for each coefficient. A practical rule is to include only 
estimated coefficients with absolute r-values of about 2.0 or larger. 

12. Estimated coefficients are nearly always correlated, but if they are 
too highly correlated, the estimates are heavily dependent on the particular 
realization used and tend to be unstable. As a practical rule, we should 
suspect that the estimates may be of poor quality if !he absolute correlation 
between any two coefficients is 0.9 or larger. If we can find an alternative 
adequate model with less highly correlated estimates, we should use that 
alternative since its estimated coefficients will be of higher quality. 

13. The adjusted root-mean-squared error (RMSE = 6a)  is an estimate 
of the standard deviation of the random shocks ( oa). Other thmgs equal, we 
prefer a model with a smaller RMSE since it fits the available data better 
and tends to produce forecasts with a smaller error variance. 

14. The mean absolute percent error (MAPE) provides another measure 
of goodness of fit. It is sometimes used for conveying to nonexperts the 
approximate accuracy that can be expected from an ARIMA forecasting 
model. However, the preferred way to convey forecast accuracy (as dis- 
cussed in Chapter 10) is to derive confidence intervals for the forecasts. 

Appendix 8 A  Marquardt’s compromise* 

In the main body of Chapter 8 we said that, in general, ARIMA coefficients 
(the +’s and 0’s) must be estimated using a nonlinear least-squares (NLS) 
procedure. While several NLS methods are available, the one most com- 
monly used to estimate ARIMA models is known as “Marquardt’s com- 
promise,’’ after Donald W. Marquardt, who wrote an article in which he 
proved some of the key properties of this method. 

In this appendix we set forth the most basic ideas associated with 
Marquardt’s compromise and illustrate some of the relevant calculations. 
Because the procedure is relatively complicated, we will not present the 
theory rigorously or give a numerical example of every step. The purpose is 
to convey the overall structure of the method, along with some supporting 
calculations. Readers wanting more details about the technique may consult 

‘The material in this appendix is aimed at the reada with a knowledge of calculus. matrix 
algebra, and linear regression. All variables printed in boldface type represent mauices. 
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Marquardt’s original article [20], or Box and Jenkins’ text [ 1, Chapter 7, and 
pp. 500-5051. 

8A.1 Overview 

Marquardt’s method is called a compromise because it combines two NLS 
procedures: Gauss-Newton linearization, and the gradient method, also 
known as the steepest-descent method. 

The practical advantage of the Gauss-Newton method is that it tends to 
converge rapidly to the least-squares (LS) estimates, if it converges; the 
disadvantage is that it may not converge at all. The practical advantage of 
the gradient method is that, in theory, it will converge to LS estimates; 
however, it may converge so slowly that it becomes impractical to use. 

Marquardt’s compromise combines the best of these two approaches: it 
not only converges to LS estimates (except in rare cases), it also converges 
relatively quickly. Before working through an algebraic example and some 
numerical illustrations, we summarize the major steps in the algorithm. 
Figure 8A. 1 shows these steps. 

At step 1, the analyst (or the computer program) chooses some starting 
values for the k 9 and 8 coefficients to be estimated; these initial estimates 
are entered into the k X 1 vector $.* Then the sum of squared residuals 
(SSR,) associated with these initial values is calculated at step 2. Up to this 
point, the procedure is essentially the same as the grid-search method 
illustrated earlier in Section 8.2. 

Step 3 is the calculation of numerical derivatives needed for the 
Gauss-Newton method. We discuss this concept further in the next section. 
At step 4 equations are formed (using the numerical derivatives found at 
step 3) that are linear approximations to the nonlinear relationship between 
the residuals 4, and the 6 and elements in $. These linearized equations 
are then solved (step 5 )  for the linear least-squares corrections (vector h) 
that yield the new estimates B, = $ + h. 

Since the new estimates B, are derived from only linear approximations 
to the relevant nonlinear equations, they may not give a smaller SSR than 
SSR,. Thus we must insert the new estimates into the model to see if the 
SSR is smaller with the B, estimates than with the previous B,, estimates. 
These are steps 6 and 7, where SSR, is calculated and then compared with 
SSR,. 

‘Some programs estimate p simultaneously with the +’s and 8’s; in that cax.  there would be 
k + 1 initial estimates required. For simplicity we will discuss the case where p is estimated 
first from the realization mean rather than simultaneously with the 9 and 6 coefficients. 
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1. Specify starting values BO 

i 

3. Find derivatives 

r I 

I I 4. Form linearized equations 
I 1 

I 

7a. Reset parameter 

formed at step 4 to find Corrections h (n) to move closer 
to gradient-method 

I ’ 
Or, is the absolute value of 
each correction < e 2 ?  

No 

9. Assume convergence to LS estimates 
~-~ ~~ 

Figure 8A.1 The steps in Marquardt’s compromise. 

If SSR, c SSR,, we test to see if the method has converged to a 
minimum SSR. The relative reduction in the SSR may be compared with a 
convergence parameter c I ,  or the absolute values of the corrections in h may 
be tested against some convergence parameter c2 .  If the relative reduction in 
the SSR is smaller than c,, or alternatively, if the absolute values of the 
corrections in h are all smaller than c2,  we assume convergence has occurred 
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-that is, we assume the last estimates (in B,) are LS estimates. If parameter 
c ,  (or e 2 )  is exceeded, we return to step 3 to find new derivatives after 
reinitializing (at step 8a) by setting SSR, equal to the new (lower) SSR,, 
and setting B, equal to the new (better) estimates B,. 

As described thus far, Marquardt's compromise is just the Gauss- 
Newton linearization procedure. But as pointed out above, it is possible that 
this method will not lead to a reduced SSR at step 7. This is where the 
gradient method enters. If, at step 7, we find SSR; > SSR,, then a 
parameter n is increased by a predetermined amount and the linear equa- 
tions (whose contents depend on n )  are modified and new corrections are 
found. As n increases, the corrections move closer to the gradient-method 
corrections; this means that the absolute values of the corrections will tend 
to be smaller, but they are more likely to produce a reduced SSR. 

8A.2 Application to an MA( 1) 

In this section we apply the procedure summarized in Figure 8A.1 to an 
MA( 1) model. We present this application primarily in algebraic form, with 
numerical illustrations for some of the steps. We use the following realiza- 
tion (assumed stationary) as an example: 

7 ' I  

4 
- 5  

3 
2 

- 6  
5 

-2  
- 1  

This realization has far fewer observations than are required in practice. It is 
used here only for purposes of illustration. 

The MA(1) model is 

I, = (1  - e , B ) a ,  (8A.1) 

or 

2, = p + u, - e,a,- l  (8A -2) 
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Because p,  el, and the random shocks are unknown and must be estimated, 
we rewrite model (8A.2) as 

z ,  = fi  + 6, - e l i f - l  (8A .3) 

where the " " sign stands for estimated values. 

i = 0: 
We use the realization mean 2 to estimate p.  For the realization above. 

- 4 - 5 + 3 + 2 - 6 + 5 - 2 - 1  - 
8 

0 
8 

= -  

= o  

Having estimated p with f, we remove this nonstochastic element from 
the data temporarily by expressing the data in deviations from the mean: 
2, = z, - 2. In ths case, i, = z, because .F = 0. Throughout the remainder of 
this appendix, we refer to z, rather than 2,, since they are identical in our 
example and the notation will be less cumbersome. However, bear in mind 
that in this appendix, z ,  represents deviations from the mean. 

Letting fi = I = 0, subtracting this value from both sides of (8A.3) to 
express the model in deviations from the mean, solving the result for 6,, and 
recognizing that 6,, 6,- ,, and z ,  are vectors gives this expression: 

0 ,  = z, + e,9,-, (8A -4) 

We cannot find the LS estimate of 8, directly from (8A.4) by minimiz- 
ing* the SSR = a',!, with respect to e, because we do not know the contents 
of vector S,:, if 8, is unknown, and we cannot solve directly for the LS 
estimate of 8,  if the elements in if-, are unknown. Thus we must use an 
iterative search technique. 

Initial coefficient values. At step 1 we specify initial values for the 
contents of €b, the vector of estimated coefficients. In the present example, 

'The superscript (') represents matrix transposition. 
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Table 8A.1 Calculation of the initial sum of squared residuals (SSR,) 

t Z l  &I-  1.0 21.0 = -4.04- 1.0 4 . 0  = 21 - 21.0 b:; 

1 4 0 
2 - 5  4 . m  
3 3 -4.6000 
4 2 2.5400 
5 - 6  2.2540 
6 5 -5.7746 
7 - 2  4.4223 
8 - 1 - 1.5578 

0 
- 0.4OOo 
0.4600 

- 0.2540 
- 0.2254 

0.5775 
- 0.4422 

0.1558 

4 . m  
- 4.6OOO 

2.5400 
2.2540 

- 5.7746 
4.4225 

- 1.5578 
- 1.1558 

16.oooO 
21.1600 
6.45 16 
5.0805 

33.3460 
19.5585 
2.4267 
1.3359 

aLi:o = 105.3592. 

B,, is merely a 1 X 1 vector containing el, the initial estimate of 8 , .  Let 6,.o 
stand for this initial value. 

Some computer programs require the user to enter initial values for the 
estimated coefficients. (Guidelines for choosing initial values are provided 
in Chapter 12.) Other programs generate their own initial values based on a 
preliminary analysis of the data.* Still others pick initial values arbitrarily; 
often these programs use 0.1 as the initial value for all estimated coeffi- 
cients. In our example, let b, , ,  = 0.1. 

Initial SSR At step 2 we use the initial value 6,,, = 0.1 to generate an 
initial set of residuals a,., and the corresponding initial sum of squared 
residuals SSR, = a’,oa,,o. The calculations for finding SSR, from a realiza- 
tion for the MA( 1) are essentially the same as those shown earlier in Section 
8.2 where we calculated an SSR for an AR( 1) model to illustrate the idea of 
the grid-search method. 

Table 8A.1 shows the calculation of SSR, for the realization presented 
above (reproduced in column 2), with = 0.1. Recall that a residual li, is 
defined as the difference between an observed value z,  and a calculated 
value 2,. In this example the elements in both 2, and 8, depend on the value 
of d,.,, so we add a zero subscript to these terms: 

%.o = 2 ,  - %.o (8A.5) 

These values are calculated in column 5 of Table 8A. 1. 

‘Box and Jenkins discuss this type of preliminary analysis and present the relevant algorithm in 
[ I ,  pp. 187- I92 and 498-5001. 
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The calculated values g r V O  are found from (8A.3) by letting $ = i = 0 and 
and assigning the elements in A,.o their expected values of zero: 8,  = 

2 f . O  = - 4 . 0 % -  1.0 (8A.6) 

These values are calculated in column 4 of Table 8A.1. 
The calculations are done as follows: First, let t = 1. From (8A.5) we see 

that do., cannot be calculated because we have no zo value available. Thus 
we assign 60.0 its expected value of zero and enter t h s  into column 3, row 
t = 1. 

From (8A.6) we may now use the value 6,, = 0 to calculate Z,.o: 

21.0 = -4.060.0 

= ( -O.l ) (O) 

= o  
Enter this value into column 4, row f = 1. 

Now from (8A.5), find 61.0 as 

6,,0 = ZI - 21.0 

= 4 - 0  

= 4  

and enter this in column 5 of Table 8A. 1, row t = 1. 

this in column 6, row t = 1. 

column 3: 6,- = 
column 4: 

Next, we square each residual. For t = 1, we have 6;.o = (4)2 = 16. Enter 

Now let t = 2. We have already found the next value that belongs in 
= 4. Next, use (8A.6) to find i2.,, the next value in 

22.0 = - - ~ I . O 4 . 0  

= ( - 0.1)(4) 

= -0.4 

The next value in column 5 is ii2,0. From (8A.5), 

62.0 = i2 - i 2 , o  

= - 5  - (-0.4) 

= -4.6 

The square of this value (2 1.16) is then entered in column 6. 
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For t = 3, we have already found r i r - , , ,  = d2,,  = -4.6. The remaining 
calculations are simply a continuation of those shown above. The final step 
is to sum the squared residuals in column 6 to get SSR, = 105.3592. 

Linear approximation witb numerical derivatives. Having found SSR, 
corresponding to el., = 0.1. we proceed to search for a new value for 8,, 
designated 6,., which has a smaller SSR than d,.,. Our ultimate goal is to 
find that value of d, which results in a minimum SSR. 

We approach the problem with a linear approximation by writing a 
truncated Taylor series expansion of (8A.4): 

s, = s,., - (e l , ,  - el,,) (8A .7) 

Solving (8A.7) for B,.o:  

Forming this linear relationship is step 4 in the algorithm. Equation 
(8A.8) may be estimated with the method of linear least squares (LLS). We 
may think of arv0 as the “dependent variable”-a set of “observations” 
generated at step 2, given 8, = elso. For b,, ,  = 0.1, these values are shown 
in column 5 of Table 8A.1. The term (el. I - d,,,) in (8A.7) is the coefficient 
whose value is to be estimated with LLS. The vector B ,  is the set of residuals 
whose s u m  of squares is to be rmnunrzed using LLS. The (negative) 
derivative of 8, ,  evaluated initially at 8, = 81.0 = 0.1 [that is, (- i%,/a8,I8, 
= el.,], may be thought of as the “independent variable” in this linear 
rela tionship. 

In practice the values of the derivatives in equation (8A.8) are found 
numerically rather than analytically; that is, we generate these values from 
the available data. If we increase 6, slightly from its initial value 8,.o = 0.1 
up to 8;, = 0.1 1, we can produce a new set of residuals a;,, corresponding 

‘Let y be a nonlinear function of x: y = j( x). Fix x at xo. Now we may represent the range of 
y values around x o  with a Taylor series expansion: 

. .  . 

The first two terms of this expansion are a linear approximation (around xo) to the nonlinear 
function y = f( x). 
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to the new coefficient 8;to = 0.11. Then the required set of derivatives is 
simply the difference between the two sets of residuals: 

Thus, we have one set of residuals produced at step 2 in the algorithm 
with 8,  = 8,.o = 0.1. These are shown in column 5 of Table 8A.1. We 
produce another set of residuals &;,o with 8,  = 8co = 0.1 1. The required set 
of derivatives is then the difference between the two vectors of residuals. 
Ths procedure is illustrated numerically in Table 8A.2. 

Column 2 of Table 8A.2 merely reproduces the realization we are 
analyzing. The values in columns 3, 4, and 5 were generated in the same 
manner as the values in columns 3, 4, and 5 of Table 8A.1. The only 
difference is that the MA( 1) coefficient used in Table 8A. 1 is 0.10, while it is 
0.1 1 in Table 8A.2. For an illustration of how these calculations are 
performed, see the preceding section in this appendix where Table 8A.1 is 
explained. 

Column 6 in Table 8A.2 is the set of derivatives required for equation 
(8A.8). It is the difference between the residuals in column 5 of Table 8A.1 
and those in column 5 of Table 8A.2. The negatives of these values are the 
“observations” on the “independent variable” in (8A.8). 

Finding new estimates. By applying LLS to (8A.8), using the values for 
t i rao in column 5 of Table 8A.1, as the “dependent variable” and the values 
for the derivatives in column 6 of Table 8A.2 as the “independent variable,” 
we estimate the coefficient (8 , .  , - 8,,o). This coefficient is the change (the 
“correction”) in 8,  that minimizes the SSR (a;&,) of (8A.8). This is step 5 in 

Table 8A.2 Calculation of nwwrical derivatives 

I z ,  

1 4 
2 - 5  
3 3 
4 2 
5 - 6  
6 5 
7 - 2  
8 - 1  

6:- 1.0 

0 
4 . m  

- 4.5600 
2.4984 
2.2748 

- 5.7498 
4.3675 

- 1.51% 

6r .o  - 

0 
- 0.4400 

0.50 16 
- 0.2748 
- 0.2502 

0.6325 
- 0.4804 

0.1672 

4 . m  
- 4.5600 

2.4984 
2.2748 

4.3675 
- 1.5196 
- 1.1672 

- 5.7498 

0 
- 0.04oO 

0.04 16 
- 0.0208 
- 0.0248 

0.0550 
- 0.0382 

0.01 14 
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Marquardt’s compromise. We will not illustrate this step numerically be- 
cause it involves complications beyond the scope of our discussion.* 

Having used LLS to find the contents of the correction vector h, which in 
this case consists of the estimated change in 8, (h - e l . ,  ; d,.,), we may 
easily find the new coefficient 8, . , .  We know h = (8, . ,  - el.,) and 8,,,, so 
we solve for el. ,:  8 , . ,  = h + d,.,. For the realization in our example, the 
first correction as calculated by the computer program is 0.7263, so 8,. , = 
0.7263 + 0.1OOO = 0.8263. 

Testing the new SSR. The new estimated coefficient 4,. , = 0.8263 was 
found by minimizing the sum of squared residuals of (8A.8). However, that 
equation is only a linear approximation to the relevant nonlinear relation- 
ship between 8, and the sum of squared residuals we want to minimize. It is 
possible that the correction derived from (8A.8) will not lead to a new 
estimate d, . ,  that reduces the SSR obtained from 8,.,. Therefore, we must 
perform step 6 in the algorithm. This step is identical to step 2 except we 
now use 8,. , = 0.8263 instead of el,, = 0.10 to generate the sum of squared 
residuals (SSR,) corresponding to (8A.4). Having done so, we compare 
SSR, with SSR, at step 7. If SSR, < SSR,, we assume that 8,. , = 0.8263 is 
a better estimate of 8,  than el., = 0.10 because el . ,  = 0.8263 has a smaller 
SSR. For our example, SSR, = 49.5623. This is smaller than SSR, = 
105.3592. so we conclude that e l , ,  = 0.8263 is an improved estimate of 8,. 

Convergence test. If SSR, < SSR,, we go to step 8 in the algorithm to 
decide if we have converged to a minimum SSR. Some computer programs 
test the relative reduction in the SSR, as shown in step 8 in Figure 8A.1, to 
see if it is less than some parameter c,. If it is, convergence to least-squares 
estimates is assumed. Other programs (including the one used for this 
example) test the absolute size of the coefficient corrections in vector h. If 
each absolute correction is smaller than some parameter c2  (0.001 in the 
program used here), convergence to LS estimates is assumed. In this 
example, the correction 0.7263 is much larger than 0.001, so we conclude 
that we have not yet converged to the least-squares estimate of 8,. 

New starting values. When the convergence parameter ( c ,  or c 2 )  is 
violated, the estimation procedure begins again at step 8a with 8,.,, reset to 
equal the new, better value el. ,  and with SSR, reset to equal SSR,. New 

‘These complications are related to a transformation of the “data” used in estimahg (8A.8). 
Marquardt 1201 points out that the gradient-method results are sensitive to the scaling of the 
data; therefore. the data are standardized before the LLS estimates of (8A.8) are calculated, 
and the results are then scaled back again. The scaling procedure is given in Box and Jenkins [ 1 ,  
pp. 504 and 505.1 
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Table 8A3 Example of eesults for iterations 
of Marquardt’s compromise, steps 3-8a 

Iteration Number 4 ?I SSR 
-~ ~~ 

0 0.1Ooo 0.01 105.3592 
1 0.8263 0.01 49.5623 
2 0.9089 1 .o 48.3370 
3 0.909 1 10 48.3370 

derivatives are calculated, new linear equations are formed, new corrections 
found, and so forth. For our example, at step 8a we set SSR, = 49.5623 and 
d,., = 0.8263. 

As long as SSR, < SSR, at each iteration, Marquardt’s compromise is 
identical to the Gauss-Newton method. This method tends to produce 
relatively rapid convergence if SSR, < SSR, at each iteration, since it 
produces relatively large correction values. Thus the program may pass 
through steps 3-8a only a few times. 

Ensuring a reduced SSR. Let us return to step 7 in the algorithm. If 
SSR, > SSR,, we make an adjustment (an increase in a parameter a) to the 
linear equations formed at step 4. This adjustment produces new coefficient 
estimates at step 5 which are closer to the gradient-method results; because 
of this, these new estimates are more likely to lead to a reduced SSR. If 
these new corrections still do not gve a value for SSR, that is less than 
SSR,, x is increased again. In fact, T is increased until a reduced SSR is 
induced. In theory, a sufficiently large value for a will ensure corrections 
that give a reduced SSR, assuming we have not yet converged to a minimum 
SSR.* 

Table 8A.3 shows how a changed during the estimation of 6, for our 
example. Iteration 0 is simply calculation of the initial SSR, for the starting 
value 8, = 0.10; the starting value of a happens to be 0.01 in this program. 

At iteration 1, we achieved a reduced SSR without having to increase a: 
it remained at 0.01. In order to achieve a reduced SSR at iteration 2, 
however, a had to be increased gradually up to 1.0 (it was increased two 
times to reach that level). Then at iteration 3, x had to be increased to 10 to 
ensure getting an SSR that was not larger than the previous one. Since the 
absolute value of the coefficient correction at iteration 3 (h = 0.0002) was 

‘In practice, the value of II required to yield a reduced SSR could be so large that machine 
l imits are exceeded and computational errors occur. Fortunately. h s  r m l y  happens. 
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smaller than the relevant convergence parameter (c2 = 0.001), convergence 
was assumed and the program halted. 

Standard errors of the estimated coefficients. In finding coefficient 
corrections, we apply LLS to the linearized model, such as equation (8A.8). 
Let X be the matrix of derivatives. Then the variance-covariance matrix of 
the estimates is 

v = g(Xx)- '  (8A.9) 

where 6: is the estimated residual variance as discussed in Section 8.3 and X 
is the matrix of derivatives calculated at the lust linearization. Note that the 
estimated variances of the coefficients derived from (8A.9) are only ap- 
proximate since they are based on a linear approximation to a nonlinear 
function. It follows that the t-values associated with the estimated coeffi- 
cients provide only rough tests of the significance of the coefficients. 

Appendix 8B: Backcasting 

Box and Jenkins distinguish between two estimation procedures: conditional 
least squares (CLS), which is identical in results to the conditional maxi- 
mum likelihood method, and unconditional least squares (ULS). They sug- 
gest a practical procedure called " backcasting" or " backforecasting" which 
gives ULS estimates that are very nearly unconditional maximum likelihood 
estimates. 

Box and Jenkins [ 1, p. 21 11 suggest that CLS is satisfactory for estimating 
models without seasonal elements when the number of observations in the 
realization is moderate to large. But they emphasize that CLS is generally 
inferior to ULS for seasonal models. They propose the method of backcast- 
ing as a practical way of producing ULS estimates that are very nearly 
unconditional maximum likelihood estimates.* 

8B.1 Conditional least squares 

We can get at the idea of CLS by considering how we calculated the SSRs 
in Tables 8.1 and 8A.1. In Table 8.1 we calculated an SSR for an AR( 1) 

'However, Newbold and Ansley 1211 present evidence, based on Monte Carlo methods. that 
ULS results can deviate significantly from maximum likelihood results when process parame- 
ters are close to the nonstationarity or noninvertibility boundaries with small samples. 
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model. We found residuals (6 , )  for periods 2 through 6, but not for period 1 
because there is no value zo available to find the calculated value i, = 4,i0 
and therefore we could not find d , .  Thus the SSR calculated there is 
conditional in the sense that it depended on our using z ,  = 20 as the starring 
value of the z ,  series. 

In Table 8A. 1 we calculated an SSR for an MA( 1) model. In this case we 
found residuals for periods 1-8. But to find B , . , ,  we had to set equal to 
its expected value of zero. That allowed us to find the calculated value 
2, = - ~ l ~ + i o ~ o  = 0, and therefore we could find til,o = zI - i, = 4 - 0 = 
4. Thus the SSR calculated in Table 8A.1 is conditional in the sense that it 
depended on our using tio,, = 0 as the starting value for the 6, series, and 
I, = 4 as the starting value for the z,  series. 

8B.2 Unconditional least squares 

Consider the sequence of observations 2,. z 2 ,  z 3 , .  . , , I,. Now consider some 
subsequent value z n + / + ,  with a certain probability relationship to the 
previous values z I ,  . . . , z,. It  can be shown that a value preceding the 
sequence z,, . . . , z ,  (designated z - /)  has the same probability relationship to 
the sequence z,, z , , - , ,  z,-~.. . ., z ,  as z , + ~ + ,  has to the sequence 
Z 1 , f 2 ,  Z 3 , - . . ,  2,. 

In other words, we can do somewhat better than to confess complete 
ignorance about the values preceding z , ,  z 2 , . .  ., z ,  if we know somethng 
about the probability relationship between z,+,+ , and the sequence 
z , ,  z 2 , .  .., z ,  (i.e., if we have a tentative ARIMA model in hand for the 
zI, z2,.  . . , 2, series). If we know something about that probability relation- 
ship, then we also know something about the probability relationship 
between the available (reversed) data sequence z,, 2,- I , .  . . , L, and a value 
( z - /)  that precedes that sequence. 

This fact leads Box and Jenkins to propose the following backcasting 
procedure. First, start with a realization, such as the one in Table 8.1, 
expressed in deviations from the mean. This 2, sequence is reproduced in 
column 2 of Table 8B.1. Now, reverse the 2, series in time, that is, TI 
becomes the last observation. ZZ becomes the next to last, and so forth, and 
Za becomes the first observation. This is shown in Table 8B.2 for t = 
6,5 ,.... 1. 

Next, “forecast” the reversed series (i.e., backcast the origmal series) 
using the most recent values of the estimated coefficients. The example in 
Table 8.1 is an AR(1) model with 6 ,  = 0.5. Applying t h s  estimate of 6, to 
the Z, series, the forecasting equation is 2, = &:,- , = 0.52,- ,. But for the 
reversed 2, series, the backcasting equation is i, = &2,+ , = 0.52,+ ,. Thus 
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Table 8B.1 A reproduction of 
the realization in Table 8.1 

1 20 
2 0 
3 - 30 
4 - 20 
5 10 
6 20 

the backcast for t = 0 is i, = 0.52, = OS(20) = 10. This value is entered in 
column 2 of Table 8B.2, in the row where r = 0. Then the backcast for 
t = - 1 is 2-, = 0.52,; since 2, is not available, we replace it with its 
backcast value i, = 10. Therefore, i- , = OS(10) = 5.  Continue in this 
manner, each time calculating i, = 0.5fI+,  and substituting the backcast 
value i,, I for f,, , when necessary. Backcasting may be halted when a 
satisfactory number of successive backcasts are sufficiently close to zero (the 
mean of the 2, series). 

Table 8B.2 The realization in Table 8B.1 
reversed, with “forecasts” 

t i p  

6 
5 
4 
3 
2 
1 
0 

- I  
- 2  
- 3  
-4  
- 5  

20 
10 

- 20 
- 30 

0 
20 
10 
5 
2.5 
1.25 
0.625 
0.3 125 

O f ,  is reversed in sequence. 
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Table 8B3 The Realization in Tab& 8B.1 
with backcasts 

I ap 

- 5  013 I25 
- 4  0.625 
- 3  1.25 
-2  2.5 
- 1  5 

0 10 
1 20 
2 0 
3 - 30 
4 - 20 
5 10 
6 20 

’2, includes backcasts. 

Now we may reverse the reversed series with its “forecasts” to obtain the 
original 2, series, with some estimated previous values (backcasts) included. 
This is shown in Table 8B.3, which is simply the series in Table 8B.2 
reversed. An estimation procedure is now applied to this Z, series, including 
its backcasts, to reestimate 6,. This value of 6, is then used to generate new 
backcasts, and estimation is reapplied to .T, including the new backcasts. 
This procedure continues until convergence to LS estimates occurs. 

When MA terms are present in a model, backcasting involves more 
computation because the calculations must start with t = n to produce the 
required estimation residuals. Nevertheless, the concepts are the same as in 
the preceding example. 



9 
DIAGNOSTIC CHECKING 

Once we have obtained precise estimates of the coefficients in an ARIMA 
model, we come to the third stage in the UBJ procedure, diagnostic 
checking. At this stage we decide if the estimated model is statistically 
adequate. Diagnostic checking is related to identification in two important 
ways. First, when diagnostic checlung shows a model to be inadequate, we 
must return to the identification stage to tentatively select one or more other 
models. Second, diagnostic checking also provides clues about how an 
inadequate model might be reformulated. 

The most important test of the statistical adequacy of an ARIMA model 
involves the assumption that the random shocks are independent. In Section 
9.1 we focus on the residual acf as a device for testing whether that 
assumption is satisfied. In Section 9.2 we consider several other diagnostic 
checks. Then in Section 9.3 we discuss how to reformulate an ARIMA 
model when diagnostic checking suggests it is inadequate. 

9.1 Are the random shocks independent? 

A statistically adequate model is one whose random shocks are statistically 
independent, meaning not autocorrelated. In practice we cannot observe the 
random shocks (u, ) ,  but we do have estimates of them; we have the 
residuals ( 2 , )  calculated from the estimated model. At the diagnostic-check- 
ing stage we use the residuals to test hypotheses about the independence of 
the random shocks. 
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Why are we concerned about satisfying the independence assumption? 
There is a very practical reason. The random shocks are a component of z,, 
the variable we are modeling. Thus, if the random shocks are serially 
correlated, then there is an autocorrelation pattern in z, that has not been 
accounted for by the AR and MA terms in that model. Yet the whole idea 
in UBJ-ARIMA modeling is to account for any autocorrelation pattern in 
z, with a parsimonious combination of AR and MA terms, thus leaving the 
random shocks as white noise. If the residuals are autocorrelated they are 
not white noise and we must search for another model with residuals that 
are consistent with the independence assumption. 

When the residuals are autocorrelated we must consider how the esti- 
mated ARIMA model could be reformulated. Sometimes this means return- 
ing to reexamine the initial estimated acf s and pacf s. However. as we see in 
Section 9.3, the results at the diagnostic-checking stage can also provide 
clues about how the model could be improved. 

The residual ad. The basic analytical tool at the diagnostic-checking 
stage is the residual acf. A residual acf is basically the same as any other 
estimated acf. The only difference is that we use the residuals ( r i , )  from an 
estimated model instead of the observations in a realization (z,) to calculate 
the autocorrelation coefficients. In Chapter 2 we stated the commonly used 
formula for calculating autocorrelation coefficients. To find the residual acf 
we use the same formula, but we apply it to the estimation-stage residuals: 

n - k  c ( 6 ,  - a) (6 ,+k  - 5 )  
,= 1 r k ( 6 )  = n 

c (6, - a)’ 
r =  1 

The 4 in parentheses on the LHS of (9.1) indicates that we are calculating 
residual autocorrelations. The idea behind the use of the residual acf is this: 
if the estimated model is properly formulated, then the random shocks (a,) 
should be uncorrelated. If the random shocks are uncorrelated, then our 
estimates of them (6,) should also be uncorrelated on average. Therefore, 
the residual acf for a properly built ARIMA model will ideally have 
autocorrelation coefficients that are all statistically zero. 

In the last two sentences we use the words “on average” and “ideally” 
because we cannot expect all residual autocorrelations to be exactly zero, 
even for a properly constructed model. The reason is that the residuals are 
calculated from a realization (not a process) using only estimates of the 
ARIMA coefficients (not their true values). Therefore, we expect that 
sampling error will cause some residual autocorrelations to be nonzero even 
if we have found a good model. 
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Figure 9.1 Residuals from the ARMA(I, 1) model estimated in Chapter 8. 
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In Chapter 8 we presented the results of estimating an ARMA(1,l) 
model: ( 1  - 0.908B)(z, - 99.44) = (1 - 0.605B)(i,. The residuals from this 
model are plotted in Figure 9.1. Applying equation (9.1) to this series 
produces the residual acf in Figure 9.2. 

r-tests. Having calculated and plotted the residual autocorrelations. it is 
important to determine if each is significantly different from zero. We use 
Bartlett’s approximate formula, first introduced in Chapter 3, to estimate 
the standard errors of the residual autocorrelations. When applied to 
residual autocorrelations. the formula is 

(9.2) 

Having found the estimated standard errors of r k ( 6 )  from (9.2). we can 
test the null hypothesis H,: P k ( c ? )  = 0 for each residual autocorrelation 
coefficient. The symbol p and the (I in parentheses indicate that we are 
testing a hypothesis about the random shocks in a process. We do not have 
p,(a) values available, but we have estimates of them in the form of the 
residual autocorrelations r,( ir). We test the null hypothesis by calculating 
how many standard errors ( t )  away from zero each residual autocorrelation 
coefficient falls: 

(9.3) 

++RESIDUAL ACF++ 
COEF T-VAL LAC 0 
0. 00 0. 03 1 0 

-0 .c7  -0.57 2 <<i<<<<O 
0 .  14 1 09 3 o>>>>>>>>: :>>:>>> 
-0.03 -0.21 4 <<<O 
-0.04 -0. 32 5 C<<<O 
-0 .05  -0. 38 6 Cii<<O 
-0. 08 -0.60 7 <c<<<<<<o 
-0.01 -0.08 8 10 

-0.02 -0 .11  10 ( ( 0  
-0. 07 -0. 49 11 <i<<c<co 

0. 14 1.07 9 0>1:.;.:.;->>:.:,.:-.;‘.: ‘J. 

0.03 0. 25 12 O>>> 
0. 17 1 .24  13 05>>>>>3. )>>>~>>>~> 
0. 13 0 . 9 1  14 O>.:,>>>>>>:,.:~>>> 
0 . 0 1  a. 10 1s 0:. 

CHI-SQUARED* = 8 . 0 7  FOR DF = 12 

Figure 9.2 Residual acf for the residuals in Figure 9.1. 
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In practice, if the absolute value of a residual acf z-value is less than 
(roughly) 1.25 at lags 1, 2, and 3, and less than about 1.6 at larger lags, we 
conclude that the random shocks at that lag are independent. We could be 
wrong in this conclusion, of course, but we always run that risk when 
making decisions based on sample information. 

If any residual acf t-value is larger than the critical values suggested 
above, we tentatively reject the null hypothesis and conclude that the 
random shocks from the estimated model are correlated and that the 
estimated model may be inadequate. We then tentatively identify a new 
model and estimate it to see if our suspicion is justified. We discuss how 
models are reformulated in Section 9.3. 

Unfortunately, there is a potential problem in using Bartlett's formula in 
testing residual autocorrelations: the estimated standard errors are some- 
times seriously uuersrated when applying Bartlett's formula to residual 
autocorrelations. This is especially possible at the very short lags (for 
practical purposes, lags 1 and 2 especially, and perhaps lag 3 also). If the 
estimated standard errors are overstated, we see from (9.3) that the corre- 
sponding r-values are understated. Since finding the exact values for the 
estimated standard errors and r-values for residual autocorrelations is 
relatively difficult, most computer programs print residual acf z-values 
calculated using Bartlett's approximation. Therefore, we must be careful in 
using these printed z-values, especially those at the short lags. This is why we 
suggest using a warning level for absolute r-values of roughly 1.25 at lags 1, 
2, and perhaps 3 in the residual acf.* 

Chi-squared test. There is another way of dealing with the problem of 
underestimated residual acf t-values. Ljung and Box [24] and Davies et al. 
[25] suggest a test statistic based on all the residual autocorrelations as a set. 
We are gwen K residual autocorrelations. We test the following joint null 
hypothesis about the correlations among the random shocks 

H,: pl(a) = p, (a )  = - . .  = p,(a)  = 0 (9.4) 

with this test statistic 

where n is the number of observations used to estimate the model. The 

'This problem is discussed by Durbin (221 and further analyzed by Box and Pierce [23]. 
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statistic Q* approximately follows a chi-squared distribution with ( K  - m) 
degrees of freedom, where m is the number of parameters estimated in the 
ARIMA model. This approximate chi-squared test is sometimes referred to 
as a Ljung-Box test.+ A table of critical ch-squared values appears at the 
end of ths book. If Q* is large (significantly different from zero) it says that 
the residual autocorrelations as a set are significantly different from zero. 
and the random shocks of the estimated model are probably autocorrelated. 
We should then consider reformulating the model. 

We use the residual acf in Figure 9.2 to illustrate the calculation of a 
Q*-statistic. With 15 residual autocorrelations, we have K = 15. Apply (9.5) 
to the r,(Ci) values shown in the COEF column in Figure 9.2: 

K 

Q* = n(n + 2) ( n  - k ) - ' r : ( ( i )  
k- 1 

IS 

= 59(61) (59 - k ) - ' r i ( d )  
k- 1 

= 3599[( 1/58)0' + (1/57)( -0.07)' + . - .  

+ ( l/45)(0.13)2 + ( 1/44)(0.01)'] 

= 8.07 

If you perform these calculations by hand you may get a slightly different 
result due to rounding. The model for which these residual autocorrelations 
were calculated is an ARMA(1, l), so m = 3. (We have estimated three 
parameters: +,, 8 , ,  and p.) Therefore, we have (K - m) = (15 - 3) = 12 
degrees of freedom. The chi-squared statistic and the degrees of freedom 
(abbreviated df) are both printed beneath the residual acf in Figure 9.2. 

According to the chi-squared tables at the end of this book, the critical 
value with df = 12 at the 10% level is 18.5. Since our calculated chi-squared 
is less than th is  critical value, we conclude that the residual autocorrelations 
in Figure 9.2 are not significantly different from zero as a set, and we accept 
hypothesis (9.4) that the random shocks are independent. (See Case 12 in 

'Some analysts and computer programs use a statistic suggested by Box and Pierce [23]: 
K 

Q = n C r i ( i )  

The Ljung-Box statistic is preferred to the Box-Pierce statistic since its sampling distribution 
more nearly approximates the chi-squared distribution when the sample size is moderate. All 
chi-squared statistics In this text are calculated using the Ljung-Box formula (9.5). 

k - 1  
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Part I1 for an example of a significant chi-squared statistic that leads to 
rejection of a model, despite the fact that the residual autocorrelation 
t-values are only moderately large.) 

9.2 Other diagnostic checks 

The residual acf, along with the associated t-tests and chi-squared test, is the 
device most commonly used for diagnostic checking; we make extensive use 
of it in the case studies in Part 11. In t h i s  section we discuss several other 
methods for checking the adequacy of a model.* 

Residual plot. The residuals from a fitted model constitute a time series 
that can be plotted just as the original realization is plotted. Visual analysis 
of a plot of the residuals is sometimes helpful in detecting problems with the 
fitted model. 

For example, the residuals may display a variance that changes over time, 
suggesting a logarithmic transformation (or some other transformation) of 
the original data. In fact, it is sometimes easier to see a changing variance in 
a plot of the residuals than in a plot of original data. The original realization 
may contain patterns that interfere with our ability to visualize the variance 
of the realization. But these patterns are filtered out of the data at the 
estimation stage, sometimes leaving a more clear picture of the variance of 
the data in the residuals. The residuals for the A R M (  1,l)  model discussed 
earlier are plotted in Figure 9.1. Inspection does not suggest that the 
variance is changing systematically over time. 

The residual plot can also be helpful in detecting data errors or unusual 
events that impact a time series. In Figure 9.1, residuals more than two 
standard deviations from the mean have an @ note next to them. Of course, 
we must expect some residuals to be large just by chance. But they might 
also represent data that were incorrectly recorded, or perturbations to the 
data caused by identifiable exogenous events. Thus, careful inspection of 
residuals can sometimes lead to improved accuracy in the data base or 
insight into the causes of fluctuations in a data series. (Case 2 in Part I1 
shows an example of a large residual that could have arisen because of an 
identifiable economic policy action by the U.S. Congress.) 

Overfitting. Another way of checking a fitted model is to add another 
coefficient to see if the resulting model is better. This diagnostic check is 

'One tool not discussed here is the nunularioe pmodogrom. Box and Jenkins [ 1. pp. 294-2983 
suggest that h s  device is especially helpful when checking the adequacy of models with 
seasonal components. 
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known as merfztting. One should have a reason for expanding a model in a 
certain direction. Otherwise, overfitting is arbitrary and tends to violate the 
principle of parsimony. 

Overfitting is justified especially if the initial estimated acf and pacf are 
ambiguous. For example, suppose an estimated acf decays toward zero 
while the pacf has a significant spike at lag 1, suggesting an AR(1) model. 
But suppose the pacf also has a splke at lag 2 with a t-value of 1.8. for 
example. While ths value is not highly significant, it is moderately large. 
Therefore, an AR(2) is plausible though the evidence favoring it is not 
overwhelming. According to the principle of parsimony, we should start 
with an AR(1) model. But using the overfitting strategy, we check our 
judgment by also trying an AR(2). In this case the moderately large pacf 
spike at lag 2 gives a clue about the direction in which the model should be 
expanded. 

A special warning is in order: in overfitting be careful not to add 
coefficients to both sides of the model. That is, do not overfit with both AR 
and MA terms simultaneously. Doing so not only runs counter to the 
principle of parsimony but can also lead to serious estimation problems 
because of coefficient redundancy. This latter problem is discussed in 
Chapter 8. 

Fitting subsets of the data. Sometimes data continue to be generated by 
the same type of process [e.g., an ARMA(1, I)], but the coefficients (t#q and 
8 , )  in that process change in value over time. If this happens, forecasts 
based on a model fitted to the entire data set are less accurate than they 
could be. 

One way to check a model for this problem is to divide the data set in 
half, for example, and estimate the same model for each half. Then perform 
a statistical test to see if the coefficients from the two data sets are 
significantly different. 

For example, suppose an AR(1) model has been fitted to both the first 
(A) and second (B) halves of a reahation, with the following results: 

4,” = 0.5, ~(4~”) = 0.20 

i,, = 0.7, ~ ( 6 , ~ )  = 0.25 

where 0.20 and 0.25 are the standard errors of the two coefficients. Now 
consider the statistic 4,” - 41B = 0.5 - 0.7 = -0.2. The variance of this 
difference is the sum of the two variances. Therefore, the estimated standard 
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error of this difference is 

s ( i I A  - 418) = [(0.20)2 + (0.25) 2 ] 1/2 = 0.32 

Testing the hypothesis Ho that c p l A  = $18, or 

@ I A  - $18 = 

gives this r-statistic 

- 0.2 
0.32 

- -- 

= - 0.625 

Since this z-statistic is not significantly different from zero at the 5 %  level, 
we conclude that cplA = cp,,. In other words, the coefficient cp, is the same 
for both halves of the data set. 

There is another, less formal check for changing coefficients. We may 
drop the latter part of the realization (e.g., the last 10% of the observations) 
and reestimate the same model for this shortened realization. If the resulting 
coefficients are close to those estimated using the full realization (e.g., 
within -?1.0.1), we conclude that the most recent observations are being 
generated by the same process as the earlier data. 

The first of the two preceding approaches has the advantage of involving 
a formal statistical test. However, the decision to divide the realization in 
half is arbitrary. It may be, for example, that the last two-thirds of the 
realization is generated by coefficients different from those generating the 
first third. Furthermore, the number of observations must be relatively large 
before we can consider splitting the data into segments. 

The second approach (dropping the latter part of the realization) has the 
advantage of emphasizing the very recent past. If recent data behave quite 
differently from the rest of the realization, this raises a serious concern 
about the ability of the overall model to forecast the near-term future very 
well. The disadvantage of this check is that it is informal; however, the last 
10% or so of a realization is often not a large-enough data set to allow useful 
formal tests of the change in coefficients, as suggested in the first approach 
above. (Case 2 in Part I1 shows an example where estimated coefficients 
fitted to a subset of the realization are very close to those obtained from the 
entire data set.) 
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9.3 Reformulating a model 

Suppose we decide tentatively that a model is statistically inadequate 
because (i) some residual acf r-values exceed the suggested warning values, 
or (ii) the residual acf chi-squared statistic is too large. According to the 
UBJ method, we then return to the identification stage to tentatively select 
one or more other models. There is no guarantee, of course, that we will 
discover a better model: the residual autocorrelations from the original 
model could be large just because of sampling error. 

One way to reformulate an apparently inadequate model is to reexamine 
the estimated acf and pacf calculated from the original realization. Because 
they are based on a realization, estimated acf's and pacf' s can give ambigu- 
ous evidence about the process generating the data. For example, they might 
have a pattern that could be interpreted as either a decay or a cutoff to zero, 
so that either an AR model or an MA model could be justified. Reexamina- 
tion of the original estimated acf and pacf might suggest one or more 
alternative models that did not initially Seem obvious. 

Another way to reformulate a model is to use the residual acf as a guide. 
For example, suppose the original estimated acf decays toward zero and we 
fit this AR( 1) model to the data initially: 

( 1  - + , B ) 2 ,  = b, (9.6) 

where b, is a set of autocorrelated shocks. Suppose the residual acf for (9.6) 
has a spike at lag 1 followed by a cutoff to zero. This suggests an MA(1) 
model for b,: 

6, = ( 1  - (9.7) 

where a, is not autocorrelated. Use (9.7) to substitute for b, in (9.6). The 
result is an ARMA(1,l) model for 2,: 

As an illustration, consider the estimated acf and pacf (based on a 
simulated realization) in Figure 9.3. Suppose we tentatively identify an 
AR(1) model for the realization underlying these functions. This model is 
justified because the estimated acf decays toward zero rather than cutting 
off to zero, and the estimated pacf has a single spike (at lag 1) with a 1-value 
greater than 2.0. 

The top of Figure 9.4 shows the results of fitting model (9.6) to the data. 
The estimated coefficient 4, = 0.693 satisfies the stationarity requirement 



234 Diagnosticchecking 
+ + + + - + + + + + + + + AUTOCORRELATIONS + + + + + + + + + + + + + 
+ FOR DATA SERIES. SIMULATED DATA + 
+ DIFFERENCING. 0 MEAN = 99 482 + 
+ DATA COUNT = 40 STD DEV = 2. 06206 + 
COEF T-VAL LAC 0 
0 68 5 .28  1 c 0>>>:,>1>>>;.>>>>>>> 
0 .34  1 89 2 c 0>>>>,>>>3 
0. 19 1 02 3 c o>>;>>> 1 
0 18 0 95 4 c o>>>>> 3 
0 08 0 40 5 c O>> 3 

-0 01 -0 04 6 c 0 3 
0 00 0 02 7 c 0 3 

-0 04 -0 22 0 c co 3 
-0 12 -0 62 9 c c<co 3 

CHI-SQUARED* = 43 03 FOR DF = 9 

+ + +  
COEF 
0. 68 

-0.24 
0. 14 
0. 08 

-0.19 
0. 06 
0. 05 

-0.20 
0. 01 

+ + + + + + + + PARTIAL AUTOCORRELATIOU!~ + + + + + + + + + + + 
T-VAL LAC 0 
5.28 1 c O>>>>>I>>>>>>>>>>> 

-1.83 2 c c<<<<o 1 
1 07 3 c o>>> 1 
0. 40 4 c o>> 3 

-1.47 5 c c<<<<o 3 
0 . 4 5  b t o> 1 
0 .  41 7 C o> 1 

-1. 51 8 ccc<<<o 1 
0 .04  9 c 0 1 

Figure 93  Estimated acf and pacf for a simulated realization. 

16, I < 1. It  is also statistically significant at better than the 5% level since its 
r-value is substantially larger than 2.0. 

The residual acf is printed below the estimation results in Figure 9.4. The 
residual autocorrelation coefficient at lag 1 has a r-value of 1.64. This 
exceeds the practical warning level of 1.25 suggested earlier for lags 4 2 ,  and 
3 in a residual acf; therefore, we consider modifying the initial AR(1) 
model. 

The residual acf in Figure 9.4 is similar to an MA(1) acf, with a 
significant spike at lag 1 followed by autocorrelations that are not signifi- 
cantly different from zero. In other words, the residuals (6,) of model (9.6) 
appear to be autoconelated, following an MA(1) pattern as in (9.7). Using 
the substitution procedure followed above we arrive at (9.8), an ARMA( 1,l)  
model, for the original realization I,. 

The results of estimating and checking (9.8) are shown in Figure 9.5. This 
model satisfies the stationarity requirement .c 1 and the invertibility 
requirement 18, I < 1, and both estimated coefficients have absolute r-values 
greater than 2.0. 

Model (9.8) is better than (9.6) since its adjusted RMSE = 1.43754 (the 
estimated standard deviation of a,) is smaller than the estimated standard 
deviation of b,, 1.50238. Furthermore, the residual acf at the bottom of 
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+ + + + + + + + + +ECOSTAT MIVARIATE B-J RESULTS+ + + + + + + + + + 
+ FOR DATA SERIES SIMULATED DATA + 
+ DIFFERENCING 0 Df = 57 + 
+ AVAILABLE DATA * 60 BACKCASTS = 0 TOTAL = 60 + 
+ USED TO FIND SSR DATA = 59 BACKCASTS = 0 TOTAL = 59 + 
+ (LOST DUE TO PRESENCE OF AUTOREGRESSIVE TERMS 1)  + 

COEFFICIENT ESTIMATE STD ERROR T-VALUE 
PHI 1 0 693 0 095 7 31 
CONSTANT 30 4453 9 43373 3 22720 

MEAN 99 2746 64 1060 154 050 

ADJUSTED RMSE = 1 50230 REAN ABS X ERR = 1 14 
CORRELATIONS 
1 2 

1 1 00 
2 -0 10 1 00 

++RESIDUAL ACF++ 
COEF T-VAL LAC 0 
0.21 1.64 1 O>j>>>>>j>i>>>?>>>>>>> 

-0. 15 -1. 13 2 
-0. 13 -0 91 3 

0. 12 0.04 4 
-0. 01 -0 .09 5 
-0. 15 -1 04 6 
0 . 0 5  0 32 7 
0 .03 0.24 0 

-0 11 -0 76 9 
CHI-SQUARED* p 

Figure 9.4 Estimation and diagnostic-checking results for an AR(1) with a simu- 
lated realization. 

Figure 9.5 is satisfactory since none of the absolute r-values exceeds the 
warning levels suggested earlier, and the calculated chi-squared statistic is 
not significantly different from zero. 

The preceding example is not unusual, and it suggests that modifying a 
model in light of the residual acf is rather straightforward. That is, the 
initial acf decays to zero, suggesting an AR(1). Then the residual acf has a 
single spike at lag 1, suggesting the addition of an MA term at lag 1. The 
resulting model (9.8), in this case, is an obvious composite of the initial 
model for z ,  and the subsequent model for the residuals 6,. It  appears from 
this example that we can reformulate models by simply adding to the 
original model the coefficient implied by the residual acf. (See Cases 2 and 5 
in Part I1 for similar examples.) However, the information contained in the 
residual acf may be less clear than in the preceding illustration. 

For example, suppose the initial fitted model is an AR( 1): 

( 1  - +;B)Z,  = 6, (9.9) 
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+ + + + + + + + + +€COSTAT U N I V A R I A T E  B - J  RESULTS+ + + + + + + + + + 
+ FOR DATA S E R I E S  SIMULATED DATA + 
+ D I F F E R E N C I N G  0 D F  = 56 + 
+ A V A I L A B L E  DATA = 60 BACKCASTS = 0 TOTAL = 60 + 
+ USED TO F I N D  SSR DATA = 59 BACKCASTS = 0 TOTAL = 59 + 
+ ( L O S T  DUE T i I  PRESENCE O F  AUTOREORESSIVE TERMS 1 )  + 

C O E F F I C I E N T  E S T I M A T E  S T D  ERROR T-VALUE 
P H I  1 o 435 0 154 3 15 
THETA : -0 419 0 170 -2 47 
CONSTANT 51 1421 15 306 3 34457 

MEAN 99 332.5 51 5,785 192 772 

ADJUSTED RMSE = 1 43754 MEAN ABS X ERR = 1 14 
CORRELAi  i ONS 
1 2 3 

1 1 0cJ 
2 0 68 1 GO 
5 -0 11 -0 38 1 00 

++RESIDUAL A I  F++ 
CDEF T-VAL LAG G 
0 04 0 30 1 0: >:>> 

O>?? > 
. * - . ? - r  

0 04 0 33 2 
-0 07 -0 53 3 .%..... \.:.o 
0 17 1 27 4 o>:J . :>; :>:, >T>>>>>>>>>> 
0 00 c 94 5 0 

-0 14 -1 01 6 <<i*:<<,: :<:-:<<.:<o 
0 07 0 49 7 01, :';>? 

-0 0 2  -0 12 0 i < O  
-0 04 -0 26 9 i<'.:-;o 

Figure 9.5 Eshmation and diagnostic-checlung results for an ARMA( 1 . 1 )  with a 
simulated realization. 

CHI-SQUARED* = 3 93 FOR DF 5 6 

where again b, is a set of autocorrelated shocks. But suppose the residual acf 
also suggests an AR( 1) model for 6,: 

(1 - +?B)b, = a, (9.10) 

where a, is a set of uncorrelated shocks. 
In this case we cannot just add to the original model the coefficient 

suggested by the residual acf-it is not possible to add an AR coefficient at 
lag 1 when we already have this coefficient in the model. We can, however, 
use the same algebraic procedure used in the previous example. Solve (9.10) 
for b,: 

b, = (1 - + y B ) - ' a ,  (9.1 1) 

Now substitute (9.1 1) into (9.9): 

( 1  - r#l;B)t, = (1 - q 3 ) - ' a ,  (9.12) 
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Next, multiply both sides of (9.12) by (1 - +:B): 

(1 - +:B)(l - +',B)Z, = a, (9.13) 

Expanding the LHS of (9.13) gives 

Combining terms, we get this AR(2) model: 

( 1  - - + 2 ~ 2 ) ~ ,  = a,  (9.15) 

where = +', + q ~ :  and - -r#~;+t. 
This example shows that the information contained in the residual acf 

can be subtle at times. In particular, it may not be appropriate to simply 
add to the initial model the coefficients that appear to describe the residual 
series. Case 4 in Part I1 illustrates a similar substitution procedure. It also 
shows that the residual acf can be critically important in finding an 
adequate model. Case 13 likewise demonstrates how the residual acf is 
sometimes virtually the only means by which an appropriate model can be 
found. 

Summaty 

1. At the diagnostic-checking stage we determine if a model is statisti- 
cally adequate. In particular, we test if the random shocks are independent. 
If this assumption is not satisfied, there is an autocorrelation pattern in the 
original series that has not been explained by the ARIMA model. Our goal, 
however, is to build a model that fully explains any autocorrelation in the 
original series. 

2. In practice we cannot observe the random shocks ( a , )  in a process, 
but we have estimates of them in the form of estimation-stage residuals (6 , ) .  

3. To test the hypothesis that the random shocks are independent we 
construct a residual acf. This acf is like any estimated acf except we 
construct it using the estimation residuals ci, instead of the realization z,. 

4. Approximate t-values are calculated for residual autocorrelation 
coefficients using Bartlett's approximation for the standard error of esti- 
mated autocorrelations. 

5. If the absolute z-values of residual autocorrelations exceed certain 
warning values, we should consider reformulating the model. The critical 
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values are 

Lag Practical Warning Level 

1,2,3 1.25 
All others 1.6 

6. The warning values above are smaller for the short lags (1, 2, and 3) 
because using Bartlett’s approximation can result in understated residual acf 
r-values, especially at the short lags. 
7. Another way to deal with potentially underestimated residual acf 

t-values is to test the residual autocorrelations as a set rather than individu- 
ally. An approximate chi-squared statistic (the Ljung-Box statistic) is 
available for this test. If ths  statistic is significant we should consider 
reformulating the model. 

8. Other diagnostic checks are to (i) plot the residuals to see if their 
variance is changing over time, as a clue about incorrectly recorded data. 
and as a clue about identifiable exogenous events that may perturb the data 
series; (ii) overfit the model by adding another AR or MA term if there is 
reason to think another might be called for; (iii) fit the chosen model to 
subsets of the available realmtion to see if the estimated coefficients change 
significantly. 

9. When reformulating a model that seems inadequate in light of the 
diagnostic checks, it is wise to return to the orignal estimated acf and pacf 
to look for further clues to an appropriate model. 

10. The residual acf is an important guide to reformulating a model. At 
times, we may simply add to the original model the coefficients that are 
appropriate for the residuals of that model based on the residual acf. At 
other times, we must algebraically substitute the model that is appropriate 
for the residuals into the original model to see what new model is implied 
for the original series. 

Questions and Problems 

9.1 An estimated ARIMA model with significantly autocorrelated residu- 
als  is inadequate. Explain why. 

9.2 How does a residual acf differ from an estimated acf calculated from 
an original realization? 
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9.3 “A properly constructed ARIMA model has residual autocorrelations 
that are all zero.” Comment on this statement. 

9.4 It is suggested that the practical warning level for the absolute values 
of residual acf t-statistics at lags 1, 2, and 3 is about 1.25. Why is such a 
small t-value used as the warning level at the short lags in the residual acf? 

9.5 What is the motivation for applying a ch-squared test in addition to 
the t-tests applied to residual autocorrelations? 



10 
FORECASTING 

The ultimate application of UBJ-ARIMA modeling, as studied in tlus text, 
is to forecast future values of a time series. In this chapter we first consider 
how poinr forecasts (single numerical values) are derived algebraically from 
an estimated ARIMA model. We then discuss how to establish probability 
limits around point forecasts, thus creating interval forecasts. Next, we 
consider complications that arise in forecasting a series estimated in loga- 
rithmic form. Finally. we discuss the sense in which ARIMA forecasts are 
best, or optimal. 

Unless indicated otherwise. throughout this chapter we assume, for 
simplicity, that any ARIMA model we consider is known; that is, the mean 
p,  all cp and 0 coefficients, and all past random shocks are assumed known. 
Fortunately, the conclusions based on this simplifying assumption are 
essentially correct in practice if we have properly identified and estimated 
an ARIMA model using a sufficient number of observations: The properties 
of ARIMA forecasts are little affected by ordinary sampling error when the 
sample size is appropriate.* 

In the appendix to this chapter we discuss how UBJ-ARIMA methods 
may be used to complement econometric (regression and correlation) fore- 
casting models. 

'̂ The robustness of ARIMA forecasts with respect to sampling error in parameter estimates is 
discussed in Box and Jenkins [ I .  pp. 306-3081. 
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10.1 The algebra of ARIMA forecasts 

Difference-equation form. The most convenient way to produce point 
forecasts from an ARIMA model is to write the model in dqference-equarion 
form. In t h s  section we gve several examples of how t h s  is done. 

Let r be the current time period. When forecasting we are interested in 
future values of a time series variable, denoted z,+/,  where I > 1. Period t is 
called the forecast origin. and I is called the forecast lead time. In ARIMA 
analysis, forecasts depend on the available observations on variable z up 
through period r .  Let the information contained in the set of available 
observations (z, ,  I,- . . . ) be designated I,. Then the forecast of z,+,, 
designated i,( I), is the conditional mathematical expectation of z,,!. That 
is, i , ( f )  is the mathematical expectation of z,+/ given I,: 

i r ( l )  = E(zr+,IIr) (10.1) 

where the vertical line means “given.” 
As an illustration, consider an ARIMA(l,O, 1) model. We develop the 

general algebraic form for the first several forecasts from this model. Then 
we show a numerical example. 

The ARIMA( 1,0,1) model is 

(1 - +lB)2,  = (1 - 6 , B ) a ,  

or 

Now let I = 1. By altering time subscripts appropriately, use (10.2) to 
write an expression for I, + I : 

Applying (10.1) to (10.3), we find that the forecast of z,+ I is 

i r ( l )  E(zr+ I IIr) 

Since u,, is unknown at time r ,  we assign its expected value of zero. In this 
example z, and a, together constitute I,. That is, L, and a, are all the relevant 
information about past z ’s  needed to forecast z,, I .  (Remember that MA 
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terms are parsimonious algebraic substitutes for AR terms; thus (I, repre- 
sents a set of past z ’s.) 

Continuing the preceding example with I = 2, use (10.2) to write an 
expression for z,+*. Then the conditional expected value of that expression 
is the forecast 2,(2): 

iY(2) = E(Z,+2IJf) 

Since z , , ~  is unknown at origin t it must be replaced by its conditional 
expectation i ,( l)  from (10.4). Likewise, a,, is unknown at origin t and is 
replaced by its expected value of zero. With these two substitutions, (10.5) 
becomes 

Proceeding as above, we find that each subsequent forecast for thls 
ARIMA(l,O, 1) is based on the preceding forecast value of z. That is, i , ( 3 )  
depends on if (2). 2, (4) depends on if (3), and so on: 

i r ( 3 )  = ~ ( 1  - + I )  + +li,(2) 

i,(4 = ~ ( 1  - + + 1 2 f ( 3 )  

In the example above, forecasts for I > 1 are called “bootstrap” forecasts 
because they are based on forecast z ’s rather than observed z ’s. 

Forecasts from other ARIMA models are found in essentially the same 
manner as above. In practice, p is unknown and is replaced by its estimate 
f i .  Likewise, the + and 8 coefficients are replaced by their estimates, 6 and 8. 
As shown above, past z observations are employed when available. They are 
available up to time t, the forecast origin; thereafter, they must be replaced 
by their forecast counterparts (their conditional expected values). Past a, 
values are replaced by their corresponding estimates, the estimation residu- 
als Li,, when these residuals are available. But when the time subscript on a 
random shock exceeds the forecast origin t ,  that shock is replaced by its 
expected value of zero. This is what happened as we moved from (10.5) to 
(10.6) in the case of the ARIMA( 1,0,1): there is no estimation residual Ci,, , 
available when we forecast from origin I, so we substitute zero. 
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Now we consider an estimated model as a numerical example. Estimation 
with n = 60 produced these values: ji = 101.26,6, = 0.62, and 6, = -0.58. 
Thus the estimated model can be written as 

(1  - 0.62B)Z, = (1 + 0.58B)8, 

where 2 = z, - 101.26. The estimated constant term is = ji(1 - 6,) = 
101.26(1 - 0.62) = 38.48. The last observation of t, in this data series is 
zW = 96.91. We will show how the first three forecasts from this model are 
calculated. 

With a forecast origin r = 60 and a forecast lead time I = 1, from (10.4) 
the forecast for period r = 61 is 

I .  

i6, = iW( 1) = c + +It6o - 6,8, 

= 38.48 + 0.62(96.91) + 0.58( - 1.37) 

= 97.77 

In the preceding calculations the observation for period r = 60 is known 
( zm = 96.9 1). The random shock for period t = 60 is unknown, but we have 
the estimation residual 8, = - 1.37 to put in its place. (Most computer 
programs for estimating ARIMA models have an option for printing the 
estimation-stage residuals.) 

With a forecast origin r = 60 and a forecast lead time I = 2, (10.5) gwes 
this forecast for period t = 62: 

1 -  

262 = i M ( 2 )  = c + - 4,861 

= 38.48 + 0.62(97.77) + 0.58(0) 

= 99.10 

In these calculations, z6, is unknown at origin I = 60; therefore, z61 is 
replaced by its conditional expectation 26, = i m ( l )  = 97.77. The random 
shock u6, is not observable and is replaced by its estimate, the residual 861. 

However, since the data extend only through period 60, 6 6 ,  is unknown and 
so is replaced by its expected value of zero. 

For origin t = 60 and lead time I = 3, (10.5) gives 

263 = iW(3) = + 6 , 2 6 2  - dlf i62  

= 38.48 + 0.62(99.10) + 0.58(0) 

= 99.92 
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Forecasts from other estimated ARIMA models are calculated in the 
same manner as above. Most computer programs for identifying and 
estimating ARIMA models also have an option to generate forecasts from 
any estimated model, so the forecasts need not be produced by hand. 
However, the necessary calculations are illustrated further in Part I1 in 
Cases 3, 9, and 15. 

Note in the calculations above that the forecasts are converging toward 
the mean of the series (101.26). This occurs with the forecasts from all 
stationary models. Cases 1 and 2 in Part I1 illustrate forecasts that converge 
to the estimated mean. The convergence may be rapid or slow depending on 
the model. In general, forecasts from pure MA models converge more 
rapidly to the mean, since we quickly lose information about past estimated 
random shocks as we forecast further into the future. As shown above, with 
pure AR or mixed models we can “bootstrap” ourselves by using forecast 
2’s to replace observed 2’s; but with a pure MA model we must replace 
random shocks with the expected value of zero when the forecast lead time 
exceeds the lag length of a past shock term. When the forecast lead time 
exceeds q, the maximum lag length of the MA terms, the forecasts from a 
pure MA model are equal to the estimated constant c, which is equal to the 
estimated mean fi in pure MA models. 

Forecasts from nonstutionury models do not converge toward the series 
mean: a nonstationary series does not fluctuate around a fixed centraI value, 
and forecasts for such a series reflect that nonstationary character. (See 
Cases 5 and 7 in Part I1 for examples.) 

Figure 10.1 shows forecasts generated from an AR( 1) model. The letter F 
represents a forecast value. (The square brackets [ ] represent confidence 
intervals whose construction and interpretation are discussed in the next 
section.) Note that the printed values of the forecasts are gravitating toward 
the estimated mean (6.04) just as the forecasts calculated above from 
another AR( 1) converged toward the estimated mean of that series (101.26). 

Figure 10.2 shows forecasts produced from an MA(1) model. The first 
forecast is i,,, = 2,,(1) = C - 8,6,,. Since the estimation residual d,, is 
available, the forecast reflects not only the estimated constant k (equal to 
the estimated mean fi in a pure MA model), but also the last estimated 
random shock d,,. But for lead time I = 2, the forecast is simply i,, = 
ilw(2) = c. The estimation residual d,ol is not available so it is replaced by 
its expected value (zero) and the forecast converges to the estimated mean 
( f i  = = 99.8344). 

Figure 10.3 shows forecasts derived from a nonstationary model, an 
ARIMA(0, 1, 1). In difference-equation form this model is L, = z , - ,  - 
618,-1 + 8,. The forecast origin is the fourth quarter of 1978, designated 

1 , .  
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78(4). For 1 = 1, the forecast is 

i79(1) = i78(4)(1) = z78(4) - 81678(4) 

Since both z7&*) and (i78(4) are available, the forecast includes both of these 
terms. But with lead time I = 2 the forecast becomes i 7 9 ( 2 )  = i78(4)(2) = i79(1). 
That is, z7%,) is not observed so it is replaced by its forecast value. The 
estimation residual d79(l, is not available and is replaced by its expected 
value of zero. By similar reasoning all subsequent forecasts are equal to the 
preceding forecast, so the forecasts converge to the one-step-ahead forecast 

Note that these forecasts are not converging to the calculated mean of the 
series (193.3) because the model is nonstationary. Differencing (d = 1) has 
freed the forecasts from a fixed mean. If a series mean is shifting signifi- 
cantly through time, we do not want to tie forecasts to the overall mean of 
the series; although that value can be calculated, it is not useful for 
describing the shifting level of the series. 

Finally, consider the forecasts in Figure 10.4. These were produced from 
another nonstationary model, an ARIMA(O,2,1). The realization used to 
identify and estimate this model (not all of which is displayed in Figure 
10.4) shows changes in both level and slope. As discussed in Chapter 7, such 
series require second differencing (d = 2) to induce a constant mean. The 
overall mean of the original series is 62.7. Once again, although we can 
calculate this single value, it is not helpful in describing the behavior of the 
series since the level of the data is shifting through time. Clearly, the 
forecasts in Figure 10.4 are not gravitating toward the overall realization 
mean of 62.7. 

These forecasts are dominated by the differencing element in the model. 
To see ths, consider the difference-equation form of the ARIMA(O,2,1) 
model: z ,  = 2z,- I - z , - ~  - 8,6,- + ri,. The terms 22,- I and z , - ~  are 
present because of the differencing operation. The first forecast is 

i78(4)(1). 

The values z78(10) and z78(9) are both available from the realization, and 
67,,1,, is available from the estimation residuals. But for lead time I = 2, the 
forecast is i78(12) = i78(10)(2)  = 2i78(113 - ~7Rl0, .  Although observation ~78( ,0 )  

is available, neither the observation t 7 8 (  I )  nor the estimation residual 
678(11, is available. The former is replaced by its forecast value i7R11) and the 
latter is replaced by its expected value of zero. All subsequent forecasts are 
entirely bootstrap forecasts. For example, for 1 = 3, we have i7%,) = 

i7,,10)(3) = 2i78(12) - i78(11). Thus we see that the forecasts are dommated 
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Figure 10.4 Forecasts from an ARIMA(O,2,1) model. 
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by the differencing component in the model, and are not tied to any fixed 
central value. 

Random-shock form. Any ARIMA model can be written in random- 
shock form. That is, we can replace any AR terms with an infinite series of 
MA terms. A pure MA model is already in random-shock form. 

Although the random-shock form is not usually convenient for producing 
forecasts, it is especially useful for estimating the variance of forecasts and 
thus for deriving confidence intervals around point forecasts. 

The coefficients in the random-shock form are denoted by the symbol +,, 
with i corresponding to the time lag of the associated past random shock: 

' 1  = p + $0'1 + # l a / - ,  + 4 2 a l - 2  + # 3 a r - 3  + ... (10.7) 

where +o = 1. If the sequence &, . . . is finite, then (10.7) is a pure MA 
model. If the sequence is infinite, (10.7) represents an AR or mixed model. 
For a stationary series, p is simply the mean. For a nonstationary series, p 
represents the changing level of the series as determined by the differencing 
operations. 

Any pure MA model is already in random-shock form, with order q. For 
example, consider an MA(2): 

(z, - p )  = ( 1  - e , B  - B , B ~ ) ~ ,  

or 

', = + u, - eIu,- ,  - 82a,-2 (10.8) 

Letting #o = 1, + I  = -el, and J / ~  = -02, we may write (10.8) in random- 
shock form as 

Z, p + +gar + #lor- I + 42at-2 (10.9) 

which is simply a truncated version of (10.7). 
AR models can be written in random-shock form by inverting and 

expanding the AR operator. For example, we showed in Chapter 5 how an 
AR(1) could be written in MA (random-shock) form. The AR(1) is ( 1  - 
+ , B ) ( Z ,  - p) = a,. Dividing both sides by the AR operator gives z, - p = 
(1  - +,B)- 'a , .  If 1+,1 < 1, (1 - +lB)-' is equivalent to the convergent 
infinite series (1 + + , B  + +;B2 + +jB3 + . - .  ). Thus the AR(1) may be 
written as 

L, - p = ( I  + cPIB + & B 2  + & B 3  + - - . ) a ,  
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or 

2, = I.' + 0, + +'u, - '  + +$7,-2 + + + - 3  + ... (10.10) 

Letting+, = 1, + I  = + 2  = +:, +3 = +:, and so forth, we see that (10.10) 
is equivalent to (10.7) with an infinite sequence of 4's. 

The values of the $ coefficients for different ARIMA models vary (except 
for Go, which is always 1) depending on the degree of differencing and the 
values of the AR and MA coefficients in the model. It can be cumbersome 
to find the + weights for more complex models by hand; they are usually 
generated by a computer program. However, we illustrate a method for 
finding $ weights using two examples. 

It can be shown that the 4 weights are found by equating coefficients of 
like powers of B in this expansion: * 

Consider again the AR(1) model. The relevant version of (10.11) then is 

or 

Now set the coefficients of the various powers of B on the LHS equal to the 
coefficients of the same powers of B on the RHS. For Bo we find $, = 1. 
For B' we get G I  - = +,. For B 2  we have q2 - +I$I  = 0, 
or $2 = +:. With B3 we get $3 - = 0, or +3 = +:. We see that this 
method produces the same result for the AR( 1) obtained in (10.10) above. 

= 0, or 

Next consider an ARIMA( 1,0,1). In this case ( 10.1 1) is 

'This expansion is found as follows: Define + ( B )  as the AR operator. B ( B )  as the MA 
operator, vd  as the differencing operator, and $( B )  as the $-weight operator. Then the 
ARIMA model for z ,  is +( B ) v d i ,  = 8( B)u, ,  where the $-weight form is i, - J.( B)o, .  Write 
the $-weight form as u, $( B ) -  I?,: substitute this for u, in the ARIMA model and rearrange 
to get $ ( B ) + (  B ) v d ? ,  - B ( B ) i , .  Dividing by i, and writing the operators in long form gives 
( 10. I I ) .  
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or 

4o + ( 4 ,  - + , 4 o ) B  + ( 4 2  - +IICII)B2 + (43 - +l+2)B3 + * . .  

= 1 - 8 , B  

Now equate the coefficients of like powers of B on both sides of the 
equation. This leads to the following results: 

i BJ 

We see from the pattern that, in general, 4, = +{- I (+ ,  - 8,) for the 
AMMA( 1,0,1). 

Apply this result to the ARIMA(I,O, 1) estimation results presented in 
the last section. There we had 4, = 0.62 and 6, = -0.58. Inserting these 
estimated coefficients into the above expression for #J, we get 

40 = 1  

4 ,  =&, - 6, =0.62 + 0.58 = 1.20 

4, ==4,(4, - 8 , )  =0.62(1.20) =0.74 

4, =$(i, - 8 , )  =(0.62)2(1.20) =0.46 

We will use these results in the next section to illustrate how the # 
weights are used to construct confidence intervals around point forecasts. 

10.2 The dispersion of ARIMA forecasts 

Using the difference-equation form of an ARIMA model, we can produce a 
series of point forecasts, where “point” means the forecast is a single value 
rather than a range. Using the random-shock form. we can find the variance 
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of the forecast errors. This allows us to construct approximate confidence 
intervals around our forecasts, thus providing some information on how 
reliable forecasts may be. In this section we find general expressions for the 
variance and standard deviation of ARIMA forecast errors. Then we show 
how confidence intervals are constructed, and we illustrate the relevant 
calculations using the ARIMA( 1,0,1) model presented earlier. 

Forecast-error variance and standard deviation. First, define a forecast 
error for origin t and lead time I ,  designated e,(I) ,  as the observed z for 
period r + I minus the forecast z for that period: 

(10.12) 

Use (10.7) to write z, + I in random-shock form as 

z,+/ = p + 40q+/ + 41ar-1+1+ 4 2 4 - 2 1 1  + . . . (10.13) 

The corresponding forecast value i,( I ) ,  which is the conditional mathe- 
matical expectation €(zI+JZ,) ,  is found from (10.13) to be 

(10.14) 

That is, the information set I, is defined as information about the series z 
only through period t. Thus (10.14) contains random shocks only from 
period r or earlier since any random shock after period t is unknown at time 
r. (We are assuming for simplicity that shock terms at time f or earlier are 
observable. Of course, in practice they must be estimated from the estima- 
tion-stage residuals. Shock terms after time r are not only unknown at time 
1, they cannot be estimated at time t.) 

For example, let I = 1. We want to find the expectation of (10.13) given 
I , .  The first shock term on the RHS of (10.13) is 4oa,,1 = ~ , a , + , .  Since 
a,+ I is unknown (and cannot be estimated) at origin t we assign this term its 
expected value of zero. The next shock term is 4 I a,- I + = 4 I a,. The value 
a, is known (or may be estimated) at origin 1 ,  so we include = t+bluf in 
theexpectation(lO.l4).Thenext shock t e rmin ( lO . l3 ) i~~ ,u , -~ , ,  = 4 2 u , - l .  
The value u,- I is available at time t so the term +,+ ,a , -  I = + 2 u f - ,  appears 
in (10.14). By the same reasoning all subsequent shock terms in (10.13) are 
known at origin t and therefore appear in (10.14). The reader is encouraged 
to proceed as above to see how finding the expectation of (10.13) leads to 
(10.14) for I = 2. The result is i,(2) = p + tC12ur + $3a, -  I + I )~LI , - ,  + . . .. 
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where the terms $0u,+2 and in (10.13) have an expected value of 
zero since Q, + and u, + are unknown (and cannot be estimated) at origin r .  

e , ( l )  = $ou,+, + # , a , - , + , +  . . *  + $ , - l Q , + l  (10.15) 

That is. (10.13) contains all random-shock terms up through period t + I ,  
whereas (10.14) contains only those up through period r .  Subtracting (10.14) 
from (10.13) leaves the random-shock terms from period r + I back through 
period t + 1. 

Now using (10.15) we find that the (conditional) variance of e , ( l )  is 

Substituting (10.13) and (10.14) into (10.12). we find 

u2[e,(01 = E M l )  - E [ e l ( 1 ) l 1 4 } 2  

-u ,z (1+$. :+$;+-+$; - , )  (10.16) 

and therefore the standard deviation of e , ( l )  is 

(10.17) 

The variance (10.16) is found by squaring (10.15). (Note in (10.15) that 
€ [ e , ( l ) ]  = 0, and recall that $o = 1.) All cross-product terms have an 
expected value of zero since the random shocks are assumed to be indepen- 
dent. The expected value of each remaining squared shock term is, by 
assumption, the constant ua’. 

In practice, u[e,(f)] must be estimated, since uo is unknown and is 
replaced by the RMSE ( 1 5 ~ )  and since the coefficients are unknown and are 
replaced by estimates (4 , )  calculated from the estimated ARIMA coeffi- 
cients (6’s and 8’s). The resulting forecast-error variances (and forecast 
confidence intervals) are therefore only approximate. 

Consider the sequence of estimated $ coefficients calculated in the last 
section for an estimated ARIMA(l,O, 1). They were 

I /2 
u [ e , ( / ) ]  = uu(l + $5 + +$ + . . .  + 

$0 = 1 

4 ,  = 1.20 

4, = 0.46 

4, = 0.74 
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The estimated standard deviation of the shocks for this model is 6o = 1.60. 
Use these values and (10.17) to find the estimated standard deviation of the 
forecast errors for lead times I = 1, 2, and 3: 

= 1.6[1 +(1.20)] 2 1/2 

= 2.50 

2 I/2 
= 1.6[1 + (1.20)2 + (0.74) ] 
= 2.77 

Forecast confidence intervals. If the random shocks are Normally dis- 
tributed (as we assume they are) and if we have estimated an appropriate 
ARIMA model with a sufficiently large sample, forecasts from that model 
are approximately Normally distributed. Using (10.17) we can therefore 
construct confidence intervals around each point forecast using a table of 
probabilities for standard Normal deviations. Thus an approximate 95% 
confidence interval is given by 

it(/) & 1.966[er(f)] 

and an approximate 80% confidence interval is 

i , ( f )  f. 1.286[e,(l)] 

Earlier we presented forecasts for lead times f = 1, 2, and 3 for an 
estimated ARIMA( 1,0,1) model. These point forecasts were 

& ( I )  = 97.77 

i W ( 2 )  = 99.10 

i M ) ( 3 )  = 99.92 
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The estimated standard deviations of the forecast errors calculated above 
are used to produce approximate 95% confidence intervals around the point 
forecasts as foilows: 

&,(I) & 1.968[e,(I)] 

97.77 f 1.96( 1.60) 

97.77 f 3.14 

or 

(94.63,100.91) 

i,(2) k 1.96d(em(2)] 

99.10 k 1.9q2.50) 

99.10 & 4.90 

or 

(94.20,104.00) 

i,(3) -t 1.968[em(3)] 

99.92 1.96(2.77) 

99.92 5 5.43 

or 

(94.49,105.35) 

These intervals are interpreted in the usual way. For example, the last 
interval is interpreted in this way: We can be 95% confident that the interval 
(99.49,105.35) will contain the observed value z , + ,  = zm+3 = zb3. 

10.3 Forecasting from data in logarithmic form 

In Chapter 7 we said if the standard deviation of a data series changes in propor- 
tion to its mean, then building a model of the natural logarithms of the series is 
appropriate. (Cases 9 and 11 in Part I1 are examples of such a series.) How- 
ever, usually we are interested in forecasting the original data rather than the 
log values. I t  might be tempting merely to calculate the antilogs of 
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the logarithmic forecasts to get the forecasts of the original series. But doing 
this creates a problem: if the random shocks of the log series are Normally 
distributed. then the shocks of the o r i p a l  series (and the forecasts of this 
series) follow a fog-Normal distribution.* 

Let a log series be denoted by z;, where z, is the original series. Then it 
can be shown that the forecast for z , , ,  depends on both the forecast and the 
forecast-error variance of z;-/ in this way: 

i,(/) = exp(i;(/) + f o * [ e ; ( l ) ] >  (10.18) 

Thus, we should not simply find the antilog of i:( I )  to find if( I). Instead, 
we must take into account the variance of the logarithmic forecast as shown 
in (10.18). However, the upper and lower confidence limits around i , ( l )  are 
found by taking the antilogs of the limits around 2 ; ( f ) .  That is, if U and L 
are the upper and lower limits of an a-percent confidence interval around 
i ; ( l ) ,  then exp(U) and exp(L) are the a-percent upper and lower limits 
around i , ( f ) .  It follows that the interval around i , ( f )  is not symmetrical 
since the interval around i ; ( f )  is symmetrical. 

Finally, note that forecasts of r ;  may be interpreted in terms of z, without 
finding antilog because the change of a log value is the percent change of 
the corresponding antilog value. For example, suppose the foilowing fore- 
casts for I;,, are generated from origin t :  

f i;(o 90% Confidence Values ( k ) 

1 3.7866 0.014 
2 3.8084 0.0 15 
3 3.8209 0.017 

Let the log of the last available observation ( z ; )  be 3.7525. Then we have 
these forecast log changes. 

1 0.0341 f ; ( l )  - Z; = 3.7866 - 3.7525 
2 0.0218 = i i ( 2 )  - i;(l) = 3.8084 - 3.7866 
3 0.0125 = i;(3) - i:(2) = 3.8209 - 3.8084 

These log changes are interpreted directly as forecast percent changes for 
z , + / ,  and the interval values above are interpreted as percent intervals. That 

'The log-Normal distribution is discussed by O k n  et al. [26. pp. 299-3021, Nelson (27. pp. 
161- 1651 discusses thc log-Normal distribution in the context of ARIMA models. 
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is, multiply the forecast log changes and the 90% confidence values by 100 
to get 

I Percent A i r  (I) 90% Confidence Values ( rt ) 

1 3.41% 1.4% 
2 2.18% 1.5% 
3 1.25% 1.7% 

Thus, the original series is forecast to rise by 3.41 % from period t to t + 1, 
then it is forecast to rise by another 2.18% from period r + 1 to t + 2, and 
by 1.25% from period t + 2 to t + 3. 

10.4 The optimality of ARIMA forecasts 

Forecasts from ARIMA models are said to be optimal forecasts. This means 
that no other univariate forecasts have a smaller mean-squared forecast 
error (abbreviated MSE). That is, let an ARIMA I-step-ahead forecast be 
2,(1),  with corresponding forecast error e r ( l ) ,  and let I ,  be the information 
about all available z’s through period t. Then given I, ,  2 r ( l )  is optimal 
because the conditional mathematical expectation of the squared ARIMA 
forecast error, € [ e , ( l ) l I , ] ’ ,  is smaller than for any other univariate forecast.* 
It also follows that ARIMA forecasts give the minimum forecast-error 
variance since €[ e,(l)II,]’ is that variance. 

Several points must be clarified. First, optimality refers to the mathemati- 
cal expectation of [ e , ( l ) ]* ,  not to any particular e,(I) .  That is, some other 
(non-ARIMA) univariate model forecast could have a smaller squared 
forecast error than a properly constructed ARIMA-model forecast in a 
particular instance, but not on average. 

Second, optimality applies strictly only if the particular ARIMA model 
being considered is the correct one. Thus, ARIMA forecasts are minimum 
MSE forecasts in practice only if the strategy of identification, estimation, 
and diagnostic checking is adequate to the problem at hand, and only if that 
strategy has been properly employed. 

Third, we are comparing ARIMA forecasts only with other univariate 
forecasts. That is, I ,  contains information about past 2’s only. If I ,  were 
expanded to include information about other relevant variables (giving a 

‘Box and Jenkins [ I ,  pp. 127- 1281 demonstrate that the ARIMA forecast is the minimum MSE 
forecast of I, ,. 
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multiple-series model), we could get forecasts with a smaller MSE than 
ARIMA forecasts. 

Fourth, we are considering only univariate models that are linear combi- 
nations of past z ’s, with fixed coefficients. “Linear combination” means 
that each past z is multiplied by some coefficient. and the resulting terms 
are then added. Consider that any ARIMA model can be written, by 
inverting and expanding the MA operator, as an AR model of infinitely 
high order: * 

where each n, is some combination of 9 and 6 coefficients. I t  should be clear 
that (10.19) is a linear combination of past 2’s. Now, it is possible that a 
nonlinear combination of z’s could produce forecasts with a smaller MSE 
than linear ARIMA forecasts. 

Furthermore, the P coefficients in (10.19) do not have time subscripts: 
they are fixed through time because they are composed of 9 and 6 
coefficients whch are assumed to be fixed. Univariate models with time- 
varying coefficients could, at times, produce smaller MSE forecasts than the 
fixed-coefficient ARIMA models we have considered. The theory and 
practice of nonlinear ARIMA models and time-varying parameter ARIMA 
models is not well-developed at present. 

These conditions on the optimality of ARIMA forecasts might seem 
quite restrictive. But keep in mind that linear, fixed-coefficient univariate 
models are often very useful in practice. It is helpful, therefore, to know that 
forecasts from ARIMA models are optimal within this larger class of useful 
models. 

Summary 

1. Point forecasts (single numerical values) from an ARIMA model are 
calculated most easily by writing the model in difference equation form. 

2. To find point forecasts from an ARIMA model using the difference- 
equation form, write the model in common algebraic form and solve for I,. 
Insert the estimates of C and the + and 6 coefficients and assign Q, its 
expected value of zero. Now insert the appropriate values for any past 
observations (past z terms) and past random shocks (past LI terms). In 
practice we must use estimation-stage residuals in place of past random 
shocks, or the expected value of zero if the forecast lead time I exceeds the 

‘We showed in Chapter 5 how an MA( 1) model, for example, can be written in AR form 
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lag length of the MA term in question. Likewise, we use forecast z values in 
place of observed z values when the forecast lead time I exceeds the lag 
length of the AR term in question. 

3. While point forecasts are most conveniently calculated from the 
difference-equation form of an ARIMA model, in creating confidence 
intervals around these point forecasts it is convenient to start with the 
random-shock form of a model. 

4. The random-shock form of an ARIMA model is its MA form. That 
is, by inverting and expanding the AR operator, we replace any AR terms 
with an infinite series of MA terms. 

5. A forecast error for lead time I, e,(I) ,  is defined as the difference 
between an observed z, and its forecast counterpart i t ( I ) :  

This forecast error has variance uz [ e, ( I )] given by 

where the 4, coefficients are the coefficients in the random-shock form of 
the model. 

6. If the random shocks are Normally distributed and if we have an 
appropriate ARIMA model, then our forecasts and the associated forecast 
errors are approximately Normally distributed. 
7. The forecast-error variance for a given ARIMA model is estimated 

from the available realization. Let ci[e,(I)] be the square root of this 
estimated variance. This estimate may be used to construct a confidence 
interval around any forecast: 

where Z is the standard Normal deviation associated with the desired degree 
of confidence. 

If the variance of a realization is made stationary by transformation 
of the original data into natural log values (z ; ) ,  we may not forecast the 
original series (z,) by merely finding the antilogs of the log forecasts. 
Instead, we must take into account the variance of the log forecasts in this 
way: 

8. 

i,(/) = exp{f;(I) + +o’[e;(~)]} 
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9. Forecast log changes are interpreted as forecast percentage changes 
for the original series. 

10. ARIMA forecasts are said to be optimal univariate forecasts: the 
mean-squared forecast error, given the information (I,) about the z observa- 
tions available through period t .  designated € [ e , ( / ) l I , ] * ,  is smaller than for 
any other univariate forecast. Note that optimality refers to the mean- 
squared forecast error, not to any particular squared forecast error. 

11. ARIMA forecasts are optimal only if we have found an appropriate 
ARIMA model and only among forecasts from univariate, linear. 
fixed-coefficient models. A multivariate model, or a model with a nonlinear 
combination of past Z’S, or a model with time-varying coefficients might 
give forecasts with a smaller mean-squared forecast error. 

Appendix 1OA: The complementarity of ARIMA models 
and econometric models 

This appendix is aimed primarily at the reader with a background in 
econometrics. However, it should be useful to any reader who knows the 
fundamentals of regression analysis. 

We have noted that ARIMA models are a special class of univariate 
models: they use only the information contained in past observations of the 
variable being analyzed. In this appendix we discuss how ARIMA models 
may be used in conjunction with econometric models, a common class of 
multiple-series models based on standard regression and correlation meth- 
ods. While there are some important differences between ARIMA and 
econometric forecasting models, both have the same purpose: finding stat- 
istical relationships that are reliable enough to produce useful forecasts. 

A single-equation econometric model specifies how a dependent variable 
( y )  is functionally related to one or more independent variables ( x , .  x 2 , .  . . , 
x, )  other than past values of j .  (Sometimes econometric models have past 
values of y among the “independent” variables, but other variables are also 
present.) If one or more of the independent variables ( x l , .  . . , x,,,) is also 
logically dependent on y ,  the econometric model may consist of several 
equations. 

A single-equation econometric model might be written as follows: 

(10A.1) 

where a, PI,  and P2 are parameters. t is a time subscript, and c is a 
probabilistic shock element usually assumed to be a set of Normally. 
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independently, and identically distributed random variables with a mean of 
zero. 

In econometric modeling the analyst is guided by some theory when 
selecting independent variables. This theory may involve human behavior or 
a technological relationshlp, for example, but one should have a reason 
besides mere statistical patterns for choosing the variables to include in an 
econometric model. By contrast, in UBJ-ARIMA modeling we emphasize 
statistical appearances (correlation as shown in estimated acf s and pacf s) 
rather than theories about why one variable is related to another. 

UBJ-ARIMA analysis may be used to complement econometric analysis 
in at least four ways, as discussed below. 

Forecasting independent variables. Econometric models are often used 
for forecasting time-series data, and they can be very useful for this purpose. 
However, one must first forecast the values of any independent variables 
that are contemporaneous with the dependent variable ( y , )  before forecast- 
ing y,. That is, if y, depends on x , ,  and x2,. as in equation (lOA.l), we must 
forecast the future values x,,,, and xz,-, in order to forecasty,,,. 

ARIMA models are convenient for producing forecasts of independent 
variables whenever an independent variable is contemporaneous with the 
dependent variable in an econometric model. These forecasts can be gener- 
ated without gathering additional data (assuming enough observations on 
the independent variable are available initially) since UBJ-ARIMA models 
are univariate models. 

Analyzing residuals. ARIMA analysis can be applied to the estimated 
residuals (estimates of the c, terms, designated i,) to see if they satisfy the 
standard independence assumption. ARIMA analysis can detect patterns in 
the i, terms that might be missed by traditional econometric tests. For 
example. a common way of testing regression equation shock terms for 
independence is with the Durbin-Watson statistic (d): * 

(10A.2) 

As suggested by the form of the numerator in (10A.2), this statistic tests 
only for correlation between estimation residuals separated by one time 
period (k  = I) ,  whereas with UBJ-ARIMA analysis one routinely examines 
residuals separated by various time periods ( k  - 1,2,3, . . . ) in a residual 
acf. 

'For a brief introduction to the Durbin-Watson statistic, see Mansfield 18, Chapter 121. 
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Combining forecasts. A forecast which is a weighted average of two or 
more individual forecasts often has a smaller error variance than any of the 
individual forecasts. This is especially true when the individual forecasts are 
based on different information sets and/or different methods. 

It may be worthwhile, therefore, to average econometric forecasts and 
ARIMA forecasts. This is particularly appealing since an econometric 
model contains information (the independent variables) that a univariate 
ARIMA model does not contain, and ARIMA models may contain infor- 
mation (past values of the dependent variable) not contained in an econo- 
metric model. 

This approach to forecasting must be used with care. For example, the 
weights assigned to the individual forecasts must be chosen properly. 
Furthermore, if combined forecasts are superior, this suggests that another 
forecasting method may be called for-one that meshes the individual 
approaches. For an introductory discussion about combining forecasts. see 
Granger [28, pp. 157-1641. For a more advanced treatment, along with 
bibliographc references, see Granger and Newbold [ 17, Chapter 81. 

Checking for misspeeifidon. The mathematical structures of some 
econometric models log~cally imply ARIMA models for the endogenous 
(dependent) variables. This means that econometric and ARIMA models 
are, under certain circumstances, alternative ways of expressing the same 
mathematical model. 

The consequences of this are quite interesting. In particular, if an 
econometric model logically implies an ARIMA model for an endogenous 
variable which is quite inconsistent with the estimated acf and pacf of that 
variable, this is strong evidence that the econometric model is incorrectly 
specified. Thus ARIMA models can aid in the construction of better 
econometric models. 

The logical relationship between econometric models and ARIMA mod- 
els is a relatively recent area of research. The interested reader may consult 
two articles by Zellner [29, 301, both of which contain additional references. 

Questions and Problems 

10.1 Write the following in difference-equation form: 
(a) (1 - + 1 ~  - + 2 ~ 2 ) z ,  = (1  - B,B)a ,  
(b) ' 2 ,  = (1 - BIB - B2B2)a,  
(c) (1 - +,B)(1 - B ) i ,  = a, 
(d) (1 - B ) i ,  = (1 - B,B)a,  
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(e) (1 - B)?, = (1 - e , B  - e p Z ) a ,  
(9 (1 - +,B)z ,  = ( 1  - e , B  - e , ~ ) ~ ,  

10.2 Use the following information to forecast for lead times I = 1, 2, and 
3 for each of the models in question 10.1. 

(a) n = 100, zw = 53, L,, = 56, ci,, = 1.4, 4, = 1.4, 4, = -0.7, 
8 ,  = 0.3, f i  = 50 
(b) 
(c) 
(d) n = 100, z,, = 28, 8, = 0.5, ci,-, = -0.7 

ci, = 0.5 
(f) 
ci,, = 1.2, (i99 = 0.3 

10.3 Find the values of the first three 4 weights for each of the models in 
problem 10.2 using expansion (10.1 1). Present both the algebraic form and 
numerical values. 

10.4 Find the estimated forecast-error variances and standard deviations 
for each of the forecasts produced in problem 10.2 using the following 
information: 

n = 100, 6, = 1.3, 6,, = -2.6, 6, = 0.7, 8 2  = -0.5, b = 100 
n = 100, zw = 217, z,, = 232, 6, = 0.3 

(e) n = 100, zw = 97, L,, = 102, 8, = 0.3, e2 = 0.2 ,cilm = 0.4, 

n = 100, zlOO = 103, 4, = 0.6, 6, = 0.8, 6, = -0.3, fi = 100, 

(a) 6: = 3.3 
(b) 6: = 2.5 
(c) 6: = 8 
(d) 6: = 6.7 
(e) 62 = 1.2 
(9 6: = 2.5 

10.5 Construct 80% and 95% confidence intervals for each of the forecasts 
produced in problem 10.2. 



11 
SEASONAL AND OTHER 
PERIODIC MODELS 

Time-series data often display periodic behavior. A periodic series has a 
pattern whch repeats every s time periods, where s > 1. Experience has 
shown that ARIMA models often produce good forecasts of periodic data 
series. 

One of the most common types of periodic behavior is seasonal variation. 
This is why we use the letter s to stand for the length of periodicity. In this 
chapter we focus on seasonal models, but everything said here also applies 
to other types of periodic models. 

ARIMA models for seasonal time series are built using the same iterative 
modeling procedure used for nonseasonal data: identification, estimation. 
and diagnostic checking. With seasonal data we must often difference the 
observations by length s. This involves calculating the periodic differences 
z, - z , -$ .  We also give special attention to estimated autocorrelation and 
partial autocorrelation coefficients at multiples of lag s, (s. 2s, 3s,. . . ). 
Likewise, at the estimation stage we obtain estimates of selected AR and 
MA coefficients appearing at multiples of lag s. And at the diagnostic- 
checking stage we focus on residual autocorrelation coefficients at multiples 
of lag s. 

This attention to coefficients at multiples of lag s is in addition to our 
usual concern about nonseasonal patterns in the data. This is why analyzing 
seasonal series is so challengng-most seasonal series also have a nonsea- 
sonal pattern. Distinguishing these two patterns to achieve a parsimonious 
and statistically adequate representation of a realization can be difficult, 
especially for the beginning analyst. 

265 

Forecasting With Univariate Box- Jenkins Models CONCEPTS AND CASES 
Edited by ALAN PANKRATZ 

Copyright 0 1983 by John Wily & Sons. Inc 



- 
VALUE 
1046 
914 
532 
460 
236 
39 
0 
a5 
&1 
320 
632 
a201 
: 278 
1178 
bW 
545 
104 
b 
0 
1; 
53 
308 

870 
842 
916 
882 
416 
f 50 
6 
2 
5 
f 10 
408 
744 
1054 
t 04% 
7 54 
562 
338 
I362 
2 
0 
0 
57 
258 
592 
934 
920 
87 1 
704 
50& 
109 
9 
2 
0 
21 
288 
684 
904 
$464 
960 

514 
226 
IS 
8 
& 
1 a4 

em 

.1949. 

266 



44 

45 

46 

47 

48 

49 

121 
1 1  
21 
31 I--*' 
41 ,*-I 

91 
101 
1 1 1  
121 
11 
21 
31 
41 
51 
61 
71d I . -  
81) I 
91 '+ I 
101 '+-I 

I-. 
I -  

I /* 

1 1 1  
121 ,.'+ 
1 1  I 

31 
21 I t 

I 
71. I 
81: I 
91 '*- I 
1oi -*-I 
1 1 1  I-.\ 
121 I /* 
1 1  I 
21 I *0*- 

71+ I 

91 '* I 
101 L. I 

1 1  I /'+ 

81, I 

1 1 1  121 ?+------+ 
21 
31 

01: I 
91 i- I 
101 

I 
1 1 1  
121 
1 1  
21 
31 

I */*- .-:- -~ 
41 I 

*- I 2; ./' I 
7I< I 

8: i 
101 '4 

1 
I 

1 1 1  

263 
694 
812 
1036 
1018 
936 
247 
119 
7 
0 
3 
26 
214 
594 
833 
1103 
1018 
66 1 
325 
138 
17 
0 
8 
133 
246 
607 
1109 
lO2b 
897 
833 
540 
126 
8 
1 
4 
1 1 1  
339 
734 
1 0 6 6  
962 
864 
854 
428 
49 
10 
0 
6 
53 
316 
637 
I155 
1283 
903 
432 
332 
24 1 
56 
7 
3 
31 
347 
623 
1192 
1016 
862 
390 
390 
169 
28 
0 
23 
35 
187 
516 
881 

+*. 

Figure 11.1 (Conrinued) 

267 



268 seasonal and other periodic models 

In this chapter \;e first discuss the nature of periodic and seasonal data. 
Next, we examine the theoretical acfs and pacfs associated with seasonal 
models. Then we consider seasonal differencing. We conclude with a 
critically important topic-how to build models for data series that have 
both seasonal and nonseasonal ARIMA patterns. 

11.1 Periodicdata 

As an example of a periodic series, consider the plot of monthly heating 
degree days (abbreviated HDD) for Columbus, Ohio shown in Figure 11.1. 
The winter months’ values are regularly higher than those in other months 
within the same year, while the summer months’ values are regularly lower. 
This suggests that HDD values in any given month are similar to HDD 
values in the corresponding month in other years; that is, the January value 
in one year is similar to January values in other years, the July value in one 
year is similar to the July values in other years, and so forth for each month. 

In any periodic series we expect observations separated by multiples of s 
to be similar: z, should be similar to z, * i ( s ) ,  where i = 1,2,3,. . . . In the 
case of the monthly HDD data, one time period is one-twelfth of a year. 
This gives a pattern that repeats every 12 observations, so s = 12. Therefore, 
we expect HDD in a given month ( z f )  to be related to HDD in the same 
month one year earlier (z,-~!), the same month one year later ( z ~ + ~ ~ ) ,  the 
same month two years earlter (~ , -24 ) ,  the same month two years later 

The frequency with which data are recorded determines the value as- 
signed to s, the length of the periodic interval. The monthly HDD data 
show a similarity between observations twelve periods apart, so s = 12. But 
if the data were recorded quarterly, we would expect a given quarter’s value 
to be similar to values in the same quarter in other years. Thus similar 
observations would be four periods apart and we would have s = 4. 

Figure 11.2 is another example of periodic data. It shows the number of 
students passing through a turnstile as they enter a University library. The 
building is open seven days a week, and the data in Figure 11.2 display a 
weekly (seven-day) periodicity. The first observation in each week is a 
Monday; the data reach a peak value near the middle of each week and 
drop to a low each Saturday. In this example observations seven periods 
apart are similar, so s = 7. Therefore, we expect z,  to be related to z, * i(7) for 
i =  1,2,3 ,.... 

( Z, + z4), and SO forth. 

Seasonal data The most common type of periodic data in economics 
and business is data with seasonal variation, meaning variation within a 
year. The HDD series in Figure 1 1.1 is an example of a seasonal series- the 
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within-year pattern is similar from year to year. The turnstile data are 
periodic but not seasonal; that is, the repeating patterns in this series occur 
from week to week rather than from year to year. 

Seasonal patterns reflect physical forces, such as changes in the weather, 
or institutional factors, such as social customs. For example, people may 
buy more ice cream as the temperature rises during the summer but buy less 
during the winter as the temperature drops. Other data such as liquor sales 
show repeated peaks (high values) and troughs (low values) partly because 
an extended holiday season comes in the late fall and early winter. 

11.2 Theoretical ad's and pad's for seasonal processes 

Theoretical and estimated acfs and pacfs play the same role in the 
construction of seasonal ARIMA models as in the building of nonseasonal 
models. At the identification stage estimated acfs and pacfs are calculated 
from the available data. These are compared with some common, known 
theoretical acfs and pacfs and a tentative model is chosen based on this 
comparison. The parameters of this model are estimated and the 
estimation-stage residuals ( r i , )  are then analyzed with a residual acf to see if 
they are consistent with the hypothesis that the random shocks ( a , )  are 
independent. If we reject this hypothesis, the structure within the residual 
acf may help us tentatively identify another model. 

The fundamental fact about seasonal time-series data is that observations 
s time periods apart ( z , ,  z,-~, z,,,, z , - ~ ~ ,  z,,~~,. .. ) are similar. We there- 
fore expect observations s periods apart to be correlated. Thus, acfs and 
pacf s for seasonal series should have nonzero coefficients at one or more 
multiples of lag s (s, 2s, 3s.. . . ). 

In Chapter 6 we discussed the theoretical acfs and pacfs for five 
common (stationary) nonseasonal models: AR( l), AR(2), MA(l), MA(2), 
and A R M (  1,l). The ideas presented there carry over to the analysis of 
seasonal data with one exception: the coefficients appearing at lags 1,2,3,. . . 
in nonseasonal acfs and pacfs appear at lags s, 2s, 3s,. . . in purely seasonal 
acf s and pacf s. For example, a stationary nonseasonal AR( 1) process with 
9, = 0.7 has a theoretical acf that decays exponentially in this manner 
(where k is the lag length and pk represents the autoconelation coefficient): 

1 p ,  = 0.7 
2 p2 = 0.49 
3 p3 = 0.34 
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A stationary seasonal process with one seasonal AR coefficient and with 
s = 4, for example, also has a theoretical acf that decays exponentially, but 
at the seusonaf fags (4,8,12,. . . ) which are multiples of 4: 

k pk 

1 PI = o  
2 P2 = 0 
3 P3 = 0 

5 P5 = 0 

7 P7 = 0 

9 P9 = 0 
10 PI0 = 0 
11 PI1 = 0 

4 p4 = 0.7 

6 P6 = 

8 p8 = 0.49 

12 plz = 0.34 

a s  parallel between nonseasonal and seasonal acfs and pacfs sim- 
plifies the analysis of seasonal data. The reader who is thoroughly familiar 
with the nonseasonal acfs and pacfs in Chapter 6 should be able to picture 
the same patterns occurring at multiples of lag s. Because of the similarity 
between nonseasonal and purely seasonal acfs and pacfs, we examine here 
only two of the more common seasonal processes. 

Consider a purely seasonal process with one autoregressive coefficient at 
lag s. This is written 

z ,  = C + @sz,-s + a, 

or 

(1 - Q?B”)Z, = a, (11.1) 

(Upper-case greek letters are used for seasonal coefficients.) Equation (1 1.1) 
says that z, is related to its own past value s periods earlier, z , - ~ .  

A purely seasonal moving-average process with one coefficient at lag s is 
written 

L, = C - eSa,-$ + a,  
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or 

Here z, is related to the random shock s periods earlier, u , - ~ .  
Figure ( 1 1.3) shows the theoretical acf s and pacf s for these two purely 

seasonal processes under various assumptions about the signs of eS and 0,. 
These diagrams are identical to the nonseasonal AR( 1) and MA( 1) acf s and 
pacf s except the coefficients for the seasonal processes occur at multiples of 
lag s (s, 2s, 3s,. . . ) instead of at lags 1,2,3,. . . . The theoretical acf for 
process ( 1  1.1) decays exponentially at lags s, 2s. 3s,. . . either all 3n the 
positive side or alternating in sign starting from the negative side. The 
theoretical acf for process (1 1.2) has a spike at lag s followed by a cutoff to 
zero at lags 2s, 3s,. . . , . 

In practice, identifying seasonal models from estimated acf s and pacf s 
can be more difficult than is suggested by the preceding discussion. In 
particular, many realizations with seasonal variation also contain nonsea- 
sonal patterns. The estimated acf and pacf for a combined seasonal-nonsea- 
sonal realization reflect both of these elements. Visually separating the 
seasonal and nonseasonal parts in estimated acfs and pacf's can be dif- 
ficult. We consider combined seasonal-nonseasonal models in Sections 

A seasonal process with a nonstationary mean has an acf similar to the 
acf for a nonstationary, nonseasonal process. In Chapters 2.6, and 7 we saw 
that the acf for a process with a nonstationary mean fails to damp out 
quickly to zero. A seasonal process with a nonstationary mean has acf 
spikes at lags s, 2s, 3s,. . . that do not damp out rapidly to zero. Figure 1 1.4 
shows a hypothetical example. These autocorrelations need not be large to 

11.4-11.6. 

- 1.0 

Figure 11.4 Theoretical acf for a hypothetical nonstationary seasonal process. 
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inlcate a nonstationaxy mean. The key point is that they do not quickly 
damp out to zero. When a realization produces an estimated acf similar to 
the one in Figure 11.4, seasonal differencing is warranted. 

11.3 Seasonal differencing 

The mean of a realization may shift significantly from period to period 
because of strong seasonal variation. Nevertheless, the observations for a 
given season may all fluctuate around a constant mean. 

Seasonal differencing is similar to regular differencing (introduced in 
Chapter 2) because both involve calculating the changes in a data series. For 
regular differencing we calculate the period-to-period changes t, - 2,- But 
to perform seasonal differencing, we calculate the change from the last 
corresponding season z ,  - z , -$ .  

For example, consider the HDD data in Figure 11.1. The mean of the 
series seems to shift within each year: while January values tend to lie above 
those for other months, July values are regularly lower than those for most 
other months. It is as if the January values are drawn from one probability 
distribution with a certain mean, February values are drawn from another 
probability distribution with a different mean, and so forth for other 
months. The estimated acf for the HDD data in Figure 11.5 confirms the 
nonstationary character of the seasonal variation in those data: the autocor- 
relations at the seasonal lags (12, 24, 36) decay slowly. When the mean of a 
realization shifts according to a seasonal pattern, seasonal difjerencing often 
induces a constant mean. 

To find the seasonal differences ( w , )  of the HDD data, subtract from 
each observation the observation occumng 12 periods earlier: 

w i 3  =t t I 3  - zI  = 1278 - 1046 = 232 

wI4 = zI4 - z2 = 1178 - 914 = 264 

w15 = zI5 - z 3  = 656 - 532 = 124 

wi6 = tI6 - z4 = 545 - 480 

wI7 = z , ~  - t5 = 104 - 236 = - 132 

wI8 = zI8 - z6 = 6 - 38 = -32 

65 
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Figure 11.5 Estimated acf for the heating-degree-days data. 

The first seasonal difference we can find (y3) is for January 1939. This is 
because there is no zo value available to subtract from z,* (December 1938), 
no z -  I value to subtract from z1 (November 1938), and so forth. Therefore, 
we lose 12 observations due to seasonal differencing of length 12. 

The seasonally differenced data are plotted in Figure 11.6 and the 
estimated acf and pacf for this series are shown in Figure 11.7. Inspection of 
Figure 11.6 suggests that seasonal differencing has removed the obvious 
peak-trough seasonal variation appearing in the original data in Figure 
11.1. The estimated acf in Figure 11.7 now drops quickly to small values at 
lags 24 and 36 following the spike at lag 12. Since the estimated acf also 
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Figure 11.6 Seasonal differences of the heating-degree-days data. 
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Figure 11.7 Estimated acf and pacf for the seasonal differences of the heating- 
degree-days data. 
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moves quickly to statistically insignificant values at the shorter nonseasonal 
lags, we conclude that the seasonally differenced series is stationary. 

The seasonal differencing performed with the HDD series illustrates 
first-degree seasonal differencing which is seasonal differencing performed 
once. Letting D stand for the degree of seasonal differencing, in this case 
D = 1. We could also calculate the seasonal differences of the seasonal first 
differences ( w, - wr- , 2 )  - ( wr- ,2 - w,-~.,). This is called second-degree sea- 
sonal differencing (D = 2). In practice, second-degree (or higher) seasonal 
differencing is virtually never needed. 

The backshift operator B and the differencing operator v introduced in 
Chapter 5 are useful for writing compact expressions to show the degree of 
seasonal differencing. Recall that B is defined such that z ,Bk  = z , - ~ .  
Letting k = s, the Dth difference (length s) of the series z ,  can be written 

V;Z, = (1 - Bs)Dz, (11.3) 

For example, let D = 1. Then the seasonal first differences of z ,  are 
written V s z r  = (1 - B’)z,. To show that this is the expression for seasonal 
first differences, expand this expression and apply the definition of B k  
where k = s: 

V S z r  = ( 1  - B’)z ,  

= Z ,  - z,B’ 

- - z ,  - z,-‘ (11.4) 

We get the same result whether we apply the operator (1 - B’) to z ,  or f, 
(the deviations of z ,  from its mean p) because the p terms add to zero: 

vSf, = ( 1  - B S ) (  Z ,  - p)  

= Z ,  - z,B’ - p + pB’ 
= 2,  - z,-’ - p + p 

= z ,  - z,-’ (11.5) 

As discussed in Chapter 7, having the p terms add to zero after differenc- 
ing is the algebraic counterpart to the fact that a differenced realization ( w , )  
often has a mean ( f i , )  that is statistically zero. If f i ,  is significmtly different 
from zero, implying that the true mean p, is nonzero, we may include a 
deterministic trend in a model for w, by expressing w, in deviations from its 
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mean: w, - p,. (See Section 7.3 for a review of the topic of deterministic 
trends.) Case 15 in Part I1 is an example of a series that contains a 
deterministic trend after seasonal differencing. 

11.4 Seasonal-nonseasonal multiplicative models 

Many realizations contain both seasonal and nonseasonal patterns. (In the 
remainder of this chapter we use the letters S-NS to stand for 
“seasonal-nonseasonal.”) Building ARIMA models for S-NS realizations is 
challenging because the estimated acfs and pacfs reflect both the seasonal 
and nonseasonal elements. We must attempt to separate these two parts 
visually and mentally. 

Box and Jenkins [ l ]  suggest a certain model type as a useful starting 
place for representing S-NS r e h t i o n s .  In this type of model the seasonal 
and nonseasonal elements are multiplied by each other. 

To arrive at the form of these multiplicative S-NS models, consider our 
two earlier seasonal processes, equations (1 1.1) and ( 1 1.2). In a more general 
seasonal process we allow for seasonal differencing and for any number of 
AR and MA seasonal terms: 

(11.6) 

Now write the AR seasonal operator (1 - 9,BS - (P2,B2’ - - - . - 9,BP’) 
compactly as 9, (B’) ,  the seasonal differencing operator as 0,”. and the 
MA seasonal operator (1 - 8,B’ - 8,,B2’ - . . * - @,,BQ’) as e , (~ ’ ) .  
Substituting these terms into (1 1.6) gives 

We have used the symbol a, to stand for a set of uncorrelated random 
shocks. Now if (1 1-7) represents only the seasonal part of a process that also 
contains nonseasonal patterns, then the shocks in (1 1.7) are autocorrelated 
and we should not represent them with the a,  term. Let b, stand for a set of 
(nonseasonally) autocorrelated shocks whose behavior is not explained by 
(1 1.7). Then (1 1.7) becomes 
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If the behavior of the autocorrelated shocks b, is described by a nonsea- 
sonal ARIMA model, we may write a general model for b, as 

where the random shocks u, are not autocorrelated. Solving (1 1.9) for b, 
gives b, = [ + p ( B ) v d ) - l B , ( B ) ~ , .  Substitute this expression into (1 1.8) and 
rearrange terms to get 

+p ( B cp, ( B’ ) ~d V:Z, = eQ ( B’ e, ( B ) 0, (1 1 .lo) 

where qp( B) is the nonseasonal AR operator, @,( B) is the nonseasonal MA 
operator, 8 , , ( B s )  is the seasonal AR operator, e,(B’) is the seasonal MA 
operator, and v d  0,” are the differencing operators. 

Thus (1 1.8) and (11.9) together imply (11.10) for z,, where z, has both 
seasonal and nonseasonal components, and where z, is differenced d times 
(length one) and D times (length s). Furthermore, the seasonal and nonsea- 
sonal AR elements are multiplied by each other as are the seasonal and 
nonseasonal MA elements. 

Process (11.10) is referred to as an ARIMA( p, d ,  q ) ( P ,  D, Q), process. 
The lower-case letters ( p ,  d, q )  indicate the nonseasonal orders and the 
upper-case letters (P, D, Q )  denote the seasonal orders of the process. The 
parentheses mean that the seasonal and nonseasonal elements are multiplied 
as shown in (1 1.10). 

As an example consider an ARIMA(O,O, 1)(0,1, 1)4 process. Realizations 
generated by this process have a pattern with a periodicity of four, since 
s = 4. Because D = 1, z, is differenced once by length four. With d = 0 
there is no nonseasonal differencing. There is one seasonal MA term at lag 4 
(Q = 1) and one nonseasonal MA term at lag 1 ( q  = 1). Furthermore, the 
two MA operators are multiplied by each other. In backshft form this 
model is 

(1  - ~ ~ ) 2 ,  = (1 - 8 , ~ ~ ) ( 1  - (1 1.1 1) 

As another example consider an ARIMA( 1, 0, 0)( 1, 0, l )12.  This process 
would produce realizations with a periodicity of length 12, since s = 12. In 
this case z, is not differenced at all because d = 0 and D = 0. The seasonal 
part of the process is mixed (P = 1 and Q = 1) with one AR and one MA 
coeffici$nt at lag 12. Then there is a nonseasonal AR term at lag 1 ( p = 1). 
The two AR operators are multiplied, giving this model in backshift form: 

(1  - +,B)(l  - cp#)Z, = (1 - 8 , , B ” ) U ,  (1 1.12) 
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11.5 An example of a seasonal-nonseasonal 
multiplicative model 

In this section we go through the full cycle of identification, estimation, and 
diagnostic checking using the HDD realization in Figure 11.1. We will also 
discuss the stationarity and invertibility conditions for seasonal models and 
present the forecast profile for our HDD model. 

Identification. The estimated acf for the HDD realization appears in 
Figure 1 1.5. The autocorrelations at the seasonal lags (12, 24, 36) fail to &e 
out quickly. This confirms the nonstationary character of the seasonal 
pattern and calls for seasonal differencing. 

Note that the autocorrelations at the seasonal lags in Figure 11.5 are 
surrounded by other large autocorrelations (especially lags 10, 11, 13, 23, 
and 25). This is not unusual when a strong seasonal pattern is present. It is 
wise to ignore these surrounding values for the time being. Most of them 
usually disappear after the seasonal component is properly modeled. In this 
example seasonal differencing is sufficient to remove all these large sur- 
rounlng values as shown by the estimated acf for the seasonally dif- 
ferenced series (Figure 1 1.7). 

Note also in Figure 11.5 that there are other large autocorrelations 
gathering around the half-seasonal lags (6, 18, 30). Strong seasonal variation 
can sometimes produce large (and misleading) autocorrelations at fractional 
multiples of the seasonal lag. These values can be misleading because they 
often become statistically insignificant after the realization is differenced by 
length s, or (in the residual acf) when AR or MA coefficients are estimated 
at the seasonal lags. The estimated acf in Figure 11.7 for the seasonally 
differenced data shows that differencing clears up the waves of significant 
values surrounding the half-seasonal lags. (See Case 12 in Part I1 for an 
example where seasonality induces large autocorrelations not only at the 
half-seasonal lags, but also at the quarter-seasonal lags.) 

Now focus on the estimated acf and pacf in Figure 11.7. Seasonal 
differencing has created a stationary series since the estimated acf falls 
quickly to zero at both the short lags ( 1 ,  2, 3)  and the seasonal lags (12, 24, 
36). We are now ready to identify a tentative model. 

Consider the significant spike at lag 12. It is followed by a cutoff to very 
small values at lags 24 and 36. According to the theoretical acfs in Figure 
11.3, this calls for a seasonal MA term and we expect 0,, to be positive. The 
decaying pattern at lags 12, 24, and 36 in the estimated pacf (Figure 11.7) 
confirms that an MA term is appropriate at the seasonal lag. 
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Now focus on the nonseasonal pattern in Figure 11.7. We see a spike at 
lag 1 in the acf followed immediately by a cutoff to insignificant values. 
This indicates an MA(1) for the nonseasonal part of our model. The 
alternating decay in the pacf at lags 1, 2, and 3 confirms this nonseasonal 
MA( 1) pattern. 

This analysis leads us to tentatively choose an ARIMA(O,O, 1x0, 1, 
model: 

( 1  - B)”z, = ( 1  - e,,~i*)(i - e , B ) a ,  (11.13) 

Estimation. The estimation of purely seasonal or S-NS models is not 
fundamentally different from the estimation of nonseasonal models as 
discussed in Chapter 8. The parameters of seasonal models are usually 
estimated according to a least-squares criterion using a nonlinear routine 
such as Marquardt’s compromise (see Appendix 8A). However, the compu- 
tational burden is often greater for models with seasonal components 
since there are more parameters to be estimated. This computational burden 
is increased further when the technique of backcasting is employed, a 
technique that is important when seasonal elements are present. (See 
Appendix 8B.) 

The estimation results for model (1 1.13) in Figure 11.8 show that both 
612 and 8, are significant with absolute r-values greater than 2.0. The 
adjusted RMSE indicates that the standard deviation of the residuals is 
about 104 heating degree days. Since the estimated coefficients are not 
highly correlated (their correlation is only - 0.02) we can be confident that 
they are not unstable. 

Diagnostic checking, A statistically adequate model satisfies the as- 
sumption that the random shocks are independent. We cannot observe the 
random shocks a, but we have estimation residuals ci, from model (11.13) 
which are estimates of the random shocks. If the residuals are independent 
we accept the hypothesis that the shocks are independent. 

The residual acf is used to test the hypothesis that the shocks are 
independent. The residual acf for (1 1.13) is shown at the bottom of Figure 
11.8. The practical warning levels for residual autocorrelations are (i) about 
1.25 at the short lags (1, 2, and perhaps 3); (ii) 1.25 at seasonal lags (12, 24, 
and 36 in this case since s = 12); and (iii) 1.6 elsewhere. 

Only the residual autocorrelations at lags 3, 15, and 23 exceed these 
warning levels. While we could pursue a more complex model by including 
terms at these lags, out of 36 autocorrelations we expect a few to be 
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Figure 11.8 Estimation and diagnostic-checking results for model ( I  1.13). 
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significant just by chance. While some analysts might try alternative models 
and track their forecasting records. we can be satisfied that model (11.13) 
fits the available data adequately. This is confirmed by the ch-squared 
statistic printed below the residual acf. It is smaller than the critical value 
(40.3) for 30 degrees of freedom (df) at the 10% level, and thus it is also 
insignificant for df = 34. 

Stationarity and invertibility conditions. One advantage of the multi- 
plicative form is that it simplifies the checking of stationarity and invertibil- 
ity conditions. With a multiplicative model these conditions apply separately 
to the seasonal and nonseasonal coefficients. For example, consider an 
ARIMA(2,0,1)(1,0,2),. In backshift form this is 

( 1  - + ] B  - & , B 2 ) (  1 - @,B,)Z, = (1 - 0 , B .  - 02,B2S)( 1 - B,B)a ,  

(11.14) 

The stationarity requirement applies only to the AR coefficients and we 
treat the nonseasonal and seasonal AR components separately since they 
are multiplied.* Thus the stationarity conditions for the nonseasonal part of 
(11.14) are the same as for an AR(2) as discussed in Chapter 6: I+2i < 1, 

Then there is a separate stationarity condition on the AR seasonal part of 
(1 1.14): it is the same condition as for a nonseasonal AR( 1) model discussed 
in Chapter 6, except in this case we have an AR(l), component; thus the 
condition is I@,l < 1. 

Invertibility applies only to the MA part of (11.14) and we treat the 
nonseasonal and seasonal components separately. The condition on the 
nonseasonal part presented in Chapter 6 is lB1 l  c 1. The conditions on 
the seasonal part are the same as for a nonseasonal MA(2) as discussed in 
Chapter 6, except we have an MA(2), component. Thus the joint conditions 
are 102sl 

Model (11.13) for the differenced HDD series is stationary since it 
contains no AR terms. The invertibility requirements are 10,21 < 1 and 
leIl < 1. These are satisfied since 1612] = 0.932 < 1 and ld,l = 0.233 < 1. 

@ 2 - + I <  l , = d h + + !  < 1. 

1, 0,, - 0, < 1, and 0,, + 0, < 1. 

Forecasting. In Chapter 10 we showed how forecasts are produced from 
the difference-equation form of a model. Expanding (1 1.13) we get the 

'The formal stationarity condition for a multiplicative model is that the roots of $JJ E)O,( E ' )  
= 0 lie outside the unit circle. This is equivalent to the joint condition that the roots of both 
eP( B )  = 0 and Q p (  B') = 0 lie outside the unit circle. 
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difference equation 

Inserting the estimated values for 8,  and 8,, gives the forecast form 

2, = ~ ~ - 1 2  + 0.233d,- l  - O.9326,-12 - 0.217rif-13 (1 1.16) 

where the ri terms are estimation-stage residuals. Forecasts are generated in 
the same manner illustrated in Chapter 10. 

Equation (11.16) shows how our model accounts for the nonstationary 
character of the seasonal pattern: each forecast it starts from the value 12 

Table 11.1 Forecaffr from equation (11.16). 

80% Confidence Limits 
Future Percent Foreca! 

Time Forecast Values Lower Upper Observed Values k0rS  

50 1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 

51 1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
1 1  
12 
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1071.6088 
9 15.0873 
63 1.0462 
413.7132 
153.8229 
19.4635 
1.3907 
9.4737 

59.9529 
270.8 146 
626.1457 
981.1140 

919.6939 
777.9 187 
493.8775 
276.5446 

16.6543 
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- 77.2 158 
133.6460 
488.977 1 
843.9454 
934.1364 
777.5983 
493.5572 
276.2243 

16.3339 
- 1 18.0255 
- 136.0983 
- 128.0 153 
- 77.5361 
133.3257 
488.6568 
843.625 1 

1 186.8729 
1052.2560 
768.2148 
550.88 19 
290.9916 
156.6321 
138.5593 
146.6423 
197.12 15 
407.9833 
763.3144 

1 1 18.2827 
1209.08 13 
1052.5763 
768.5352 
55 I .2022 
291.3119 
156.9524 
138.87% 
146.9627 
197.44 19 
408.3036 
763.6347 

1 1 18.6030 

904.m 
1147.oooO 
9 4 3 . m  
392.oooO 
218.oooO 
23 .oooO 
7 . m  
O.oo00 

1 1 2 . m  
88.oooO 

7 3 3 . m  
983.oooO 

1324.oooO 
9 3 9 . m  
648.oooO 
3 0 6 . m  
155.oooO 

3 .m 
O.oo00 
2 . m  

4 5 . m  
380.oooO 
5 l o . m  
885.oooO 

- 16.51 
20.22 
33.08 
- 5.54 
29.44 
15.38 
80.13 

46.47 
- 207.74 

14.58 
0.19 

19.06 
2.55 
2.62 

- 35.20 
0.76 

n.a." 

- 548.78 
n.a. 

- 373.68 
- 33.23 

28.73 
- 22.77 
- 10.86 

an.a. = not available. 
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Figure 11.9 Forecasts from equation ( 1  1.16). 
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periods earlier, z,-  12. Then a further adjustment is made for the remainder 
of the seasonal pattern represented by the term -0.932d,-,,, for the 
period-to-period pattern represented by the term 0.233cil-,, and for the 
interaction between the seasonal and nonseasonal pattern represented by 
the term -0.217dl- 13. 

Table 11.1 shows the forecasts for 24 months ahead along with 80% 
confidence limits and the future observed values. These results are plotted in 
Figure 11.9. These forecasts track the powerful seasonal pattern in this 
series rather well. The forecasts pick up the extreme seasonal undulations in 
the observed series, and only five of the 24 confidence intervals fail to 
contain the observed future values. 

You should now be ready to read Cases 9-15 in Part 11, all of which 
involve data containing seasonal variation. Consult the practical rules in 
Chapter 12 frequently as you study the cases and as you attempt to build 
your own UBJ-ARIh4A models. 

11.6 Nomultiplicative models* 

Multiplicative models are an excellent starting place for modeling S-NS 
realizations, and they often give good results. Most computer programs for 
estimating UBJ-ARIMA models provide at least an option for multiplica- 
tive seasonality; some simply assume that seasonal models are multiplica- 
tive. 

Occasionally, the assumption that the seasonal and nonseasonal elements 
are multiplicative is inappropriate. In this section we discuss alternatives to 
multiplicative models. 

Additive models. Note that (11.15), the difference-equation form of 
(11.13), contains an implicit MA coefficient at lags + 1 = 13, 813 = 8,8, , .  
Other multiplicative models contain coefficients that are the product of 
seasonal and nonseasonal coefficients. The particular compound coefficients 
that occur depend on the orders of the seasonal and nonseasonal parts of 
the model. 

Now suppose the implicit coefficient OI3  in (1 1.13) is not, in fact, equal to 
8,812 for a certain data series. Forcing 8, ,  to equal 8 ,8 , ,  by using the 
multiplicative form (1 1.13) would tend to reduce forecast accuracy. It might 
be, instead, that 8, ,  is zero. Then the following additive- model is ap- 

'Ibis section involves some complicated details and may be omitted at the first reading of this 
chapter. The reader is encouraged to first work through Cases 9- I3 in Part 11. 
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propriate. 

(1 - B I Z ) Z ,  = (1 - BIB - ~ , , B ~ * ) U ,  (1 1.17) 

Another possibility is that the parameter 813 is neither zero nor equal to 
81812 .  In this case 8 , ,  could be estimated “freely.” Rather than forcing 
8 , ,  = 0 as in (11.17), or forcing 8, ,  = 8 ,8 , ,  as in (l1.13), we could estimate 
this additive model: 

(1 - B ’ ~ ) Z ,  = (1 - e l B  - q 2 ~ I 2  - B , , B ~ ~ ) U ,  (1 1.18) 

Theoretical acfs. The theoretical acfs for S-NS models can be quite 
complicated. But the S-NS models that occur commonly in practice are of 
relatively low order, and their theoretical acf s have distinguishing character- 
istics. In this section we illustrate how the theoretical acfs for multiplicative 
models differ from those of additive models by examining the theoretical 
acfs of models (11.13), (11.17), and (11.18). 

Let wl represent a realization that has been made stationary by suitable 
differencing and other appropriate transformations (such as a logarithmic 
transformation), w, = (1 - B)d(l - B’)Dz;. Suppose the stationary series wf 
is generated by a multiplicative process, an ARMA(0, 1x0, l), shown earlier 
as (11.13): 

wf = (1 - e,~5)(1 - e , B l u ,  (11.19) 

Process (1 1.19) has these theoretical autocorrelations: 

-es(i + 8 : )  
Ps = ( I  + e:)(i + e,?) 

- e,e, 
( I  + e:)(i + q?) Ps-I - 

(1 1.20) 

The most notable characteristic of these autocorrelations is that the spike 
at lag s is flanked by two nonzero autocorrelations of equal value (ps+ I = 
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Figure 11.10 Theoretical acf for process (11.19) with s = 12, 6 ,  = 0.5, and eI2 = 
0.7. 

ps-l  * 0). In fact it can be deduced from (11.20) that p,+, = pS-,  = pips 
for this process. Figure 11.10 shows an example of a theoretical acf for this 
process with s = 12,8, = 0.5, and el, = 0.7. The value of 813 in this case is 
O I 3  = 8,8,, = (0.5X0.7) - 0.35. Using (11.20), we find pI = -0.4, p, = 

This example illustrates a common result for S-NS models: the seasonal 
autocorrelations are often surrounded by nonzero autocorrelations that are 
symmetrical (in estimated acf s, roughly symmetrical). 

For comparison, consider the additive process appropriate when e,, I is 
equal to neither el@, nor zero: 

-0.47, and ps-l = ps+I = pip, = 0.19. 

wf = (1 - e , B  - e p  - e s + I B S + i ) a f  (1 1.2 1) 

The theoretical acf for this process differs from the acf of process (11.19) 
notably in that the two autocorrelations flanking the autocorrelation at lag s 
are no longer equal, although both are nonzero. Figure 11.11 shows an 
example of an acf for process (1 1.21) where s = 12,8, = 0.5, el, = 0.7, and 
8 , ,  = Oh.* 

Finally, suppose e,, I = 0 as in model ( 1 1.17). Then we have 

w, = ( 1  - e , B  - e , ~ ) ~ ,  (1 1.22) 

*The autocovariances for processes ( I  1.21) and ( 1  1.22) are given in Box and Jenkins [ I ,  p. 3321. 
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-0.14 
-0.29 

-1.01 

Figure 11.11 Theoretical acf for process (11.21) with s = 12, 6 ,  - 0.5, el, = 0.7. 
and 6, ,  = 0.6. 

In this case, unlike the previous two examples, pr+ I = 0 although ps- ,  is 
not. Figure 11.12 is an example of a theoretical acf for (1 1.22) with s = 12, 
8, = 0.5, and 8,, = 0.7. 

The preceding discussion suggests that an estimated acf can be helpful in 
deciding whether a multiplicative or nomultiplicative model is called for. 
However, while the differences between the theoretical acfs in Figures 
11.10, 11.11, and 11.12 are fairly clear, the evidence in estimated acfs is 
often ambiguous, especially when the sample size is modest. For this reason 
the beginning analyst is encouraged not to pay too much attention to 
estimated autocorrelations near the seasonal lags or at fractional seasonal 

1.0. 

t 
1 

pk 

-1.0' 

0.20 
1 2  3 4 5 6 7 8 9 10 I 1 2 1 3 1 4 1 5  

I A 
1 -  

I 11 k =  Lag 

-0.29 I 
-0.40 

Figrae 11.12 Theoretical acf for process ( 1  1.22) with s = 12, 6 ,  = 0.5, and e, ,  = 

0.7. 
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lags. The inexperienced modeler is likely to obtain more satisfactory results 
by focusing on the first few nonseasonal lags and on the obvious seasonal 
lags (s, 2s, 3s) in the estimated acf, and by workmg with common multi- 
plicative models. Nevertheless, bear in mind that multiplicative models are 
occasionally inappropriate, and experimentation with nonmultiplicative 
models may be called for. Case 14 in Part I1 is an example showing that a 
nonmultiplicative model is sometimes superior. 

Summary 

1. Realizations with periodic patterns (those repeating every s time 
period, where s > 1) can often be forecast well using ARIMA models. Such 
models are built with the same iterative three-stage procedure as nonsea- 
sonal models-identification, estimation, and diagnostic checking. 

2. One of the most common types of periodic behavior is seasonal 
variation. A seasonal pattern occurs within a year, and each season shows 
behavior similar to the corresponding season in other years. Thus a g~ven 
observation z, may be related to other observations that are i ( s )  periods 
( i  = 1,2,3,. . . ) into the past or future (z,-~, z,+,, z , - ~ ~ ,  z , + ~ ~ , .  . . ). 

3. In analyzing seasonal data, we focus on autocorrelation coefficients, 
partial autocorrelation coefficients, and AR and MA coefficients at multi- 
ples of lag s. 

4. Seasonal data must sometimes be differenced by length s (z, - z,-~) 
to achieve a stationary mean. This is because the observations from each 
season may gather around a mean that is different from the means of other 
seasons. 

5. Theoretical acfs and pacfs for purely seasonal processes are identi- 
cal to those for their nonseasonal counterparts except the autocorrelations 
appear at lags that are multiples of s. For example, an MA( 1) has a spike at 
lag 1 while a seasonal process with one MA coefficient at lag s has a spike at 
lag s. A stationary AR( 1) has decaying autocorrelations at lags 1,2,3.. . . . 
while a seasonal process with one AR coefficient at lag s has decaying 
autocorrelations at lags s, 2s, 3s,. . . . 

A strong seasonal pattern may produce large estimated autocorrela- 
tions at lags surrounding the seasonal lags and at fractional multiples of the 
seasonal interval. For example, it is not unusual to find significant autocor- 
relations at lags 0.5s. lSs, 2.5s,. . . in the initial estimated acf. It is best to 
ignore these autocorrelations in the early stages when building a model since 
they frequently become insignificant after seasonal differencing or (in the 
residual acf) after AR or MA coefficients are estimated at the seasonal lag. 

6. 
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7. When a realization contains both seasonal and nonseasonal patterns, 
it is wise to start with a multiplicative model. This means the seasonal AR 
operator is multiplied by the nonseasonal AR operator, and the seasonal 
MA operator is multiplied by the nonseasonal MA operator. The general 
form of such models is 

8. Multiplicative models may be written in ARIMA( p ,  d ,  q X P ,  D, Q), 
notation, where s is the length of the periodic interval; P is the order of the 
seasonal AR portion of the model; D is the number of times the series is 
differenced by length s to achieve a stationary mean; and Q is the order of 
the seasonal MA portion of the model. 

9. Identification of models with both seasonal and nonseasonal ele- 
ments can be difficult, since the two patterns are mixed together in 
estimated acfs and pacfs. 

10. Stationarity and invertibility conditions for multiplicative seasonal 
models apply separately to the seasonal and nonseasonal components. For 
example, the stationarity requirements for an ARIMA( 1, 0, OX l,O, 0), model 
are 1+,1 < 1 and lQS1 < 1. 

11. The practical warning level for absolute r-values at seasonal lags in 
estimated (including residual) acfs is about 1.25. When a seasonal-lag 
autocorrelation coefficient has an absolute r-value greater than 1.25, we 
should consider including a seasonal AR or MA coefficient in our model. 

12. Occasionally an additive seasonal model is more satisfactory than a 
multiplicative model. In these cases the implied multiplicative coefficients 
(those appearing at lags that are products of the seasonal and nonseasonal 
lags) may be set equal to zero or estimated freely as additive terms. 

Questions and Probkms 

11.1 A police reporter records the number of crimes committed each hour 
for 240 hours. What length periodicity would you expect to see in these 
data? 

113 Explain the logic behind seasonal differencing. When is seasonal 
differencing performed? 

113 Calculate the seasonal first differences for the data in Chapter 1, 
problem 1.1. 
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11.4 Write the following in backshift form: 
(a) ARIMA(O,l, lXO,l, I), 
(b) AHMA(1,1,0)(0,1, 1)4 
(c) ARIMA(290, OM09 091) 12 

(d) ARIMA(O,2,2)(2,1,2) 12 

(e) ARIMA(0, 1,0)(0, 1 ,  l), 

11.5 Construct the theoretical acfs for these processes: 
(a) P, = (1 - 0.8B1’)(1 + 0.6B)a, 

11.6 What are the numerical values of the implicit coefficients at lag s + 1 
for the two processes in question 11.5? 

11.7 Which of the following estimated models are stationary and invert- 
ible? Explain. 

(a) (1 - 0.8BX1 - B4)i ,  = ( 1  - 0.8B4)ci, 

(b) 2, = ( 1  - 0.9B4)(1 - 0 . 7 B ) ~ ,  

(b) 
(c) 

W, = (1 - 0.4B” - 0.3B”)(1 - 0.5B2)6, 
(1 - 1.2B + 0.5B2)(1 - 0.5B12)(1 - B ) 2 ,  ci, 
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12 
PRACTICAL RULES 

In this chapter we state some practical rules for building proper UBJ- 
ARIMA models with relative ease. Many of these rules have been stated in 
earlier chapters; this chapter is intended to be a compact and convenient 
summary for easy reference. You should be familiar with the essential 
concepts underlying UBJ-ARIMA models before reading this chapter. 

Following this chapter are 15 case studies illustrating the use of the 
practical rules presented in this chapter and showing how to build 
UBJ-ARIMA models in a step-by-step manner. By studying these cases 
carefully and experimenting with several dozen data sets, you should be able 
to build most UBJ models within about 30 minutes using an interactive 
computer program. 

Here are the practical rules for building UBJ-ARIMA models: 

1. Forecasts from an ARIMA model are only as good as the accuracy 
of the data and the judgment of the analyst. All data should be 
checked for accuracy before any analysis is performed. 

2. Ideally, one should have a minimum of about 50 observations to 
build an ARIMA model. This usually allows sufficient degrees of 
freedom for adequate identification and estimation even if one loses 
observations due to differencing. When seasonal variation is pre- 
sent, it is desirable to have more than 50 observations. Occasionally, 
some analysts may use less than 50 observations, but the results 
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3. 

4. 

5. 

6. 

7. 

8. 

must be used cautiously. (See Case 15 for an example of a seasonal 
model based on 42 observations.) With less than 50 observations the 
analyst should consider alternatives to an ARIMA model. 

An important preliminary step is visual inspection of a plot of the 
original realization. Inspection of the data is most important in 
deciding if the variance of the realization is stationary. While there 
are some formal statistical tests available, Granger and Newbold 
(171 argue that informal inspection of the realization is as useful as 
any other procedure. The logarithmic transformation is the most 
common one for data in economics and business. This transforma- 
tion is appropriate when the standard deviation of a realization is 
proportional to the mean. (!he Cases 9 and 11 for examples.) 

Inspection of the realization may also help you form a preliminary 
opinion about whether the mean of the realization is stationary. If 
the mean of the series seems to change over time, look for confirma- 
tion in the estimated acf as discussed below. 

Inspection of the realization may also help you form an initial 
impression about the presence of a seasonal pattern. There may be 
obvious seasonal variation (see Cases 9, 13, and 14), mild seasonal- 
ity, or perhaps no seasonal pattern will be apparent. The final 
decision about including seasonal elements in a model must rest on 
autocorrelation analysis and estimation-stage results, but pre- 
liminary inspection of the data can be a helpful supplement. (See 
Cases 10 and 11 where seasonality is detected only with autocorrela- 
tion analysis.) 

The number of useful estimated autocorrelations is about n/4, that 
is. about one-fourth of the number of observations. 

The majority of the data series in economics and business show 
seasonal patterns. Even seasonally adjusted data may still show a 
seasonal pattern if the adjustment is insufficient or excessive. 

There are three things to examine in deciding on the degree of 
differencing to achieve a stationary mean: 
(a) A plor of the duru. This should not be the sole criterion for 
differencing but in conjunction with other tools it provides clues. A 
realization with major changes in level (especially a strong “ up” or 
“down” trend) or slope is a candidate for differencing. Significant 
changes in level require nonseasonal first differencing (see Case 6). 
while slope changes require nonseasonal second differencing (see 
Case 7). Strong seasonal variation UsGalIy calls for no more than 
seasonal first differencing. 
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(b) The estimated acf. If the estimated autocorrelation coeffi- 
cients decline slowly at longer lags (they neither cut off to zero nor 
damp out to zero rapidly), the mean of the data is probably 
nonstationary and differencing is needed. This applies separately to 
autocorrelations at seasonal lags (e.g., multiples of 4 for quarterly 
data, multiples of 12 for monthly data). When considering 
seasonal-length dfferencing you must mentally suppress all auto- 
correlations except those at multiples of the length of seasonality, 
temporarily treating the seasonal lags as a separate structure. 
(c) The signs and sizes of estimated A R  coefficients. These must 
satisfy the formal stationarity conditions discussed in Chapter 6 and 
restated in Table 12.1. These conditions apply separately to nonsea- 
sonal and seasonal AR coefficients when estimating a multiplicative 
AR seasonal model. If the evidence for a nonstationary mean from 
the estimated acf is strong and clear, one may difference on that 
basis alone without estimating any AR coefficients for the undif- 
ferenced data. (See Cases 7, 9, and 10 for examples showing how 
estimated AR coefficients confirm the need for differencing.) 

9. Nonseasonal first differencing ( d  = 1) is required more often if data 
are measured in current dollar values rather than in physical units 

Table 121 Summary of stationarity and invertibility conditions 

Model Type Stationarity Conditions Invertibility Conditions 

Pure AR Depends on p; Always invertible 

Pure MA Always stationary Depends on q; see below 

- ( I )  w11 < 1 Always invertible 

see below 

Always stationary 141 < 1 
e , + e , <  I 
e 2 - e ,  < I 

P? 4 )  Depends on p; Depends on q; see above 
see above 
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10. 

11. 

12. 

13. 

14. 

15. 

or base period dollars. Nonseasonal second differencing ( d  = 2) is 
relatively unusual; it is used only in Case 7. 
Seasonal-length differencing is required frequently. Doing so once 
( D  = 1) is virtually always sufficient. 
Needless differencing produces less satisfactory models and should 
be avoided. It creates artificial patterns in a data series and causes 
the forecast-error variance to be unnecessarily large. However, one 
should difference when in doubt; doing so in borderline cases 
usually yields superior forecasts because they are not tied to a fixed 
mean. (See Case 5 for a doubtful situation that is resolved in favor 
of differencing.) 
The correlation matrix of estimated parameters may provide evi- 
dence about a nonstationary mean. That is, some computer pro- 
grams estimate the mean simultaneously along with the AR and 
MA coefficients rather than just using i as the estimated mean. 
Some estimated models satisfy the formal stationarity conditions on 
the AR coefficients, but one or more of the estimated AR coeffi- 
cients will be highly correlated (absolute r > 0.9) with the estimated 
mean. In these cases the estimate of the mean can be highly 
inaccurate, and the wisest course is to difference the data. (Cases 7 
and 9 illustrate this phenomenon.) 
The following cannot be overemphasized: best results are usual& 
achieved with parsimonious, common models. The great majority of 
data series in economics and business can be adequately repre- 
sented, after proper differencing with ARMA models of order two 
or less. First-order models are typically adequate for the seasonal 
portion. By focusing on common, parsimonious models, you will 
discover that many estimated autocorrelations at lags other than 1, 
2 and the first two seasonal lags (s,2s), while significant at the 
identification stage, become insignificant in the residual acf. 
Higher-order models are best tried only after a previous effort has 
been made to build a satisfactory model of order two or less. Many 
of the following case studies show how common models with just a 
few estimated parameters account for a large number of significant 
autocorrelation coefficients in the original estimated acf. 
Better results are sometimes aclueved by identifying and estimating 
the seasonal element first, then examining the residual acf for a 
nonseasonal pattern. This is especially true when seasonality is 
strong enough to dominate the orignal estimated acf. (Cases 13-15 
illustrate how useful this practical rule can be.) 
It is wise to examine the estimated acf of the first differences even if 
differencing does not seem necessary to induce a stationary mean 
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18. 

i -1.0 'I 
t l ' O T  

practicalrules 301 

because the seasonal pattern is often clearer in the acf of the first 
differences than in the acf of the original series. (This point is 
well-illustrated in Case 10.) 

Sometimes strong seasonality makes it difficult for the inexperi- 
enced analyst to build an adequate UBJ-ARIMA model. It is 
permissible to first deseasonalize the data using one of the standard 
methods, build a UBJ-ARIMA model of the deseasonahed series, 
then apply the seasonal adjustment factors to the deseasonalized 
forecasts. However, it is much preferable to incorporate the seasonal 
pattern into the ARIMA model. 

The standard multiplicative seasonal model (discussed in Chapter 
11) usually produces satisfactory results. When in doubt, the analyst 
should compare the results of the multiplicative and additive forms. 
An advantage of the multiplicative form is that the stationarity and 
invertibility conditions are more easily checked because they apply 
separately to the seasonal and nonseasonal parts of the model. 
(Case 14 is an example of an additive seasonal model.) 

Most seasonal processes in economics are autoregressive or mixed 
( A M )  in the seasonal component. The autoregressive element 

- 1 . 0 1  
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- -  
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l . O T  f 
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often appears only in the form of seasonal differencing which forces 
the AR coefficient at the seasonal lag to equal 1.0. 
A stationary AR process has a theoretical acf showing exponential 
decay or a damped sine wave. The corresponding theoretical pacf 
has spikes followed by a cutoff to zero; the lag length of the last 
significant pacf spike equals the AR order of the process. [Figure 
12.1 shows examples of theoretical acfs and pacfs for stationary 
AR( 1) and AR(2) processes.] 
An MA process has a theoretical acf with spikes followed by a 
cutoff to zero. The lag length of the last acf spike equals the M A  
order of the process. The corresponding theoretical pacf has ex- 
ponential decay or a damped sine wave. [Figure 12.2 shows exam- 
ples of theoretical acf s and pacf s for MA( 1) and MA(2) processes.] 
A stationary A R M  process has a theoretical acf and pacf both of 
whch tail off toward zero. The acf tails off after the first q - p lags 
with either exponential decay or a damped sine wave. The pacf tails 
off after the first p - 4 lags. [Figure 12.3 shows examples of 
theoretical acfs and pacfs for stationary A R M (  1.1) processes.] 
A seasonal AR or MA process has the same acf and pacf character- 
istics as the corresponding nonseasonal process, but the autocorrela- 
tions and partial autocorrelations for the seasonal process occur at 
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lags which are multiples of the seasonal length. For example, a 
stationary AR seasonal process for quarterly data has a theoretical 
acf with exponential decay at lags 4,8,12,. . . , whereas an MA 
seasonal process for quarterly data has a theoretical acf with a spike 
at lag 4, but zero at subsequent seasonal lags (8,12.16, . . . ). 
It is sometimes difficult to identify a parsimonious mixed model at 
the initial identification stage. Cases 2, 4, and 5 illustrate this 
difficulty. It is sometimes helpful to first estimate a pure AR model, 
then add coefficients based on the residual acf. This procedure can 
make it easier to find a parsimonious model and can help avoid 
coefficient near-redundancy. (Case 4 illustrates the usefulness of 
this technique.) 
The order of a model determines only the maximum number of 
coefficients to be estimated, not the total number. For example, an 
MA(2) model always contains a 6, coefficient, but it may or may 
not contain a 8, coefficient. Thus both of the following are MA(2) 
models: 

f, = (1 - e p  - e 2 B 2 ) a ,  

z, = (1  - e , B 2 ) a ,  

(12.1) 

(12.2) 

[Case 2 shows an example of a model similar to (12.2).] 
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Unfortunately, some computer programs for estimating ARIMA 
models automatically estimate all coefficients up to and including 
the one whose subscript is equal to the order of the model. For 
example, if the user specifies an MA(2) model, a program of this 
type automatically estimates model (12.1). Such programs should be 
avoided because they may force us to estimate and forecast with 
nonparsimonious models. 
Some computer programs require the user to enter initial estimates 
for the AR and MA coefficients. Using 0.1 for all initial estimates 
gves good results in many cases. Better initial estimates, as shown 
below, may be obtained from the estimated acf and pacf used to 
identify the model. Remember that rk is the estimated autocorrela- 
tion coefficient at lag k,  while i k k  is the estimated partial autocorre- 
lation coefficient at lag k. Note that initial MA estimates are the 
negatives of the corresponding rk values. 

25. 

Coefficient Requiring 
Model Initial Estimate Initial Estimate 

A w l )  i l  rl 
i, i l  I 

6 2  6, 
MA( 1) 4, - rl 
MA(2) 8, - rl 

8 2  - ‘2 

26. At the estimation stage one should be wary of retaining an esti- 
mated coefficient whose absolute t-value is much less than 2.0, 
especially if it occurs at a lag other than 1, 2, or the seasonal lag. 

27. With differenced data include a constant term (let the mean of the 
differenced series be nonzero) only if there is reason to think the 
series has a deterministic trend. After proper differencing, data 
outside the physical sciences usually have a mean that is not 
significantly different from zero; when the mean is zero, the result- 
ing model has a constant term of zero and any trend in the forecasts 
will be purely stochastic. 

When the program estimates the mean simultaneously with the 
AR and MA coefficients, the decision may be made empirically by 
examining the statistical significance of the estimated mean and 
constant. Ideally, a deterministic trend is also interpretable. (See 
Cases 6 and 15 for models with significant deterministic trends. In 
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Case 6 this result gives a nonsense model, the statistical sipficance 
of the estimated constant notwithstanding; in Case 15 the presence 
of a deterministic trend is defensible.) 

28. Table 12.2 summarizes the practical warning levels for absolute 
t-values in estimated acf s. 
(a) At the idenrificarion stage pay attention to nonseasonal autocor- 
relations with absolute 1-values in excess of about 1.6. Coefficients 
at these lags often prove to be statistically significant at the estima- 
tion phase. 
@) At the ia'enrificarion and diagnosric-checking stages pay atten- 
tion to seasonal awocorrelations with absolute t-values in excess of 
about 1.25. The corresponding estimated AR or MA seasonal 
coefficients are often highly significant at the estimation stage. If 
the residual acf shows statistical zeros at the seasonal lags 
(s, 2s, . . . ), the same t-value warning level (absolute value > 1.25) 
also applies to half-seasonal lag residual autocorrelations (lags 
O h ,  1.5s, . . . ) and to residual autocorrelations contiguous to the 
seasonal lags (lags s + 1, s - 1,2s + 1,2s - 1, . . . ). (See Case 12 
for an example of an estimated half-seasonal MA coefficient that is 
significant despite its corresponding residual autocorrelation being 
insignificant at the 5% level.) 
(c) At the diagnostic-checking stage when examining residual auto- 
correlations consider estimating coefficients at the short lags (1, 2, 

Table 12.2 Practical warning levels for absolute z-vahres 
in estimated acfs 

Identification Stage Diagnostic-Checking Stage 
acf Lag (initial estimated acf) (residual acf) 

Short 
(1.2, perhaps 3) 1.6 1.25 

Seasonal 
(s,2s,  ... ) 1.25 1.25 

Near-seasonal' - 
(s - 1,s + 1,2s - I ,  
2s + I ,  . . . ) and half-seasonal 
(OSS, 1.5s. ... ) 

1.25 

All others 1.6 1.6 

'Nore: Focus on the near-seasonal or half-seasonal lags only after the seasonal lag 
(s, 2s, . . . ) autocorrelations are rendered insignificant by seasonal differencing or 
by including seasonal AR or MA coefficients in the model. 
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and perhaps 3) if the corresponding absolute t-values in the residual 
acf exceed about 1.25. The short-lag residual autocorrelation t- 
values are sometimes seriously underestimated by the standard 
formula (Bartlett’s approximation). 
(d) In all cases the absolute t-value warning level for partial 
autocorrelations is 2.0. 

29. When reformulating a model based on the residual acf. add one 
coefficient at a time to achieve more-parsimonious results. This 
procedure also helps avoid coefficient near-redundancy, a potential 
problem when adding AR and MA coefficients simultaneously. 
Furthermore, adding just one coefficient wdl sometimes clear up 
many other residual autocorrelations. (Case 13 illustrates how useful 
this practical rule can be.) 

30. Examine a plot of the residuals from any final ARIMA model. This 
can give clues about misrecorded data, or it can lead to greater 
insight into the causes of variation in the data. (Case 2 illustrates 
the latter phenomenon.) 

31. Be wary of using an ARIMA model to forecast if the estimated 
coefficients have absolute correlations of 0.9 or higher. In such cases 
the coefficient estimates tend to be unstable: they are highly depen- 
dent on the particular realization used, and slight changes in the 
data pattern can lead to widely differing estimates. 

32. The ultimate test of a model is its ability to forecast. While we 
should give preference to common, low-order models, an unusual 
model should be used if it regularly forecasts better. 
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CASE STUDIES: INTRODUCTION 

The following 15 case studies are designed to show how to construct 
ARIMA models by following the practical rules summarized in Chapter 12. 
You are encouraged to review that chapter frequently as you work through 
the cases. You might also try building an ARIMA model yourself for each 
series before reading the case study. Then you can compare your own 
efforts with the procedures and results presented here. 

Most of the data in the cases are taken from economics and business 
.situations. But the methods of analysis presented here also apply to time- 
series data that arise in other contexts such as engineering. chemistry, or 
sociology, for example. The first four cases (Group A) involve stationary. 
nonseasonal data series. The next four (Group B) illustrate nonstationary 
models, but still without seasonal variation. The last seven cases (Group C) 
all involve realizations that are both nonstationary and seasonal. Within 
each group the cases move from easier to more complicated ones. 

Some of the data in the first eight cases have been seasonally adjusted 
prior to analysis. This has been done onb to create series that would be 
relatively easy to analyze for the beginning modeler. It must be emphasized 
that it is preferable in practice to account for seasonal patterns within an 
ARIMA model rather than removing the seasonal element first. 

Most of the series analyzed here are relatively short ( n  < 100). Thls was a 
conscious choice since there are so many practical situations when the 
analyst must contend with a moderate sample size. 

Some readers may delve into the case studies before completing Chapters 
1-12. Although each case contains material drawn from later chapters, 
many cases can be read with benefit after the reading of selected chapters. 
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Here is a suggested schedule: 

1. After Chapters 1-4, read Cases 1-4. 
2. After Chapter 6, review Cases 1-4. 

3. After Chapter 7, read Cases 5-8. 
4. After Chapter 9, review Cases 1-8. 
5. After Chapter 11, read Cases 9- 15. 

Since some readers may get into Cases 1-4 before reading Chapter 5 on 
backshift notation, models in those cases are presented in both backshift 
and common algebraic form. In Cases 5-15 all models are written in 
backshift form only. 

Any realization can be modeled in more than one way. No claim is made 
here that the final models in the case studies are the only defensible ones. 
You may discover alternatives that also provide good representations of the 
data. The author will appreciate hearing from readers who find superior 
alternatives. 
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CASE 1. CHANGE IN BUSINESS 
INVENTORIES 

In this case we analyze the quarterly change in business inventories, stated 
at annual rates in billions of dollars. We examine 60 observations covering 
the period from the first quarter of 1955 through the fourth quarter of 
1969. * 

For pedagogical reasons the data used in this case study have been 
seasonally adjusted. As noted in the Introduction to the case studies, this 
has been done in some of the first eight cases only to create series that are 
relatively easy to analyze. The better practice is to include seasonal terms 
directly in the ARIMA model as we do in Cases 9-15. 

Figure C1.l is a plot of the seasonally adjusted data. A casual examina- 
tion suggests that the series is stationary. The observations seem to fluctuate 
around a fixed mean, and the variance seems to be constant over time. 
However, we must withhold judgment about stationarity of the mean until 
we examine the estimated acf and perhaps some estimated AR coefficients. 

Identification. Figure C1.2 is the estimated acf and pacf for the undif- 
ferenced series. Box and Jenkins [ 1 J suggest that the most autocorrelations 
we may safely examine is about one-fourth of the number of observations. 
With 60 observations we may calculate 60/4 = 15 autocorrelations. The 
computer program used for t h s  analysis limits the number of partial 

‘The original series is found in Business Condinom Digesi. November 1979, p. 97. 
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Figure C1.l Change in business inventories, 1955- 1969. 
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autocorrelations to the number of autocorrelations, so we also find 15 
partials. Fifteen partial autocorrelations should be more than adequate since 
usually only the first few partials are helpful, especially when we have data 
without seasonal variation. Partials are useful primarily for identifyng the 
AR order of a model (the value of p for a nonseasonal model, or p and P for 
a model with a seasonal component). 

Consider the estimated acf in Figure C1.2. Only the first three autocorre- 
lations are significantly different from zero at about the 5% level: only the 
first three spikes in the acf extend beyond the square brackets. The position 
of those brackets is based on Bartlett’s approximation for the standard error 
of estimated autocorrelations as discussed in Chapter 3. The brackets are 
placed about two standard errors above and below zero. 

+ + + + + + + + + + + + + AUTOCORRELATIONS + + + + + + + + + + + + + 
+ FOR DATA SERIES: CHANGE IN BUSINESS INVENTORIES + 
+ DIFFERENCING: 0 PEAN = 6.095 + 
+ DATA CWNT = 60 STD DEV = 4. 55889 + 
C M F  T-VAL LAC 0 
0.69 5. 34 1 c 0>>>>>3>>>>>>>>>>> 
0. 53 2. 92 2 1. 0>>>>>>>>>3>>> 
0. 45 2. 19 3 c 0>>>>>>>>>3> 
0.33 1. 50 4 c O>>>>>>>> 3 
0.33 1 . 4 4  5 c O>>>>>>>> 3 
0.29  1.23 b c o>>>>>>> 3 
0.24 1.01 7 c O>>>>>> 3 
0 .21  0.  86 8 c O>>>>> 3 
0.21 0.85 9 c O>>>>> 3 
0 .29  1. 17 10 c O>>>>>>> 3 
0.  34 1.31 11 c O>>>>>>>> 3 
0.31 1 16 12 c O>>>>>>>> 3 
0.27 0.99 13 c O>>>>>>> 3 
0. 14 0 .52 14 c O>>>> 3 
0 .  04 0. 20 15 c O> 3 
CHI-SQUARED. = 122.03 FOR DF = 15 

+ + + + + + + + + + + PARTIAL AUTOCORRELATIONS + + + + + + + + + + + 
COEF T-VAL LAC 0 
0.69 5. 34 1 c O>>>>>I>>>>>>>>>>> 
0.10 0 . 7 6  2 c 0>> 3 
0. 10 0.74 3 c 0>> 3 

-0 .04  -0.47 4 c <<o 3 
0. 15 1. 18 5 c o>>>> 3 

-0.01 -0.05 6 c 0 3 
0.01 0 05 7 c 0 3 

-0.01 -0.11 8 c 0 3 
0. 08 0. 64 9 c 0>> 3 
0.20 1.53 10 c 0>>>>>3 
0.09 0.67 11 c o>> 3 

-0 .05  -0.35 12 E <o 3 
-0 .04  -0.28 13 c co 3 
-0. 18 -1.39 14 c <ccco 3 
-0.09 -0. 72 15 c cco 3 

Figure C1.2 Estimated acf and pacf for the realization in Figure Cl . l .  
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The autocorrelations decay to statistical insignificance rather quickly. We 
conclude that the mean of the series is probably stationary. An AR model 
seems appropriate because the acf decuys toward zero rather than cutting off 
sharply to zero. If the acf cuts off to zero, it suggests a moving-average 
model. (See Chapters 3, 6, and 12 for examples of theoretical acfs and 
pacf s.) 

A decaying acf is also consistent with a mixed (ARMA) model. But 
starting with a mixed model is often unwise for three reasons. First, it is 
often difficult to correctly identfy a mixed model initially. The mixed 
nature of a realization frequently becomes more clear at the diagnostic- 
checking stage. Second, the principle of parsimony suggests that we try a 
simple AR or MA model before considering a less-parsimonious mixed 
model. This is especially important since the estimated acf and pacf are 
rather crude guides to model choice. Finally. starting immediately with a 
mixed model may lead to coefficient redundancy as discussed in Chapter 8. 

We have tentatively selected an AR model to represent the data. But an 
AR model of what order? Experience and the principle of parsimony 
suggest a low-order model, with p = 1 or p = 2. The estimated pacf should 
help us make the decision. 

The estimated pacf is useful primarily for choosing the order of an AR 
model. An AR( 1) is associated with a single spike in the pacf followed by a 
cutoff to zero. An AR(2) has two spikes in the pacf, then a cutoff to zero. 
The estimated pacf in Figure C1.2 suggests an AR(1). It has one spike at lag 
1 which is significantly different from zero at about the 5% level, then it cuts 
off to zero. The 5% significance level is shown by the square brackets on the 
pacf. Only the partial autocorrelation at lag 1 extends past the brackets. 

Based on the preceding analysis, we tentatively choose an AR(1) model 
to represent the available data. This model is written as* 

(1 - $,B)P, = a, (C1 . l)  

or 

Estimation. Figure C1.3 shows the results of estimating model (Cl.1). 
The computer program estimates p (the process mean) and simulta- 
neously. When the mean is estimated in th is  way, the result is usually not 

'Recall that ?, is tbe deviation of 2, from p: I, = ( i ,  - p )  
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much different from the arithmetic mean of the realization (7). In t h s  case 
P = 6.095 while the estimate from the program is f i  = 6.19155. The ad- 
vantage of estimating p simultaneously with the other parameters is that we 
may then test the mean and the constant term for statistical sigmficance. As 
discussed in Chapter 8, 9 ,  and p are estimated using the least-squares 
criterion. 

In Figure C1.3 we see that 6 ,  = 0.690 and fi  = 6.19155. Then the 
estimated constant is found to be = f i (  1 - 6 , )  = 6.19155 ( 1  - 0.690) = 

1.9209 1. 
This model satisfies the stationarity requirement l6,l < 1.0. 6,  is also 

significantly different from zero at better than the 5% level since its absolute 
1-value (7.21) is greater than 2.0. As discussed in Chapter 8, we find this 

+ + + + + + + + + +€COSTAT UNIVARIATE B-J RESULTS+ + + + + + + + + + 
+ FOR DATA SERIES: CHANCE I N  BVSINSS INVENTORIES + 
+ DIFFERENCING: 0 DF = 57 + 
+ AVAILABLE: DATA = 60 BACKCASTS * 0 TOTAL = 60 + 
+ USED TO FIND SSR: DATA = 59 BACKCASTS * 0 TOTAL 59 + 
+ (LOST WE TO PRESENCE OF AUTOREGRESSIVE TERNS: 1) + 

COEFFICIENT ESTIMTE STD ERROR T-VALVE 
PHI  1 0. 690 0. 096 7.21 
CONSTANT 1.92091 . 731404 2. 62633 

HEAN 6. 19155 1. 4181 4.3661 

ADJUSTED R H K  = 3. 37903 E A N  ABS X ERR = 73. 50 
CORRELATIONS 
1 2 

1 1 . 0 0  
2 0.02 1.00 

++RESIDUAL ACF++ 
COEF T-VAL LAC 0 

-0.07 -0. 51 1 <<<<<<<O 
-0.01 -0. 07 2 (0 

-0. 10 -0. 72 4 <<<<<<<<<<o 
0.  13 1.02 3 O>>>>>>>>>>>>> 

0 .11 0.79 5 O>>>>>i>>>>> 
0 .07  0. 48 6 O>>>>>>> 
0.02 0.10 7 O>> 

-0.01 -0. 09 8 (0 
-0.07 -0. 55 9 <<<c<c<o 
0.11 0.79 10 O>>>>>>>>>>> 
0. 14 1.04 11 O>>>>>>>>>>>>>> 
0.05 0.37 12 O>>>>> 
0. 16 1. 11 13 O>>>>>>>>>>>>->>>> 

-0.02 -0. 16 14 <<O 
-0.07 -0. 51 15 <<<<<<<o 

CHI-SQUARED+ 8. 53 FOR DF = 13 

Figure C13 Estimation and diagnostic-checking results for model (Cl.1). 
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1-statistic by testing the null hypothesis H, : = 0 as follows: 

6, -0 
461 1 

t = -  

0.690 
0.096 

=- 

= 7.21 

where s(&) is the estimated standard error of 4, taken from the printout in 
Figure C1.3. 

The mean absolute percent error for this model is quite large (73.50%). 
This is partly because the original observations are small in absolute value. 
Each residual (4,) from the estimated equation is being divided by a 
number ( 2 , )  that is relatively close to zero. 

Diagnostic checking. To determine if model (Cl.1) is statistically ade- 
quate, we test the random shocks u, for independence using the residuals 4, 
from the estimated equation. The residuals are estimates of the random 
shocks, and these shocks are assumed to be statistically independent. We 
use the estimated acf of the residuals to test whether the shocks are 
independent. With 59 residuals we may examine about 59/4 or 15 residual 
autocorrelations. (See Chapter 9 for a discussion of the residual acf.) 

The residual acf appears below the estimation results in Figure C1.3. 
None of the residual autocorrelations has an absolute f-value exceeding the 
warning levels summarized in Chapter 12 (1.25 at lags 1, 2, and 3 and 1.6 
elsewhere). Furthermore, according to the chi-squared test the residual 
autocorrelations are not significantly different from zero as u set. The 
estimated chi-squared statistic shown at the bottom of the residual acf is not 
significant. For 13 degrees of freedom, this statistic would have to exceed 
19.81 to indicate statistical dependence in the random shocks at the 10% 
level. (The chi-squared statistic used here is based on the Ljung-Box 
statistic as discussed in Chapter 9.) 

Model (C1.l) is satisfactory: 6, meets the stationarity requirement and is 
statistically different from zero, is significant and the shocks appear to be 
independent according to both the t-tests and the chi-squared test. We have 
found a good model according to the first five criteria summarized in Table 
4.1. Therefore, we may move to the forecasting stage. 

Forecasting. Forecasts for lead times 1 = 1, 2, 3, and 4 from origin 
I = 60 appear in Table C1.l along with 80% confidence intervals for the 
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true, but unobserved, changes in business inventories. The last two columns 
have n.a. (not available) because we used all 60 observations at the estima- 
tion and forecasting stages. The forecasts are for the first quarter of 1970 
through the fourth quarter of 1970, but our last available observation is the 
fourth quarter of 1969. Therefore, the differences between the forecast and 
the observed values are not available after 1969. 

The forecasts are gradually converging toward the estimated mean 
(6.19155). As discussed in Chapter 10, this happens with all ARIMA 
forecasts of stationary series. 

Additional checks. There are some further checks we can perform to 
determine how much confidence we might place in the forecasting ability of 
model (Cl.1). These checks are informal, but can be quite helpful. 

One check as discussed in Chapter 9 is to examine a plot of the 
estimation-stage residuals. A model could fit an entire data set rather well, 
but fit the distant past or the recent past very poorly. If a model fits the 
data well on average but fits the early part of the realization poorly, the 
early values may have been generated by a different process. We might then 
drop the early values and return to the identification stage. Alternatively, if 
a model fits poorly immediately before the time when forecasts must be 
made, we should be wary. The statistics describing the overall fit of the 
model (the RMSE and mean absolute percent error) may overstate the 
forecast accuracy we can expect if the fit has deteriorated over the recent 
past. 

The residuals from model (Cl.1) are plotted in Figure C1.4. Neither the 
very early ones nor the very recent ones seem any larger, on average, than 
we might expect based on the adjusted RMSE and mean absolute percent 
error. 

Table C1.l Forecasts from model (C1.l) 

Percent 
80% Confidence Limits Future Forecast 

Time Forecast Values Lower Upper Observed Values Errors 

70 1 6.1974 1.8722 10.5225 n.a.O n.a. 
2 6. I956 0.9413 11.4498 n.a. n.a. 
3 6.1943 0.55 15 I 1.837 I n.a. n.a. 
4 6. I935 0.3749 12.0120 n.a. ma. 

‘n.a. = not available. 
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CHANOE IN BUSINESS INVENTORIES RESIDUALS 
--DIFFERENCINC: 0 
--EACH MRTICAL AXIS INTERVAL = .2985 
Low = ruN= HIOH = 
-8.74944 .265897E-05 5. 57852 
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e THIS RESIDUAL FALLS OUTSIDE 2 STD MV LIMIT 

Figure C1.4 Residuals from model (Cl.1). 
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Another check is to drop the last few observations (e.g., the last 10% of 
the data set), reestimate the model, check the reestimated coefficients for 
stability, and “forecast history.” Figure C1.5 shows the results of reestimat- 
ing (Cl.1) with only the first 56 observations. 

This check gives satisfactory results in three ways. First, 6, is virtually 
unchanged. A useful rule of thumb is that a coefficient is stable if the 
reestimated value falls within about 0.1 of the original estimate. The 
reestimation check in t h s  case is satisfactory according to this guideline. 

Second, the residual acf in Figure C1.5 shows no drastic change from the 
one in Figure C1.3. If one or more residual autocorrelations become highly 
significant just because a few observations are dropped, we might doubt the 
stability of the model. 

+ + + + + + + + + +€COSTAT UNIVARIATE B-J  RESULTS+ + + + + + + + + + 
+ FOR DATA SERIES: CHANCE I N  BUSINESS INVENTORIES + 
+ DIFFERENCINQ: 0 DF = 53 + 
+ AVAILABLE: DATA = 56 BACKCASTS = 0 TOTAL = 56 + 
+ USED TO F I N D  SSR: DATA = 55 BACKCASTS = 0 TOTAL = 55 + 
+ (LOST DUE TO PRESENCE OF AUTORECRESSIVE TERMS: 1 )  + 

COEFFI C I ENS ESTIMATE STD ERROR T-VALUE 
PHI 1 0.698 0.090 7 10 
CONSTANT 1. 01072 . 730834 2. 4776 

MEAN 5. 99151 1.50087 3. 99203 

ADJUSTED RMSE = 3. 36176 *AN ABS X ERR = 70. 59 
CORRELATIONS 
1 2 

1 1.00 
2 0. 04 1. 00 

++RESIDUAL ACF++ 
CMF T-VAL LAC 0 

-0. 07 -0. 51 1 c<c<<<co 
0 . 0 0  -0.02 2 0 
0.  15 1.09 3 O>>>>>>>>>>>>>>> 

-0. 13 -0.91 4 <<<c<cc<cc<<<o 
0. 10 0 .69  5 O>>>>>>>>>> 
0. 12 0 . 0 5  6 O>>>>>>>>>>>> 

-0.04 -0.31 7 <<<<o 
-0.02 -0. 12 0 ( ( 0  
-0.01 -0.08 9 co 
0.07 0.47 10 O>>>>>>> 
0. 07 0. 50 11 O>>>>>>> 
0. 05 0 .  34 12 O>>>>> 
0. 14 0. 90 13 O>>>>>>>>>>>>>> 

-0.01 -0 .07 14 (0  
-0 .05 -0.33 15 <<<<co 

Figure CIS Estimation and diagnostic-checking results for model (Cl.1) using the 
first 56 observations. 

CHI-!SQUARED* = 6.00 FOR DF = 13 
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Third, the model based on the shorter data set is able to forecast history 
fairly well. Since we did not use the last four observations in our reestima- 
tion, we can compare the forecasts from this model with the four available 
“future” observations. The percent forecast errors in the last column of 
Table C1.2 are all smaller than the overall mean absolute percent error, and 
the 80% confidence limits established around the forecast values contain 
three of the four observed values. 

A digression on seasonality. A confession is in order: to simplify this 
case study, we passed over an important practical step. It is wise to examine 
the acf of the nonseasonal first differences even if differencing does not 
seem necessary to induce stationarity. This often allows a seasonal pattern 
to show through more clearly. (See Chapter 11 for a discussion of seasonal 
models.) This step is especially valuable when the original estimated acf has 
a decaying (AR or ARMA) pattern. Even when data are seasonally adjusted 
there may be a seasonal factor remaining in the data if the adjustment is 
faulty. 

Figure C1.6 is the acf and pacf for the first differences of the seasonally 
adjusted business-inventory data. With quarterly data the seasonal lags are 
multiples of 4, that is, 4,8,12,. . . . The spike at lag 4 has an absolute I-value 
greater than 1.25 (the practical warning value at seasonal lags), so there 
might be some seasonal variation remaining in the adjusted data. A seasonal 
MA(l), pattern is implied for the seasonal element since the acf cuts off to 
zero at lag 8, while the pacf decays from lags 4 to 8. Estimation results (not 
shown) did not produce a significant seasonal coefficient. This result is 
consistent with the residual acf for model (C1.1) in Figure C1.3 which shows 
no seasonal pattern. 

Table C1.2 Forecash from model (C1.l) using the first 56 observations 

Percent 
80% Confidence Limits Future Forecast 

Time Forecast Values Lower Upper Observed Values Errors 

69 1 6.7650 2.4619 11.0681 8.3000 18.49 
2 6.53 12 1.2841 11.7783 10.2000 35.97 
3 6.368 I 0.7182 12.0181 13.3000 52.12 
4 6.2543 0.4 183 12.09O3 6.2000 - 0.88 
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+ + + + + + + + + + + + + AUTOCORRELATIONS + + + + + + + + + + + + + 
+ FOR DATA SERIES: CHWOE IN BUSINESS INVENTORIES + 

+ D A T A  CWNT = 59 STD DEW = 3.61458 + 
+ DIFFERENCINO: 1 WAN = .305085€-01 + 

COEF T-VAL LAO 0 
-0 24 -1.62 1 <<<<<<<<<<<<<<<<<<<<<<<<O _ _  
-0. 13 -0.95 2 <<<<<<<<<<<<<o 
0.06 0.43 3 O>>>>>> 

0.06 0. 40 5 O>>>>>> 
0.02 0. 11 6 0>> 

-0. 19 -1.37 4 . . . . . . . . . . . . . . . . . . . .  

-0. 02 -0. 17 7 <<O 
-0.06 -0. 40 8 <<<<<<O 
-0. 14 -0.94 9 <<<<<<<<<<<<<co 
0.07 0 .47  10 O>>>>>>> ~~ . .  

0. 11 0. 72 11 o>>>>>>>> >> 
0.00 0.03 12 0 
0. 14 0.95 13 0>>>>>>>>>>>>3> 

- 0 . 0 5  -0.36 14 <<<<<O 
-0. 10 -0.67 15 <c<<<<<<<<o 

CHI-SWARED+ 12. 90 FOR DF = 19 

+ + + + + + + + + + + PARTIAL AUTOCORRELATIONS + + + + + + + + + + + 

C M F  T-VAL LAC 0 
-0.24 -1.82 1 <<<<<<<<<<<<<<<<<<<<<<<<O 
-0.20 -1. 52 2 . . . . . . . . . . . . . . . . . . . . .  
-0.03 -0. 20 3 <<<O 
-0. 23 -1 76 4 <<<<<<<~<<<<<<<<<<<<<<<O 
-0.06 -0. 45 5 <<<<<<O 
-0 07 -0. 50 6 <<<<<<<O 
-0.04 -0 32 7 <<<<O 
-0. 14 -1. 09 8 <<<<<<<<i<<<c<o 
-0.24 -1.85 9 <<<<<<<<C<<<<<<<<<<<<<C<O 
-0. 12 -0. 89 10 <<<<<C<<(<~<O 
0.00 0 .00  11 0 

-0.02 -0. 15 12 <<o 
0. 12 0. 91 13 O>>>>>>>>>>>> 
0.04 0. 33 14 O>>>> 

-0. 03 -0. 24 15 ccio 
Figure C1.6 Estimated acf and pacf for the first differences of the realization in 
Figure C1.1. 

Final comments. We now make the following points: 

1. The analyst must yet decide if model (Cl.1) gives sufficiently accu- 
rate forecasts. This depends on the purposes of the forecasts. The 
analyst wanting more accurate forecasts should choose other fore- 
casting methods and compare their accuracy with the results of the 
ARIMA model. 

2. As pointed out in Chapter 1, ARIMA models are especially suited to 
short-term forecasting. In general, an ARIMA model should be 
updated as new data become available. Ideally, this means repeating 
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the entire cycle of identification, estimation, and diagnostic checking. 
Often this cycle can be repeated quickly with new data because the 
original model provides a good guide. 

3. The technique of backcasting (discussed in Appendix 8B) is im- 
portant when estimating models with seasonal coefficients. For mod- 
els with no seasonal component, the advantages of backcasting are 
modest and may not be worth the additional computational costs. 

We estimated (C1.l) without using backcasting. Figure C1.7 shows 
the results of using backcasting to estimate the same model. As 
shown at the top of h s  figure, 15 backcasts were produced, thus 
providing 15 additional “observations.” The estimated coefficient &, 

+ + + + + + + + + +ECOSTAT UNIVARIATE 8-J RESULTS+ + + + + + + + + + 
+ FOR DATA SERIES: CHANGE I N  BUSINESS INVENTORIES + 
+ DIFFERMCINC: 0 W = 58 + 
+ AVAILABLE. DATA = 60 BACKCASTS = 15 TOTAL = 75 + 
+ USED TO FIND SSR: DATA = 40 BACKCASTS = 14 TOTAL = 74 + 
+ (LOST W E  TO PRESENCE OF AUTOREQRESSIVE TERWS: 1) + 

C M F F I C  IENT ESTIMATE STD ERROR T-VALVE 
PHI 1 0. 691 0. 095 7. 29 
CONSTANT 1. 84442 . 69199 2. 69429 

MEAN 6. 04071 1 2624 4 7051 

ADJUSTED RMSE = 3.352 MEAN ABS X ERR 5 73 49 
CORRELATIONS 
1 2 

1 1 .00  
2 0.00  1 00 

++RESIDUAL ACF++ 
COEF T-VAL LA6 0 

-0 .07 -0. 53 1 ;<<<<<a 
-0 01 -0 08 2 (0  

-0 10 -0 73 4 <<<<<<<<<a 
0 13 1 01 3 O>>>>>>>>>>>>> 

0 I t  0 79 5 O>>>>Y>>>>>> 
0 06 0 40 6 O>i>”>> 
0 02 0 17 7 O>> 

-0 01 -0 09 0 ( 0  
-0 08 -0 55 9 i<<<<<<<o 
0 11 0 79 10 O>>>>>>>>>>> 
0 14 1 03 11 0>>>:,>>>>>>>>>> 
0 05 0 37 12 O>>>>> 
0 16 1 10 13 O>,’>>>>>>>>>?>>>> 

-0 02 -0 16 14 c<o 
-0 07 -0 52 15 <<<<<<<O 

Figure C1.7 Estimation and diagnostic-checking results for model (C1.1) with 
backcasting. 

CHI-SQUARED* = E 52 FOR DF = 13 
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the estimated constant, and the residual acf are all nearly the same as 
those obtained without backcasting (Figure C1.3). 

The first eight case studies in Part I1 involve data with no seasonal 
pattern or data from which the seasonal pattern has been removed. 
Models for these data sets are estimated without using backcasting. 
The models in cases 9-15 are estimated with backcasting because 
they involve data with seasonal variation. 



CASE 2. SAVING RATE 

The saving rate is personal saving as a percent of disposable personal 
income. Some economists believe shifts in thls rate contribute to business 
fluctuations. For example, when people save more of their income they 
spend less for goods and services. This reduction in total demand for output 
may cause national production to fall and unemployment to rise. 

In this case we analyze 100 quarterly observations of the U.S. saving rate 
for the years 1955- 1979. The data are seasonally adjusted prior to publica- 
tion by the U.S. Department of Commerce.* Figure C2.1 is a plot of the 
data. Visual inspection suggests that the variance is approximately constant 
through time. 

Identification. The estimated acf and pacf for the undifferenced data 
appear in Figure C2.2. About 25 autocorrelations is a safe number to 
examine since that is one-fourth of the number of observations. The 
computer program then limits us to the same number of partial autocorrela- 
tions. 

The estimated acf and pacf together suggest two things: (i) the undif- 
ferenced data have a stationary mean, and (ii) an AR(1) model is a good 
first choice to try at the estimation stage. 

A stationary mean is implied because the autocorrelations fall quickly to 
statistical insignificance: they are not statistically different from zero after 

'The series is found in the Commerce Department publication Business Condrirons Drgesi. 
November 1978, p. 103 and July 1980, p. 83. 
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lag 3 or 4. Only the first three spikes extend past the square brackets 
representing the 5% significance level, and only the first four have absolute 
r-values exceeding the practical warning level of 1.6. 

The decaying pattern in the acf suggests an AR model. An MA model 
would be implied if the acf cut off sharply to zero rather than decaying. A 
mixed model is also possible since mixed processes also have decaying acf s. 
But unless the evidence for a mixed model is strong and clear at the initial 
identification stage, we should start with a pure AR model. 

The best choice is an AR( 1) rather than a higher-order AR model for two 
reasons. First, the autocorrelations decline in approximately the manner we 
would expect for an AR(1). For an AR(1) process with (PI = 0.77, the 
theoretical autocorrelations are 0.77, (0.77)2 = 0.59, (0.77)3 = 0.46. (0.77)4 
= 0.35, and so forth. The estimated autocorrelations in Figure C2.2 follow 
t h ~ s  pattern rather closely. Of course, we cannot expect an estimated acf to 
be identical to a theoretical acf. In Chapter 3 we showed five estimated acf s 
and pacfs constructed from simulated realizations generated by a known 
AR(1) process. Those results illustrate that estimated acfs and pacfs only 
approximate their theoretical counterparts because of sampling error. 

Second, the estimated pacf supports the choice of an AR( 1) model. The 
estimated partials cut off (rather than decaying) to statistical insignificance, 
so we should consider an AR model. Because the cutoff occurs after lag 1, 
with all absolute z-values after lag 1 being less than 2.0, we should entertain 
an AR model of order one. [Theoretical acfs and pacfs for AR( 1) processes 
are presented in Chapters 3, 6, and 12.1 At the estimation stage we estimate 
this AR(1) model: 

(C2.1) 

or 

t, = c + $ q Z , - I  + a, 

Estimation and diagnostic checking. Figure C2.3 shows the results of 
estimating (C2.1). Stationarity is confirmed since 6, = 0.81; this satisfies 
the condition 161 I c 1. The large r-value attached to 6, indicates t h s  term 
should be kept in the model. (An estimated coefficient with an absolute 
r-value equal to or greater than 2.0 is significantly different from zero at 
about the 5% level.) As discussed in Chapter 5, the estimated constant is 

= fi(1 - 61). Inserting the estimated values fi and 6, we have 6.12259(1 
- 0.810) = 1.16398. We should retain the constant term since its r-value is 
substantially larger than 2.0. Thus far (C2.1) is satisfactory. We are ready 
for some diagnostic checking. 
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Figure C2.1 U.S. saving rate. 1955- 1979. 
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+ + + + + + + + + + + + + AUTOCORRELATIONS + + + + + + + + + + + + + 
+ FOR DATA SERIES:  S A V I W  RATE + 

EM4 = 6. 17 + + DIFFERENCING:  0 
+ DATA COUNT = 100 STD DEV = 1. 14083 + 

COEF T-VAL LAO 0 
0.77 7.65 1 c 0>>>>>3>>>>>>>>>>>>> 
0 .65  4.43 2 c 0>>>>>>>3>>>>>>>> 
0.49 2.79 3 c 0>>>>>>>3>>>> 
0.34 1.84 4 L 0>>>>>>>>>3 
0. 24 
0. 16 
0. 11 
0. 13 
0. 13 
0. 16 
0. 15 
0. 07 
0. 04 

-0.01 
- 0 . 0 5  
-0.09 
-0. 17 
-0.10 
-0.15 
-0. 14 
-0. 14 
-0.12 
-0.12 
-0.16 
-0. 17 

C H I  

1.24 5 
0.02 6 
0.54 7 
0.60 8 
0.65 9 
0.82 10 
0.75 11 
0.36 12 
0 . 2 0  13 

-0.06 14 
-0.25 15 
-0.43 16 
-0. 82 17 
-0.07 18 
-0.73 19 
-0.67 20 
-0.68 21 
-0. 56 22 
-0. 50 23 
-0.76 24 
-0.83 25 

-SQUARED* = 

c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
I: 
c 
c 
c 
c 
c 

190.61 FOR DF = 

O>>>>>> 
O>>>> 
O>>> 
O>>> 
O>>> 
O>>>> 
O>>>> 
O>> 
O> 
0 

co 
<co 

ccc<o 
( ( ( (0  
cc<co 
c<co 

<<<co 
c<<o 
c<<o 

<<<<O 
<<cco 

25 

1 
1 
3 
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3 
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3 
3 
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3 
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+ + + + + + + + + + + P A R T I A L  AUTOCORRELATIONS + + + + + + + + + + + 
C M F  T-VAL LAC 0 
0.77 7.65 1 c 0>>>>>3>5>:>>>>>>>>> 

c o>>>> 1 
-0. 14 -1.43 3 c <c<<o 1 
-0.09 -0. 88 4 c CCO 3 
0.01 0.10 5 c 0 1 
0.01 0. 15 6 c 0 3 
0.00 0.02 7 c 0 3 
0. 16 1.63 8 c o>>>> 3 
0.00 0.02 9 c 0 3 
0. 04 0. 41 10 c o> 3 

-0.05 -0. 52 11 c co 3 
-0.20 -1 98 12 c<<<<<o 3 
0. 03 0. 26 13 c o> 3 
0.01 0. 12 14 c 0 3 
0. 00 -0. 04 15 c 0 3 

-0.05 -0.45 16 c CO 3 
-0. 16 -1.60 17 1 <c<<o 3 
0.00 -0.01 18 c 0 3 

c o>>> 3 0. 10 1.03 19 
0.00 0.03 20 c 0 1 

-0.12 -1.22 21 c <<co 3 
0.07 0 .68  22 c o>> 3 

-0.02 -0.18 23 c 0 3 
-0.20 -2. 00 24 c <<<<co 3 
0.02 0 .22  25 c o> 3 

0. 16 1.63 2 

Figure C2.Z Estimated acf and pacf for the realization in Figure C2.1. 
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The chief tool for diagnostic checkmg is the residual acf shown at the 
bottom of Figure C2.3. Recall from Chapters 1, 4, and 9 that this acf is 
calculated using the estimation-stage residuals from model (C2.1). These 
residuals (4,) are estimates of the unobservable random shocks (a,) in 
model (C2.1). As discussed in Chapter 3, these random shocks are assumed 
to be statistically independent. We use the estimation residuals to test the 
hypothesis that the shocks of model (C2.1) are independent by constructing 

+ + + + + + + + + +€COSTAT UNIVARIATE 8-J RESULTS+ + + + + + + + + + 
+ FOR DATA SERIES SAVING RATE + 
+ DIFFERENCING 0 DF = 97 + 
+ AVAILABLE DATA = 100 BACKCASTS = 0 TOTAL = 100 + 
+ USED TO FIND SSR DATA = 99 BACKCASTS = 0 TOTAL = 99 + 
+ (LOST DUE TO PRESENCE OF AUTOREORESSIVE TERMS 1)  + 

COEFFICIENT ESTIMATE STD ERROR T-VALUE 
PHI 1 0 810 0 063 12 78 
CONSTANT 1 16398 398547 2 92056 

MEAN 6 12259 372094 16 4544 

ADJUSTED RMSE = 702547 M A N  ABS Z ERR * 8 45 
CORRELATIONS 
1 2 

1 1 00 
2 -0 06 1 00 

++RESIDUAL ACF++ 

-0 14 - 1  40 1 c cici<i<o 3 
COEF T-VAL LAC 0 

0 25 2 46 2 c O>>>>> >>>> 3 >>: 
-0 02 -0 19 3 
-0 04 -0 34 4 

0 00 -0 03 5 
-0 01 -0 10 6 
-0 14 -1 28 7 
0 07 0 68 B 

-0 04 -0 34 9 
0 12 1 04 10 
0 13 1 14 11 

-0 05 -0 40 12 
0 09 0 77 13 
0 00 -0 03 14 
0 02 0 16 15 
0 08 0 69 16 

-0 15 -1 27 17 
-0 08 -0 65 18 
-0 12 -1 OL 19 
0 06 0 49 20 

-0 14 -1 17 21 
0 07 0 59 22 
0 05 0 39 23 

-0 04 -0 30 24 
-0 09 -0 76 25 
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Figure C23 Estimation and diagnostic-checking results for model (C2.1). 
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the residual acf. If the residual autocorrelations are statistically zero, both 
individually and as a set, we conclude that (C2.1) is adequate. 

The most obvious characteristic of the residual acf is the significant spike 
at lag 2 ( I  = 2.46). It suggests that (C2.1) is not adequate because the 
residuals are significantly correlated. Significant residual autocorrelations 
are especially important when they occur at the short lags (1,2, and perhaps 
3) and at the seasonal lags. This calls for a return to the identification stage. 

Further identification. It is wise to return to the original acf and pacf 
when diagnostic checking shows a tentatively identified model to be inade- 
quate. Sometimes this reexamination brings to light characteristics that 
seemed obscure earlier. In this case hindsight analysis of Figure C2.2 is not 
very helpful. We do not seem to have overlooked anything obvious in our 
earlier analysis. Perhaps we can now see a slight wavelike decaying pattern 
in the pacf across the first four or five lags. Along with the decaying acf this 
suggests a mixed model, but the pacf still seems to cut off rather than tail 
off. Therefore, we use the residual acf in Figure C2.3 as our main guide to 
further identification. 

We have at least three choices in dealing with the residual acf spike at lag 
2. First, we might ignore it, believing that one significant autocorrelation 
out of 24 could occur just because of sampling error. But in this case we will 
not ignore it. It occurs at a very short lag and therefore merits special 
attention. Furthermore, its absolute r-value is well in excess of the residual 
acf short-lag warning value of 1.25. 

Second, we might alter model (C2.1) to include an AR coefficient at lag 
2. This is not an attractive alternative. If the residuals from (C2.1) had an 
AR structure, we would expect the residual acf in Figure C2.3 to have a 
decaying pattern. No  such pattern appears, so estimating a @2 coefficient is 
not required. Furthermore, the pacf in Figure C2.2 does not show a 
significant spike at lag 2. Thus we have two pieces of evidence leading us to 
reject the addition of a +2 coefficient. 

Third, we might estimate a 8, coefficient in addition to estimating 9,. The 
residual autocorrelation at lag 2 in Figure C2.3 is significant, but the 
subsequent autocorrelations cut off to statistical zeros. This suggests an MA 
term at lag 2 rather than an AR term. 

This choice is reinforced when we employ the substitution procedure 
discussed in Chapter 9. Let 6, represent the serially correlated random 
shocks in model (C2.1): 

( 1  - t+ ,B) i ,  = b, (C2.2) 

The single spike at lag 2 in Figure C2.1 suggests an MA(2) model (with 8, 
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constrained to zero) for b,, 

b, = (1 - 82B2)u ,  (C2.3) 

where u, is not serially correlated. Substituting (C2.3) into (C2.2) gives an 
ARMA( I ,  2) model for z, with 8, constrained to zero: 

( I  - + l B ) f ,  = ( 1  - 82B2)u,  (C2.4) 

or 

Two other alternative models deserve comment before we proceed to 
estimate (C2.4). Look again at the residual acf in Figure C2.3. The autocor- 
relation at lag 1 has an absolute r-value (1.40) larger than the relevant 
warning value (1.25). Thus we might consider an ARMA(1,l) model, or an 
ARMA( 1,2) with 8 ,  not constrained to zero. 

For the moment we choose (C2.4) over these alternatives for two reasons. 
First, the r-value of the residual autocorrelation at !ag 2 in Figure C2.3 is far 
larger than the r-value at lag 1. If these two r-values were much closer in 
absolute size, we might prefer to try a 8, coefficient before trying a 
coefficient. Second, as pointed out in Chapter 3. estimated autocorrelations 
can be highly correlated with each other. One significant autocorrelation 
can cause nearby autocorrelations to be fairly large also. In this case the 
residual autocorrelation at lag 2 is so large that it could cause the autocorre- 
lation at lag 1 to be fairly large also. 

Further estimation and diagnostic checking. Estimation results for model 
(C2.4) are shown at the top of Figure C2.4. The stationanty requirement is 
satisfied since < 1. and the invertibility condition is met because 
18, I < 1. These conditions are discussed in Chapter 6. Furthermore, both 6 ,  
and d2 have absolute 1-values greater than 2.0, so we conclude that both 
coefficients are significantly different from zero at better than the 5% level. 
Thus far ((2.4) is satisfactory, so we proceed to the diagnostic-checking 
stage. 

The residual acf appears at the bottom of Figure C2.4. For (C2.4) to be 
adequate, the residual acf should be consistent with the hypothesis that the 
random shocks ( 0 , )  are independent. We cannot observe the shocks directly. 
but the residuals (ti,) from fitting model (C2.4) to the data are estimates of 
the shocks. None of the residual autocorrelations has an absolute 1-value 
greater than our practical warning levels, and the chi-squared (Ljung-Box) 
statistic discussed in Chapter 9 is not significant at the 10% level. 
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+ + + + + + + + + +€COSTAT UNIVARIATE B-J RESULTS+ + + + + + + + + + 
+ FOR DATA SERIES: SAVINO RATE + 
+ DIFFERENCING: 0 DF = 96 + 
+ AVAILABLE: DATA = 100 BACKCASTS = 0 TOTAL = 100 + 
+ USED TO FIND SSR: DATA * 99 BACKCASTS = 0 TOTAL = 99 + 
+ (LOST DUE TO PRESENCE OF AUTOREGRESSIVE TERM: 1 1  + 

COEFFICIENT ESTINATE STD ERROR T-VALVE 
PHI 1 0.733 0.078 9. 35 
THETA 2 -0.352 0. 107 -3.29 
CONSTANT 1. 63065 ,492003 3.3143 

MEAN 6. 1133 . 341582 17. 897 

ADJUSTED RffSE = . 674023 M A N  ABS X ERR = 8.31 
CORRELATIONS 
1 2 3 

1 1.00 
2 0. 34 1.00 
3 -0. 05 0.01 1. 00 

++RESIDUAL ACF++ 

-0.03 -0.28 1 c <C<O 3 
COEF T-VAL LAC 0 

0.00 0 01 2 c 0 3 
0.04 0.37 3 c O>>>> 3 
0. 00 0. 05 4 c 0 1 
0.06 0.55 5 c O>>>>>> 3 
0.01 0.06 6 c 0, 3 

-0.11 -1.10 7 c <<<<<<<<<c<o 3 
0 .05  0.96 8 c O>>>>> 3 

-0.01 -0.12 9 c ( 0  3 
0. 13 1.30 10 c O>>>>>>>>>>>>> 3 
0.12 1 .15  11 I O>>>>>>>>>>>> 3 

-0.06 -0. 58 12 C <<<<<<O 3 
0.05 0.47 13 C O>>>>> 3 
0.00  -0.04 14 C 0 3 
0.05 0. 47 15 C O>>>>> 3 
0. 11 1.02 16 C O>>>>>>>>>>> 3 

-0. 14 -1.33 17 I C<<<<<<<<<<<<<O 3 
-0. 13 -1. 19 18 C <<<<<<<<<<<C<O 3 
-0.05 -0.47 19 C <<<<<O 3 
0.03 0.29 20 C O>>> 3 

-0. 16 -1.44 21 C <<<<<<<<<<<<<<c<o 3 
0.05 0. 41 22 C O>>>>> 3 
0. 10 0.91 23 C O>>>>>>>>>> 3 

-0.06 -0. 48 24 C <<<<<<O 3 
-0.09 -0.81 25 C <<<<<<<c<o 3 

CHI-SQUARED* = 19.94 FOR DF = 22 

Figure C2.4 Estimation and diagnostic-checking results for model (C2.4). 

Finally, our estimated coefficients are not too hlghly correlated as shown 
by the correlation matrix in Figure C2.4. Their absolute correlation (0.34) is 
less than the practical warning level of 0.9, so we are fairly confident that 
our coefficient estimates are stable. (The problem of correlated estimates is 
discussed in Chapter 8.) We conclude that (C2.4) is a good model according 
to the first five criteria summarized in Table 4.1. 
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The residual autocorrelation at lag 1 in Figure C2.4 is now much smaller 
than it was in Figure C2.3. Apparently in model (C2.1) the residual 
autocorrelation at lag 1 was correlated with the residual autocorrelation at 
lag 2. When we accounted for the residual autocorrelation at lag 2 with 
model (C2.4), we also removed nearly all of the residual autocorrelation at 
lag 1. 

Forecasting. Forecasts for lead times 1 = 1,2,. . . , 8 from origin t = 100 
appear in Table C2.1. Several points deserve emphasis. First, the first 
several forecasts are less risky statistically than the later forecasts. This is 
suggested by the smaller width of the 80% confidence intervals associated 
with the earlier forecasts. After the first forecast we are producing 
“bootstrap” forecasts as discussed in Chapter 10. This means they are based 
at least partly on previous forecasts. For example, when forecasting for the 
first quarter of 1980 (period 101), we multiply 6 ,  by the last observed z 
value (period 100) to get the AR portion of the forecast. When forecasting 
two periods ahead (for period 102), we would like to multiply 6 ,  by the 
observed value zlo,. But all we have available for that period is the forecast 
value ilol, so we use it instead. All forecasts from (C2.4) from forecast 
origin t = 100 with a lead time greater than 1 are bootstrap forecasts. Thls 
illustrates why it is desirable to reestimate UBJ-ARIMA models as new 
data become available. (See Chapter 10 for illustrations of how forecasts are 
calculated.) 

Table (2.1 Forecasts from model (C2.4) 

Time 

80 1 
2 
3 
4 

81 1 
2 
3 
4 

Forecast Values 

3.7335 
3.8876 
4.48 1 3 
4.9166 
5.2358 
5.4699 
5.6415 
5.7673 

80% Confidence Limits 
Lower Upper 

2.8708 4.5962 
2.8178 4.9574 
3.1644 5.7981 
3.4845 6.3487 
3.7453 6.7263 
3.9490 6.9907 
4.1045 7.1785 
4.22 17 7.3 129 

Future 
Observed Values 

Percent 
Forecast 
Errors 

n.a.” 
n.a. 
n.a. 
n.a. 
n.a. 
n.a. 
n.a. 
n.a. 

n.a. 
n.a. 
n.a. 
n.a. 
n.a. 
n.a. 
n.a. 
n.a. 

‘n.a. = not available. 
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Second, the forecasts are gravitating towards the estimated mean (j i  = 
6.1133). As pointed out in Chapter 10, this occurs with forecasts from all 
stationary models. How rapidly this convergence occurs depends on the 
form of the model. A model with AR terms tends to converge less rapidly to 
the estimated mean than a pure MA model. 

Additional checks. It is wise to examine the residuals from the fitted 
model. If the very early residuals are unusually large, we should consider 
dropping the early part of the realization and returning to the identification 
stage. If our model fits the recent past quite poorly, we should use our 
forecasts cautiously. 

The estimation residuals are shown in Figure C2.5: Neither the very early 
ones nor the most recent ones as a set are unusually large. However, the last 
two are noticeably negative, with the last one falling more than two 
standard deviations below the mean of the residuals. While the fit of the 
model does not deteriorate sharply over the last 10 to 15 observations, the 
model clearly does not explain very well the decline of the saving rate 
during the last half of 1979. The most notable residual occurs in the second 
quarter of 1975. We return to a discussion of this particular residual at the 
end of this case study. 

Another check is to exclude some of the later observations and reestimate 
the model to see if it is stable over time. A rule of thumb is to drop about 
the last 10% of the data set. But note in the plot of the data (Figure C2.1) 
that the observation for the second quarter of 1975 deviates sharply from 
the surrounding observations; we have also seen that the residual for this 
period is quite large. A single deviant observation can sometimes have a 
powerful effect on estimation results. Therefore, in our reestimation we 
exclude that observation and all subsequent ones, dropping a total of 30 
observations. This is a large number to exclude. But it is a bit unusual to 
find a significant MA coefficient at lag 2 without also finding one at lag 1, 
so we have reason to be concerned about whether we have identified an 
appropriate model. Excluding 30 observations should provide a good test of 
the stability of this model. 

Figure C2.6 shows the results of reestimating model (C2.4) after dropping 
the last 30 observations. Both 6, and are still highly significant. They are 
also remarkably close to the estimates shown in Figure C2.4 considering 
that we have excluded 30% of the available data. Both the reestimated 6, 
and the reestimated fall within 0.1 of their initial estimates. The residual 
acf in Figure C2.6 does not suggest that (C2.4) is inadequate for the 
shortened data set. The residual autocorrelations at lags 7 and 8 have 
r-values that are somewhat large, but they are not too disturbing. (The 
square brackets are not shown after lag 7 because they lie beyond the largest 
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value accommodated by the scale of this graph.) The results in Figure C2.6 
suggest that model (C2.4) is adequate for at least one major subset of our 
data as well as for the entire set. 

The ultimate practical test of a model is its ability to forecast. To put 
(C2.4) to this test. we drop the last eight observations, reestimate, and 
compare forecasts with observed values. See Table C2.2 for the results. The 
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Figure (2.5 Residuals from model (C2.4). 
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Figure C25 (Continued) 

forecasts are fairly accurate for one and two periods ahead but their 
accuracy declines substantially thereafter as measured by the percent fore- 
cast errors. This is evidence that UBJ-ARIMA models tend to perform best 
when used for short-term forecasting. Of course, we must remember that the 
observed values of the saving-rate series are relatively small numbers, so the 
percent forecast errors can occasionally be quite large. A better check of 



Savingrate 341 

+ + + + + + + + + +ECOSTAT U N I V A R I A T E  B - J  RESULTS+ + + + + + + + + + 
+ FOR DATA S E R I E S :  S A V I N G  RATE + 
+ D I F F E R E N C I N G :  0 Df a 6 6  + 
+ AVAILABLE:  DATA = 70 BACKCASTS = 0 TOTAL = 70 + 
+ USED TO F I N D  SSR: DATA = 69 BACKCASTS = 0 TOTAL = 69 + 
+ (LOST DUE TO PRESENCE OF AUTORECRESSIVE TERMS: 1) + 

C O E F F I C I E N T  E S T I M A T E  STD ERROR T-VALUE 
PHI 1 0. 712 0. 091 7. 82 
THETA 2 -0.427 0.121 -3. 51 
CONSTANT 1. 79085 . 569269 3. i45m 

HEAN 6.  20916 . 328539 ia. 8993 

ADJUSTED RMSE = . 557597 MEAN ABS Y. ERR = 7. 08 
CORRELATIONS 
1 2 3 

1 1.00 
2 0.37 1 00 
3 0. 04 0. C 2  1. 00 

++RESIDUAL ACF++ 
COEF T-VAL LAC 0 
0.02 0.21 1 c O>> 3 

-0. 03 -0 25 2 E <<<o 3 
0.10 0.80 3 c O>>>>>>>>>> 3 

-0.Ob -0.40 4 C <<<<:<0 3 
0. 13 1.08 5 c O>>>>>>,>>>>>> 3 

-0.08 -0.67 6 c <.::<<<;<0 3 
-0.20 -1. b i  7 C ~<~(((i~~((CC(:<:<<(O 3 
-0.20 -1 54 8 ;:i<i<:<<<c<:<<c:<<<o 
0.00  -0.01 9 0 
0. ia 1.33 10 O>>>>>>>>>>>>X>>>>> 
0.04 0. 26 11 O>>>> 

0. 14 1 01 13 O>>>>>>>>>>>>>> 
0.01 0. 06 14 O> 
0.09  0.61  15 O>>>S>>>>> 
0 .07 0.47 16 O>>>>>>> 

-0.04 -0.30 12 <<:<0 

-0. 16 -1. 12 17 <<:<<c<<:<<<<<<<o 
-0. 15 -1 .05  18 <:<<<<<<<:<<<:<0 

Figure C2.6 Estimation and diagnostic-checking results for model (C2.4) using the 
f i t  70 observations. 

CHI-SQUARED+ = 19. 44 FOR Df = 15 

forecast accuracy is to see if the estimated 80% confidence intervals contain 
the observed values. Only the intervals for forecasts seven and eight periods 
ahead fail to contain the observed value. We have already noted from the 
residuals in Figure C2.5 that even when we include the last two observations 
at the estimation stage, the model does not explain their behavior very well. 

Checking for adequacy of s e d  adjustment. To simplify the first 
eight case studies, we based them on data which initially lack seasonal 
variation or which have been seasonally adjusted. As noted at the beginning 



Table (2.2 Forecasts from model (C2.4) using tbe first 92 observations 

Percent 
80% Confidence Limits Future Forecast 

Time Forecast Values Lower Upper Observed Values Errors 

18 I 
2 
3 
4 

79 I 
2 
3 
4 

5.6327 4.7791 6.4863 
5.5283 4.5017 6.5549 
5.7871 4.5334 7.0407 
5.9599 4.6 I72 7.3026 
6.0754 4.6948 7.4560 
6. I526 4.7554 7.5498 
6.2042 4.19% 7.6087 
6.2386 4.8308 7.6464 

5.3000 - 6.28 
5.oooo - 10.57 
4.8000 - 20.56 
4.7000 - 26.8 I 
5 . m  -21.51 
5.4000 - 13.94 
4.3000 - 44.28 
3.5000 - 78.25 

+ + + + + + + + + + + + + AUTOCORRELATIONS + + + + + + + + + + + + + 
+ FOR DATA SERIES: SAVINC RATE + 
+ DIFFERENCING: 1 WAN -. 141414E-01 + 
+ DATA CWNT = 99 STD DEV = .726971 + 

COEF T-VAL LAC 
-0.26 -2.56 1 
0.21 1.93 2 

-0.09 -0.78 3 

COEF T-VAL LAC 0 
-0.26 -2.56 1 <<<t<<<<<<C<<O 3 
0.21 1.93 2 C 0>>>>>>>>>3 

-0.09 -0.78 3 c c<<<o 3 
-0. 10 -0. 86 4 t <<<<co 3 
-0.05 -0. 42 3 t <co 3 
-0 .05 -0 .41  6 c <co 3 
-0.18 -1.63 7 t <<i<<<<<co 3 
0.04 0 . 4 8  0 t O>>> 3 

-0.07 -0.40 9 c <c<o 3 
0.10 0 . 8 3  10 c O>>>>> 3 
0.11 0.91 11 t O>>>>> 3 
-0.07 -0 .63  12 r <<<<O 3 

0.09  0.74 13 I O>>?> 3 
-0. 01 -0. 08 14 c 0 3 
0.02 0.18 15 c O> 3 
0. 11 0. 91 16 I: O>>>>> 1 

-0. 13 -1. 12 17 L <<<<<<co 3 
-0.02 -0.20 18 c co 3 
-0. 12 -0. 96 19 c <<<<<co 3 
0.10 0 . 0 0  20 c O>>>>> 3 
-0. 13 -1.04 21 c C<<<<<O I 
0.11 0 . 8 9  22 I O>>>>>> 3 
0.09  0.73 23 t O>>>>> 3 
0.01 0 .06  24 c 0 3 
-0.06 -0. 50 25 c <<CO 3 

Figure C2.7 Estimated acf of the first differences for the realization in Figure C2. I .  
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CHI-SOUARED* = 33.94 FOR DF c: 25 
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of the present case, the saving-rate data are seasonally adjusted before 
publication by the US. Commerce Department. Nevertheless, we will 
consider the possibility of seasonal variation since there is no guarantee that 
the seasonal adjustment is adequate. 

Even when first differencing does not seem necessary, it is wise to 
examine the estimated acf of the first differences to check for seasonal 
variation. (Generally, this should be done at the initial identification stage. 
We bypassed this step in the present case to avoid unnecessary complica- 
tions since this is only the second case study.) Often the estimated acf of the 
first differences gives a clearer picture of seasonality since the differencing 
step filters out much of the nonseasonal variation, especially when the 
original acf has an AR pattern. 

The estimated acf for the first differences of the saving-rate data appears 
in Figure C2.7. With quarterly data the seasonal interval is s = 4. Therefore. 
we focus on autocorrelations at lags that are multiples of 4 (4.8, 12,. . . ) to 
check for a seasonal pattern. None of the autocorrelations at the seasonal 
lags in Figure C2.7 have absolute t-values exceeding the relevant practical 
warning value of 1.25, so we conclude that the U.S. Commerce Department’s 
seasonal adjustment procedure was adequate. This conclusion is reinforced 
by the residual acf for the complete model (Figure C2.4). It contains no 
significant residual autocorrelations at the seasonal lags. 

An alternative model. In this section we present an alternative to model 
(C2.4). Suppose after fitting (C2.1) we had tried an AR(2) instead of model 
(C2.4). Keep in mind that (C2.4) is more defensible than an AR(2) based on 
our analysis of the residual acf in Figure C2.3, and based on the lack of a 
significant spike at lag 2 in the pacf in Figure C2.2. But beginning analysts 
often have a difficult time choosing between AR and MA terms. It may 
therefore be instructive to examine the results of estimating this model: 

(1 - $ , B  - $ 2 B * ) r ,  = 0, (C2.5) 

or 

z ,  = c + $ , z , - ,  + +22, -2  + 0,  

Figure C2.8 shows that the results are not as satisfactory as those for 
model (C2.4). The r-value for 4, is less than 2.0 and the RMSE is larger than 
the one produced by model (C2.4). More important, the residual acf has a 
large r-value remaining at lag 2. 

Updating and forecast accuracy. We have emphasized that UBJ- 
ARIMA models are best suited to short-term forecasting and that we should 



+ + + + + + + + + +€COSTAT UNIVAAIATE B-J RESULTS+ + + + + + + + + + 
+ FOR DATA SERIES: SAVINC RATE + 
+ DIFFERENCING: 0 DF = 95 + 
+ AVAILABLE: DATA = 100 BACUCASTS - 0 TOTAL = 100 + 
+ USED TO FIND SSR: DATA = 98 BACUCASTS = 0 TOTAL = 98 + 
+ (LOST DUE TO PRESENCE OF AUTMIECRESSIVE TERHS: 2) + 

COEFFICIENT ESTIPlATE STD ERROR T-VALUE 
PHI 1 0. 468 0.102 4. 53 
PHI 2 0. 183 0. 103 1. 77 
CONSTANT .904688 . 424774 2.13452 

MEAN 4.08425 . 477098 12.7568 

ADJUSTED RHSE = . 498449 SEAN ABS Z ERR = 8.42 
CORRELATIONS 
1 2 3 

1 1.00 
2 -0.79 1 00 
3 -0.03 -0.05 1 00 

++RESIDUAL ACF++ 
C M F  T-VAL LA6 0 
0.04 0. 37 1 c O>>>> 3 
0.18 1.82 2 c o>>>>>>>>>>>:>>>>>> 3 

-0.03 -0. 26 3 c <<<O 3 
-0.09 -0. 88 4 c <<<<<<<<a 3 
-0. 05 -0. 48 5 C <<<<<O 3 
-0. 07 -0. 70 6 t c<<<<<co 3 
-0. 17 -1. 58 7 C <<<<<<<<<<<<<<<<<O 3 
0.02 0.23 8 C m> 3 

-0 .02 -0.20 9 c <<O 3 
0. 13 1.24 10 L O>>>>>>>>>>>>> 3 
0. 14 1.30 11 C O>>>>>>>>>>>>>> 3 

-0.02 -0.20 12 c <<O 3 
0.08 0.69 13 C O>>>>>>>> 3 
0.01 0. 13 14 C O> 3 
0.04 0.39 15 C O>>>> 3 
0.07 0 45 16 C O>>>>>>> 3 

-0. 14 -1.27 17 C <<<<<c<<<<<<<co 3 
-0. 12 -1.04 18 C <<<c<<c<<<<<o 3 
-0. 11 -0. 97 19 C <c<<<<<<<<<o 3 
0.03 0.23 20 C O>>> 3 

-0. 11 -0. 91 21 C <<<<<<<<<<<O 3 
0.08 0.70 22 C O>>>’,>>>> 3 
0.09 0.72 23 C O>>>>>>>>> 3 

-0.03 -0.21 24 C c<<o 3 
-0.09 -0.71 25 C <<<<<<<<<O 3 

CHI-SQUARED* =: 25.01 FOR DF = 22 

Figure C2.8 Estimation and diagnostic-checking results for model (C2.5). 
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reestimate regularly as new data become available. This can reduce or 
eliminate the use of bootstrap forecasts and improve forecast accuracy. 

Let us return to the forecasts in Table C2.2. They were generated using 
the first 92 observations. The forecast origin for all these forecasts is t = 92. 
The last seven forecasts shown there are bootstrap forecasts. Suppose 
instead we forecast only one period ahead, then reestimate by including the 
next available observation ( z ~ ~ ) .  forecast one more period ahead, then 
reestimate again with one more observation (z,), and so forth. We may 
then compare the percent forecast errors from t h i s  procedure with the 
column of percent errors in Table C2.2. The results are shown in Table 
C2.3. 

The first percent error in Table C2.3 is the same as the first percent error 
shown in Table C2.2. In both cases this is the one-period-ahead percent 
forecast error for period t = 93 (the fist  quarter of 1978). The rest of the 
percent forecast errors in Table C2.3 are based on reestimating model 
(C2.4), adding one observation each time and forecasting only one period 
ahead. In contrast, the last seven forecasts in Table C2.2 are for more than 
one period ahead. 
All the percent forecast errors in Table C2.3 are smaller than the percent 

forecast errors in Table C2.2 (except for the first one, of course, which is 
identical). This illustrates how advantageous it can be to avoid bootstrap 
forecasts by reestimating when a new observation is available and forecast- 
ing only one period ahead. It also emphasizes that UBJ-ARIMA models 
generally produce better forecasts when the lead time is short. 

Large residuals and intervention analysis. In Chapter 9 we said that 
examination of residuals can sometimes lead to insight into the causes of 

Table C2.3 one-period-pbead percent forecast e m  
for madel ((2.4) 

~~~~ ~ 

Number of One-Period-Ahead Percent 
Observations Used Forecast Errors 

92 
93 
94 
95 
% 
97 
98 
99 

- 6.28 
- 6.14 
- 10.18 
- 9.66 

0.13 
3.48 

-31.75 
-41.41 
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variations in a realization. In Figure C2.5 we saw that the residual for the 
second quarter of 1975 was especially large. A review of economic policy 
actions in 1975 shows that the U.S. Congress had formulated a tax cut by 
March 1975. This produced a windfall increase in disposable personal 
income beginning in April 1975. If the bulk of this increase in income was 
not spent on goods and services, the saving rate would have risen. This is 
what we see in the data. 

When we can identify a specific event that might be responsible for 
producing one or more large residuals, we can modify our univariate model 
accordingly by including a variable to represent that event. The result is a 
multivariate model often called an inferoenfion model. This type of analysis 
is beyond the scope of our discussion, but it represents an important 
extension of univariate Box-Jenkins analysis. The interested reader may 
consult Box and Tiao [31], McCleary and Hay [32], or Cleary and Leven- 
bach [33]. 



CASE 3. COAL PRODUCTION 

In Chapter 3 we distinguished a process from a model. A process is the true, 
but unknown, generating mechanism that could produce all possible ob- 
servations in a time series. A model is merely a way of representing the 
behavior of a certain realization. We hope that any model we build can 
mimic the underlying process, but it is unlikely to be identical to the 
process. A good model is one which adequately fits the available data with a 
small number of estimated parameters. 

It is sometimes possible to find several good models based on a single 
realization. Estimated acfs and pacfs can be ambiguous and may suggest 
two or more different models we might reasonably entertain. Furthermore, 
estimation and diagnostic-checking results may not show that one model is 
clearly superior to another: two or more models may fit the data equally 
well. Our two ultimate guides in choosing a model are the principle of 
parsimony, and the forecasting ability of the alternative models. In this case 
study we find several reasonable models, each providing a good fit to the 
available data. 

The data series in this case study is monthly bituminous coal production 
in the United States from January 1952 through December 1959, a total of 
96 observations. The data have been seasonally adjusted, but only to 
simplify the analysis since t h s  is one of the early case studies.* Remember 

'The original. unadjusted data are found on page 263 of the 1973 edition of Buriness Sforrsrrcs. 
published by the US. Department of Commerce. 
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Figure C3.1 Coal-production realization, 1952- 1959. 
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Figure C3.l (Continued) 
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+ + + + + + + + + + + + + AUTOCORRELATIONS + + + + + + + + + + + + + 
+ FOR DATA SERIES: COAL PRODUCTION + 
+ DIFFERENCINC: 0 E A N  = 37469.7 + 
+ DATACOUNT = 96 STD VEV = 4444.92 + 

COEF T-VAL LAO 0 
0.67 6. 53 1 c O>>>>>l>>>>>>>>>>>>>>>> 
0.60 4.26 2 t O>>>>>>>>>I>>>>>>>>>> 
0. 52 3. 13 3 c 0>>>>>>>>>3>>>>>>> 

c 0>>>>>>>>>>>3> 
0.31 1.65 5 c o>>>>>>>>>> 3 

c o>>>>>>>>> 3 
0.24 1.21 7 c O>>>>>>>> 3 
0.21 1.07 8 c O>>>>>>> 3 
0. 10 0. 50 9 c O>>> 3 
0. 11 0. 52 10 c m>>> 3 
0.05 0. 23 11 c 0>> 3 
0.04 0. 19 12 c O> 3 

-0.02 -0. W 13 c co 1 
0. 00 0. 00 14 c 0 3 
0.03 0. 13 15 c O> 3 

-0.01 -0.07 16 c 0 3 
0.00 0.00 17 c 0 3 

-0.04 -0. 19 10 c co 3 
-0. 08 -0.40 19 c ccco 3 
-0. 11 -0. 55 20 c CCCCO 3 
-0.22 -1.08 21 c cccccc<o 3 
-0.23 -1. 11 22 c cccccc<co 3 
-0.28 -1.35 23 c c<ccc<<<co 3 
-0. 35 -1.62 24 c <<<<.cc<ccccco 3 

0. 38 2. 09 4 

0.26 1.33 6 

CHI-SQUARED* 193.57 FOR DF = 24 

+ + + + + + + + + + + PARTIAL AUTOCORRELATIW + + + + + + + + + + + 
COEF T-VAL LAD 0 
0. 67 6. 53 1 c O>>>>>I>>>>>>>>>>>>>>>> 
0.20 2.71 2 c 0>>>>>3>>> 
0.08 0.83 3 c o>>> 3 

-0. 11 -1.08 4 c <<.cco 3 
-0.02 -0. 16 5 c co 3 

c o> 3 
0. 08 0 79 7 c o>>> 3 
0.03 0. 26 8 c o> 3 

-0. 19 -1.81 9 c <<<<co 3 
0.03 0.25 10 c 01 I 

-0. 02 -0. 24 11 c (0  I 
0.07 0.64 12 c o>> 3 

-0. 10 -0. 93 13 c ccco 3 
0.04 0.39 14 c O> I 

c o>> 3 0.07 0.67 15 
-0.04 -0.41 16 c (0  3 
0. 01 0. 11 17 c 0 3 

-0. 11 -1.06 18 c CCCCO 3 
-0. 05 -0. 52 19 c ( (0  3 
-0. 06 -0. 54 20 c cco 3 
-0. 16 -1. 62 21 c<c<cco 3 
-0.06 -0.61 22 c cco 3 
-0.07 -0.69 23 c cco 3 
-0.09 -0.92 24 c ccco 3 

0.03 0.26 6 

Figure C3.2 Estimated acf and pacf for the realization in Figure C3.1. 
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that it is desirable to account for seasonality witlun the ARIMA model. 
(Seasonal models are discussed in Chapter 11  and illustrated in Cases 9- 15.) 

The adjusted data are plotted in Figure C3.1. The variance of the series 
appears to be stationary. The mean also seems to be stationary since the 
series has no persistent trend. However, a series could have several statisti- 
cally significant changes in its overall level without showing a clear trend. 
Our tentative view that the mean is stationary must be confirmed with 
autocorrelation analysis and possibly with estimates of some AR coeffi- 
cients. 

identification. The estimated acf and pacf for the undifferenced data 
appear in Figure C3.2. With 96 observations we may safely examine about 
96/4 = 24 autocorrelation coefficients. The computer program then limits 
us to the same number of partial autocorrelation coefficients. 

The acf in Figure C3.2 indicates that the mean of the data is stationary 
since the autocorrelations drop to zero fairly rapidly. Only the first four 
exceed zero at about the 5% significance level as indicated by the square 
brackets. Furthermore, only the first five autocorrelations have absolute 
r-values exceeding the practical warning level of 1.6. While subsequent 
analysis may prove us wrong, we conclude for now that the original series 
has a stationary mean. 

Nevertheless, we will also examine the estimated acf of the first (nonsea- 
sonal) differences. We calculate the acf for the series w, = z, - z,- ,. where 
z, represents the original observations shown in Figure C3.1. Our purpose is 
to obtain a better picture of any seasonal pattern that might remain in the 
data. Although the data have been seasonally adjusted, the adjustment 
might be incomplete or excessive. If the seasonal adjustment is adequate, we 
should not find significant autocorrelations at the seasonal lags. With 
monthly data, observations 12 periods apart may be related because they 
occur in the same season, though in separate years. The length of seasonality 
is therefore s = 12, and the seasonal lags are multiples of 12 (12.24, . . . ). 
See Chapter 11 for a fuller discussion of seasonal patterns. 

In the acf for the undifferenced data in Figure C3.2, the autocorrelation 
at lag 12 is quite small, but the coefficient at lag 24 has an absolute r-value 
greater than the seasonal-lag practical warning level (1.25). These seasonal- 
lag values may be dominated by the nonseasonal pattern and may not 
clearly show the seasonal pattern. The acf of the first (nonseasonal) dif- 
ferences should provide a clearer image of any remaining seasonal pattern. 
This acf appears in Figure C3.3. Only the coefficients at lags 12 and 24 are 
relevant for present purposes. They both have absolute t-values well below 
the warning level of 1.25. We conclude that the seasonal adjustment 
procedure was adequate and we do not concern ourselves with identifying a 
seasonal pattern. 



352 Case3 
+ + + + + + + + + + + + + AUTOCORRELATIONS + + + + + + + + + + + + + 
+ FOR DATA SERIES:  COAL PRODUCTION + 
+ DIFFERENCING:  1 HEAN = -103. 463 + 
+ DATA CDUNT = 9 5  STD M V  = 3493. 65 + 

COEF 1-VAL L A 6  0 
-0 .42  -4 14 1 <<<c<:-:<':<c<c Cr<:<<<<<<o 3 
0 07 0 513 2 c 0>>> 3 
0 09 0 78 3 c O>>>>? 3 

-0 08 -0 65 4 c <c<co 3 
0 02 0 13 5 c O> 3 

-0 05 -0 44 6 c ( ( ( 0  3 
0 00 0 02 7 c 0 3 
o 04 o 32 a c 0>> 3 

-0 06 -0 49 9 c <<<O 3 
0 02 0 14 10 c O> 3 

-0 09 -0 71 11 c <<<CO 3 

-0 10 -0 04 13 c <<CC<0 3 
-0 02 -0 17 14 c <O 3 
0 09 0 74 15 c O>>.'>> 3 

-0 08 -0 63 16 c cicco 3 
0 07 0 53 17 c O>>? 3 

-0 03 -0 20 10 c ( 0  3 
0 02 0 14 19 c o> 3 
0 13 1 00 20 c O>>>'.>> 3 

-0 14 -1 12 21 c .:<<<<<<o 3 
0 09 0 72 22 c 0>>>>> 3 
0 01 0 10 23 [: O> 3 

-0 05 -0 39 24 c <<<0 3 

0 09 0 75 12 c 0>>> >; 3 

CHI-SQUARED* = 31 85 FOR DF a 24 

Figure 0.3 Eshmated acf for the first differences of the realization in Figure C3.1. 

We now return to the estimated acf and pacf in Figure C3.2. Should we 
consider fitting an AR model, an MA model, or a mixed model to the 
undifferenced data? The decaying pattern in the estimated acf suggests that 
we start with an AR model or a mixed model. Because the autocorrelations 
do not cut off sharply to statistical zeros, we have no evidence that a pure 
MA model is appropriate. Since proper identification of a mixed model at 
this stage of the analysis is often difficult, we begin with a pure AR model. 

What order AR model should we entertain? Use the estimated pacf for a 
clue. There we find two significant spikes at lags 1 and 2 followed by a 
cutoff to zero. This pacf pattern is consistent with an AR(2) model. [See 
Chapters 6 and 12 for examples of theoretical AR(2) acfs and pacfs.] 

We have tentatively identified an AR(2) model for the undifferenced 
data: 

( 1  - + , B  - +#)r, = a, (C3.1) 

or 
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Estimation and diagnostic checking. At the estimation stage we obtain 
least-squares estimates of C, @ I ,  and +2.  The results are shown at the top of 
Figure C3.4. Both 6, and 6, are significantly different from zero at about 
the 5% level since both 1-values exceed 2.0. 

The estimated coefficients also satisfy the three stationarity conditions 
for an AR(2) presented in Chapter 6. The first requirement is i&l < 1; this 

+ + + + + + + + + +€COSTAT U N I V A R I A T E  B-J RESULTS+ + + + + + + + + + 

+ FOR DATA S E R I E S :  COAL PRODUCTION + 
+ D I F F E R E N C I N G :  0 DF 5 91 + 

DATA = 96 BACKCASTS = 0 TOTAL = 96 + + AVAILABLE:  
+ USED TO F I N D  SSR: DATA = 94 BACKCASTS = 0 TOTAL * 94 + 
+ (LOST DUE TO PRESENCE OF AUTMIECRESSIVE TERMS: 2) + 

C O E F F I C I E N T  E S T I M A T E  S T D  ERROR T-VALUE 
PHI  1 0. 432 0. 099 4. 35 

' P H I  2 0. 311 0. 097 3. 22 
CONSTANT 9441. 01 2913. 8 3. 24697 

E4N 36822. 4 1237. 62 29. 7527 

ADJUSTED RMSE = 3047.82 HEAN ABS X ERR = 6.32 
CORRELATIONS 
1 2 3 

1 1.00 
2 -0.69 1. 00 
3 -0.03 -0 09 1.00 

++RESIDUAL ACF++ 
COEF T-VAL LAG 0 

-0. 02 -0. 19 1 c <<O 1 
0 .01  0 . 0 8  2 c O> 3 
0. 10 I. 74 3 c 0>>>>>>>>>>3>>2>>>>> 1 
0.01 0 .12  4 c 0, 1 
0. 04 0. 3A 5 C O>>>> 1 
0.01 0.10 L c O> 1 
0. 03 0.24 7 I: O>>> 1 
0.06 0. 55 8 C O>>>>>> 1 

-0.03 -0.25 9 C <<<O 1 
-0.03 -0. 30 10 C <<<O 3 
-0. 04 -0. 59 11 E <<<<<<O 1 

0 .04  0. 38 12 C O>>>> 3 
-0. 10 -0 97 13 C c<c<<<<<<<o 1 
-0.03 -0. 29 14 C <<<O 1 
0.07 0 . 4 5  15 C O>>>>>>> 3 

-0.04 -0. 40 14 C <<<<O 1 
0.02 0. 20 17 C O>> 1 

-0.01 -0.11 18 c <O 3 
0.04 0.38 19 C O>>>> 1 
0.09  0.  81 20 C O>>>>>>>>> 1 

-0. 11 -0 .99  21 c <<<C<<<<<C<O 3 
0.04 0. 39 22 C O>>>> 1 
0.01 0. 12 23 C O> 3 

-0.09 -0. 81 24 C <<<<<<<<<O 1 
CHI-SQUARED* = 10.80 FOR D F  = 21 

Figure Q.4 Estimation and diagnostic-checking results for model (C3.1). 
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is satisfied since 6, = 0.31 1. The second condition is 6 ,  + 6, < 1; this is 
met because the two coefficients sum to 0.743. The third requirement is 
6, - 6 ,  .c 1; ths  is also satisfied since 6, - 6 ,  = -0.121. 

Next, use the estimation residuals (6,) of model (C3.1) to test the 
hypothesis that the shocks of this model (a,) are statistically independent. 
To do so we calculate autocorrelation coefficients using the residuals from 
the estimated model. The residual acf is shown below the estimation results 
in Figure C3.4. 

Now we apply 1-tests to the individual residual autocorrelation coeffi- 
cients and a chi-squared test to the residual autocorrelations as a set. The 
only residual autocorrelation which appears at all troublesome is at lag 3; its 
1-value exceeds the practical warning level of 1.25. (Recall from Chapter 9 
that absolute r-values at very short lags in the residual acf can sometimes be 
badly underestimated by the standard formula. The warning value of 1.25 
for residual acf r-values at short lags is a practical rule to compensate for 
this occasional underestimation.) All other residual acf 1-values in Figure 
C3.4 are satisfactory, and the chi-squared statistic printed at the bottom of 
the residual acf is not significant at the 10% level for 21 degrees of freedom. 

We now must make a judgment about the residual autocorrelation at lag 
3. We might decide that one residual autocorrelation out of 24 with a 1-value 
as large as 1.74 could easily occur by chance. Then we would consider 
model (C3.1) to be adequate. Alternatively, we might be especially con- 
cerned about the residual autocorrelation at lag 3 since its t-value exceeds 
the practical warning level of 1.25 by a wide margin. And autocorrelations 
at the short lags (1, 2, perhaps 3) and the seasonal lags deserve more 
attention than those at other lags. We will pursue some additional models to 
see if we can account for the residual autocorrelation at lag 3. 

Further identification and estimation. The best modification to model 
(C3.1) is the addition of an MA term at lag 3. The original pacf in Figure 
C3.1 shows no evidence that an AR(3) model is appropriate: the spike at lag 
3 is not significant. Furthermore, the residual acf in Figure C3.4 does not 
show a decaying pattern as it should if an AR coefficient is called for. The 
one argument in favor of adding a @, coefficient is it would be consistent 
with the overfitting strategy. 

While estimating a 8, coefficient seems preferable, we first estimate an 
AR(3) model for comparison: 

or 

(C3.2) 



Coal production 355 

The estimation results for this model (not shown) indicate that 6, is not 
significantly different from zero: its r-value is only 0.85. Therefore, we 
proceed to estimate a model with an MA term at lag 3 in addition to two 
AR terms at lags 1 and 2. Ths new model is an ARMA(2,3) with 8 ,  and 8, 
constrained to zero: 

( I  - + t ~  - O ~ B ’ ) ~ ,  = ( I  - ~ , B ~ ) u ,  (C3.3) 

or 

The results for this model in Figure C3.5 indicate that the absolute 
r-value for 8, is 1.80. Although e3 is more significant than was i,, experience 
suggests it is usually wiser to exclude coefficients with absolute t-values less 
than 2.0 at the estimation stage. But ths is only a practical rule of thumb. 
and some analysts might choose to use model (C3.3). As pointed out in 
Chapter 8 and Appendix 8A, t-values are only approximate tests of signifi- 
cance, especially when MA terms are present in a model. 

We conclude that (C3.1) is an adequate representation of the available 
data, though we should monitor carefully the effect of any new data on the 
adequacy of model (C3.1). Model (C3.3) may become preferable as more 
data appear. In fact, there is nothing wrong with accepting both models and 
using both to forecast future values. We could then choose the one that 
performs better. For now we use model (C3.1) to forecast. 

+ + + + + + + + + +€COSTAT UNIVARIATE B-J RESULTS+ + + + + + + + + + 
+ FOR DATA SERIES COAL PRODUCTION + 
+ DIFFERENCING 0 DF = 90 + 
+ AVAILABLE DATA = 94 BACKCASTS = 0 TOTAL = 96 + 
+ USED TO FIND SSR DATA = 94 BACKCASTS = 0 TOTAL = 94 + 
+ (LOST DUE TO PRESENCE OF AUTOREGRESSIVE TERMS 2) + 

COEFFICIENT ESTIMATE STD ERROR T-VALUE 
PHI 1 0 392 0 102 3 82 
PHI 2 0 302 0 097 3 11 
THETA 3 -0 202 0 112 -1 80 
CONSTANT 11304 6 3374 53 3 34799 

WEAN 36929 6 1222 47 30 204 

ADJUST€@ RMSE = 3008 2 MEAN ABS X ERR = 4 23 
CORRELATIONS 
1 2 3 4 

1 1 00 
2 -0 40 1 00 
3 0 23 0 06 1 00 
4 -0 04 -0 08 -0 07 1 00 

Figure C3.5 Esumabon results for model (C3.3) 
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Table C3.1 Forecasts from model (C3.1) 

Percent 
Forecast 80% Confidence Limits Future Observed Forecast 

Time Values Lower Upper Values Errors 

60 1 36600.4000 32699.2000 40501.6000 n.a.O n.a. 
2 37062.3000 32813.oooO 41311.6000 n.a. n.a. 
3 36856.9000 32184.9000 41528.8000 n.a. n.a. 
4 36912.oooO 32045.3000 41778.6000 n.a. n.a. 
5 36871.8000 31861.1000 41882.5000 n.a. n.a. 
6 36871.6000 31773.7000 41969.6000 n.a. n.a. 
7 36859.1000 31702.3000 42015.9000 n.a. n.a. 
8 36853.6000 3 1658.7000 42048.4000 n.a. n.a. 
9 36847.3000 31627.1000 42067.4000 n.a. n.a. 

10 36842.9000 3 1606.1000 42079.6000 n.a. n.a. 
I 1  36839.oooO 31591.2000 42086.7000 n.a. n.a. 
12 36835.9000 31580.9000 42091.oooO n.a. n.a. 

“n.a. = not available. 

Forecasting. Forecasts from origin r = 96 for lead times up to I = 12 
are shown in Table C3.1 along with an 804% confidence interval around each 
forecast. The further into the future we forecast, the more uncertain our 
forecasts become, as indicated by the widening of the confidence intervals at 
the longer lead times. 

Starting with a forecast lead time I = 3, we have strictly bootstrap 
forecasts: they are based completely on previous forecasts, not on previous 
observed values. The first forecast i9, is based on the last two observed 
values (+ +,). That is. let period 97 be January 1960, period 98 be 
February 1960, and so forth. Then the forecast, with lead time I = 1 for 
period 97 from origin r = 96, based on model (C3.1) is calculated from the 
difference-equation form as discussed in Chapter 10: 

Substituting observed values for z% and ig5. and substituting the estimated 
values for c, i,, and &, we get 

36,600 = 9461 + 0.432(37,901) + 0.311(34.613) 

(If you perform the calculations shown on the right-hand side of this 
equation you will not get exactly 36,600 because 6 ,  and & are rounded.) 
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The second forecast with lead time I = 2 and origin I = 96 is a partial 
bootstrap forecast since it is based partly on 4,: 

37,062 = 9461 + 0.432(36,600) + 0.31 1(37,901) 

In place of the observed value for period 97, which we do not know, we use 
the forecast value found above, 36,600. The third forecast is entirely a 
bootstrap forecast since it is based only on previous forecast values: 

I, = i,(3) = t + &Z,* + 6,297 

36,857 = 9461 + 0.432(37,062) + 0.311(36,600) 

All other forecasts are entirely bootstrap forecasts. 
Our estimated AR coefficients are potentially correlated. As discussed in 

Chapter 8, if they are too highly correlated, small shifts in the data could 
produce large changes in the coefficients; we should then consider our 
estimates to be of poor quality. Forecasts from such a model may be less 
reliable than is suggested by how well the model fits the past. A practical 
rule is to be wary of forecasting with an ARIMA model when absolute 
correlations among estimated coefficients exceed about 0.9. In the present 
example we need not be concerned about this problem since the correlation 
between 6 ,  and 6, is -0.69. This statistic is found in Figure C3.4 just below 
the RMSE. Row 1 and column 1 in the correlation matrix refer to the first 
estimated coefficient (I&), row 2 and column 2 refer to the second estimated 
coefficient (i,), and so forth. The last row and column always refer to the 
estimated mean if there is a constant term in the model. 

Additional checks. As suggested in Case 1, some informal checks are 
frequently helpful in deciding how reliable a model’s forecasts may be. 

One check is to examine the estimation-stage residuals to see if the model 
fits the distant past and the recent past as well as it fits the full data set. If 
the fit during the distant past is markedly worse than the overall fit, we 
might remove those values from our realization. If the fit over the recent 
past is especially poor, we might not want to use this model to forecast, or 
we may want to make a subjective adjustment to the ARIMA forecasts. The 
residuals for model (C3.1) are shown in Figure C3.6. While there are a few 
large residuals in both the early and the late segment, on average they do 
not suggest that the model fits these segments poorly. 
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Another informal check is to drop the last few observations (perhaps the 
last 10% or 20% of the data set) and reestimate the model. The results of 
reestimating (C3.1) after dropping the last 12 observations appear in Figure 
c3.7. 

This check reinforces our earlier conclusion that model (C3.1) is accepta- 
ble. First, the reestimated coefficients are well within 0.1 of'the original 

T I M  
52 

53 

54 

55 

COAL PRODUCTION RESIDUALS 
--DIFFERENCING: 0 
--EACH VERTICAL AXIS INTERVAL 424 464 
Lou = H€AN 5: HICH = 
-9204.63 - 211156E-02 11167. 7 

: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  VALUE 
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Figure Q.6 Residuals from model $3.1). 
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e THIS RESIDUAL FALLS OUTSIDE 2 STD DEV LIMIT 

Figure C3.6 (Conrinued) 

estimates shown in Figure C3.4. Second, the residual acf in Figure C3.7 is 
not strikingly different from the residual acf based on the full data set. 
Although the residual autocorrelation at lag 3 is now more statistically 
significant, its value has not changed drastically. Third, as shown in Table 
C3.2 the model forecasts rather well, at least for the first six periods ahead. 
The first six percent forecast errors in the right-most column are all smaller 
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+ + + + + + + + + +ECOSTAT UNIVARIATE B-J REWLTS+ + + + + + + + + + 
+ FOR DATA SERIES: COAL PRODUCTION + 
+ DIFFERENCING: 0 DF = 79 + 
+ AVAILABLE: DATA = 84 BACKCASTS = 0 TOTAL = 84 + 
+ USED TO FIND SSR: DATA = 82 BACKCASTS = 0 TOTAL = 82 + 
+ (LOST DUE TO PRESENCE OF AVTOREQRESSIM TERMS: 2) + 

COEFFICIENT ESTIMATE STD ERROR 1-VALVE 
PHI 1 0.402 0. 105 3. 01 
PHI 2 0. 338 0. 103 3. 28 
CONSTANT 9652. 81 3207.23 3. 0097 

MEAN 37134.9 1330.34 27. 9139 

ADJUSTU) RMSE = 3074. 73 HEAN ABS X ERR 6. 45 
CORRELAT I C M G  
1 2 3 

1 1.00 
2 -0.67 1.00 
3 -0.04 -0.11 1.00 

++RESIDUAL ACF++ 

-0.04 -0. 33 1 C <<<<O 3 
-0.01 -0.06 2 c <O 3 

COEF 1-VAL LAC 0 

0.23 2.06 3 C O>>>>>>>~>>>>>>>>>>>>>I> 
0.06 0. 92 4 C O>>>>>> 3 
0.08  0 . 6 5  5 C O>>>>>>>> 3 

-0.02 -0. 13 6 C <<O 3 
0 . 0 5  0 . 4 4  7 c O>>>>> 3 
0 . 0 4  0. 34 8 C O>>>> 3 

-0 .04 -0. 32 9 C <<<<O 3 
-0.02 -0. 17 10 C <<O 3 
-0. 05 -0. 42 11 E <C<<<O 3 
-0.01 -0.10 12 c <O 3 
-0. 12 -1.05 13 C <<<<<C<<<<<<O 3 
-0.05 -0.45 14 C <c<<<o 3 
0.03 0.28 15 C O>>> 3 

-0.07 -0.62 16 C <<<<<<<O 3 
0.00 0.00 17 C 0 3 

-0.02 -0.21 18 c <<O 3 
0 . 0 4  0.34 19 C O>>>> 3 
0.06 0. 51 20 C O>>>>>> 3 

-0.10 -0.82 21 c <<<<<<<<<<O 1 

Figure U.7 Estimation and diagnostic-checking results for model (C3.1) with the 
first 84 observations. 

CHI-SQUARED. = 10.63 FOR DF = 18 

than the mean absolute percent error for the fitted model (6.458), and the 
80% confidence intervals for the first six forecasts ail contain the observed 
values. The relatively large forecast errors starting at lag 7 could probably 
be reduced if the model were reestimated sequentially by adding one 
observation at a time so that each forecast was only a one-step-ahead 
forecast. 
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Table C3.2 Forecasts from model (C3.1) using the first 84 observations 

Percent 
Forecast 80% Confidence Limits Future Observed Forecast 

Time Values Lower Upper Values Errors 

59 1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 

35918.3000 
36666.oooO 
36535.2000 
36735.3000 
36771.6000 
36853.8000 
36899.1000 
36945.1000 
36978.9000 
37008.oooO 
3703 1.2000 
37050.3000 

3 1982.6000 
32424.oooO 
3 1859.6000 
3 1875.4000 
31766.3000 
3 1762.9000 
3 1749.1000 
3 I757.oooO 
3 1765.3000 
3 1777.6000 
3 1789.6000 
3 I80l.3000 

39853.9000 
40907.9000 
4 12 10.8000 
41595.1000 
41776.8000 
41944.6000 
42049.1000 
42 133.1000 
42 192.4000 
42238.4000 
42272.8000 
42299.3000 

34748.oooO 
3646 1 .oooO 
3 5 7 5 4 . m  
36943.oooO 
35854.oooO 
37912.oooO 
3 0 0 9 5 . m  
2893 1 .oooO 
3 1 0 2 0 . m  
31746.oooO 
34613.oooO 
37901 .oooO 

- 3.37 
- 0.56 
-2.18 

0.56 
- 2.56 

2.79 
- 22.6 1 
- 27.70 
- 19.21 
- 16.58 
- 6.99 

2.24 

Alternative models. Before leaving t h s  case let us return to the identifi- 
cation stage to consider a model other than (C3.1). This exercise will 
demonstrate the value of the overfitting strategy and the principle of 
parsimony. (Overfitting is discussed in Chapter 9.) 

Suppose a less careful analysis of the acf and pacf in Figure C3.2 had led 
us to start with an AR(1) model rather than an AR(2). We might have 
entertained this model: 

(1 - 8#JlB)2, = a, (C3.4) 

or 

The results of estimating this model are shown in Figure C3.8. The 
estimated coefficient + I  satisfies the stationarity condition since its absolute 
value is less than one. It is also significantly different from zero at better 
than the 5% level since its absolute z-value is larger than 2.0. But the residual 
acf shows that (C3.4) is not adequate. This is indicated especially by the 
large residual autocorrelation at lag 1, but those at lags 2 and 3 also have 
absolute r-values exceeding the short-lag residual acf warning level of 1.25. 
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+ + + + + + 4 + 4 +€COSTAT UNIVARIATE 8-J RESULTS+ + + 4 + + + + + + 
+ FOR DATA SERIES: COAL PRODUCTION + 
+ DIFFERENCING: 0 DF = 93 + 
+ AVAILABLE: DATA = 96 BACKCASTS = 0 TOTAL = 96 + 
+ USED TO FIND SSR. DATA = 95 BACKCASTS = 0 TOTAL = 95 + 
+ (LOST DUE TO PRESENCE OF AUTOREGRESSIVE TERMS: 1 )  + 

COEFFICIENT ESTIflATE STD ERROR T-VALE 
PHI 1 0. 666 0.073 9. 09 
CONSTANT i239a. 5 2764. 15 4.48548 

UEAN 37155. 1 983.625 37.7737 

ADJUSTED RMSE = 3193. 31 HEAN ABS X ERR = 6. 49 
CORRELATIONS 
1 2 

1 1.00 
2 -0.06 1 00 

++RESIDUAL ACF++ 

-0. 23 -2. 26 1 < ~ < C < < < < < ~ ~ < < C < ~ ~ ~ C ~ ~ ( ( c ( O  3 
COEF T-VAL LAG 0 

0. 17 1 59 2 C O>>>>>>>?>>?>>>?>> 3 
0.18 1 59 3 c o>>>>>>>>>>>>>>>>>> 3 
0.02 0.18 4 c O>> 3 
0.10 0 87 5 c 0>>5>>>>>>> 3 
0.03 0.29 6 t O>>> 3 
0. 07 0.62 7 I O>>>?>>> 3 
0 . 0 5  0 .  46 8 C O>>>>> 3 
0.00 0.01 9 c 0 3 
0. 03 0.  26 10 C O>>> 3 
-0. 07 -0. 60 1 1  t c<c<ccco 3 
0. 08 0. 70 12 C O>>>>>>>> 3 
-0. 09 -0 74 13 C c<<c<cc<<o 3 
-0.02 -0. 14 14 C cco 3 
0.07 0.64 15 C O>>>>>>> 3 
-0. 07 -0. 59 16 C <cc<cc<o 3 
0. 04 0. 38 17 C O>>>> 3 

-0 .05 -0 43 18 c <cc<co 3 
-0.01 -0.08 19 C co 3 
0. 07 0.60  20 C O>>>>>>> 3 
-0. 16 -1.38 21 c c<<<c<c<<<<c<c<co 3 
0. 04 0. 30 22 C O>>>> 3 
-0. 04 -0.35 23 C ccc<o 3 
-0. 10 -0. a2 24 c <c<c<ccc<co 3 

CHI-SQUARED* 22 95 FOR DF 22 

Figure C3.8 Estimation and diagnostic-checking results for model (C3.4). 

Ideally, we would now return to Figure C3.2 and discover that an AR(2) 
model is indicated by the estimated acf and pacf there. But the beginning 
analyst often experiments a great deal and it may be helpful if we examhe 
the results of several experiments. Letting the overfitting strategy guide us, 
we could extend (C3.4) and estimate an AR(2). This takes us immediately to 
model (C3.1), which we have already seen is an adequate representation of 
the available data. 
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Another approach is to add MA terms to (C3.4) at the short-lag lengths 
in an attempt to clean up the residual autocorrelations. Suppose we attack 
the most significant residual autocorrelation in Figure C3.8 by postulating 
an ARMA( 1,l)  model: 

or 

We have stumbled onto model (C3.5) by pretending to experiment as a 
novice modeler might. But note that (C3.5) also is defensible as an initial 
model based on the original acf and pacf in Figure C3.2; that acf decays, 
and we could also interpret the pacf as decaying if we stretch our imagina- 
tions. When the estimated acf and pacf both decay, a mixed model is called 
for. Identifying the exact order of a mixed model from the initial acf and 
pacf is often difficult, but a good starting place is the common ARMA( 1, 1) 
model (C3.5). 
. Estimation results for this model are shown in Figure C3.9. Both esti- 

mated coefficients are statistically significant and they satisfy the stationar- 
ity and invertibility requirements since their absolute values are less than 
one. Based on the adjusted RMSEs and chi-squared statistics (C3.5) is not 
quite as good as (C3.1), but we can live with it. 

We might still be suspicious of the adequacy of model (C3.5) because the 
absolute r-values of the residual autocorrelation at lag 3 exceeds the warning 
level of 1.25. Consider this ARMA( 1,3) model with 8, constrained to zero: 

(1 - + , ~ ) 2 ,  = (1 - 8 , ~  - B , B ~ ) u ,  (C3.6) 

or 

z,  = c + + ,2 , - ,  - e l a t - ,  - e 3 ~ r - 3  + a, 

Estimation of this model (results not shown) produced a r-value for e3 of 
only - 1.40, while the residual acf r-value at lag 2 rose to 1.39. Adding a 4, 
coefficient to model (C3.5) gives this A R M (  1,2): 

(1 - +,B)z ,  = (1 - e , ~  - e , ~ ~ ) ~ ,  (C3.7) 

or 
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+ + + + + + + + + +ECOSTAT UNIVARIATE 8-J RESULTS+ + + + + + + + + + 
+ FOR DATA SERIES COAL PRODUCTION + 
+ DIFFERENCINC 0 DF = 92 + 
+ AVAILABLE DATA = 96 BACKCASTS = 0 TOTAL = 96 + 
+ USED TO F I N D  SSR DATA = 95  BACKCASTS = 0 TOTAL - 95 + 
+ (LOST W E  TO PRESENCE OF AUTDRECRESSIVE TERMS 1 )  + 

COEFFICIENT ESTIMATE STD ERROR T-VALUE 
PHI 1 0 041 0 067 12 51 
THETA 1 0 356 0 130 2 73 
CONSTANT 5028 66 2530 44 2 30341 

MAN 36730 1 1321 35 27 8035 

ADJUSTED RMSE = 3059 23 MEAN ABS Y. ERR = 6 31 
CORRELATIONS 
1 2 3 

1 1 00 
2 o b 6  1 0 0  
3 -0 25 -0 18 1 00 

++RESIDUAL ACF++ 

-0 06 -0. LO 1 c ic<<<<o 3 
COEF T-VAL LAC 0 

0 11 1.11 2 
0 .15  1.42 3 
0.00 -0.01 4 
0.04 0 .40  5 
0.00 0.02 b 
0.03 0.30 7 
0 .04  0.35 8 

-0.04 -0.35 9 
-0.02 -0.18 10 
-0. 09 -0.00 11 
0.04 0.33 12 

-0. 11 -0. 99 13 
-0.03 -0.28 14 
0.07 0 .60  15 

- 0 . 0 5  -0.44 16 
0. 04 0. 40 17 
0.00 -0.03 10 
0.04 0.34 19 
0. 10 0.91 20 

-0. 10 -0. 91 21 
0 .06  0 . 5 2  22 
0 .00  0.02 23 

-0.07 -0.67 24 
CHI-SQUARED* = 

c O>>i>>>>>>>> 
1. O>>>>>>>>>>>>>>> 
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c O>>>> 
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c O>>>>>>> 
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Figure (3.9 Estimation and diagnostic-checking results for model (C3.5). 

Estimation results for this experiment are shown in Figure C3.10. This 
model is quite satisfactory. The reader should verify that it is stationary and 
invertible and that all estimated coefficients are significant at about the 5% 
level. The overall fit is slightly better than for model (C3.1) based on the 
smaller RMSE, and the chi-squared statistic is insignificant at the 10% level 
for 20 degrees of freedom. 
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+ + + + + + + + + +€COSTAT UNIVARIATE B-J RESULTS+ + + + + + + + + + 

+ FOR DATA SERIES: COAL PRODUCTION + 
+ DIFFERENCING: 0 DF = 91 + 
+ AVAILABLE. DATA = 96 BACKCASTS = 0 TOTAL = 96 + 
+ USED TO FIND SSR DATA = 95 BACKCASTS = 0 TOTAL = 95  + 
+ (LOST DUE TO PRESENCE OF AUTORECRESSIVE TERMS: 1 )  + 

COEFFICIENT ESTIMATE STD ERROR T-VALUE 
PHI 1 0.801 0.080 10.00 
THETA 1 0.423 0. 125 3. 38 
THETA 2 -0.225 0. 114 -1.97 
CONSTANT 7363. 16 3013. 68 2. 44324 

MEAN 36910 b 1268 84 29 0901 

ADJUSTED RMSE = 3016 31 MEAN ABS X ERR = 6.24 
CORRELATIONS 
1 2 3 4 

1 1.00 
2 0. 56 1 30 
3 0.40 -0 03 1 00 
4 -0. 20 -0 12 -0 10 1 GO 

++RESIDUAL A?F++ 
COEF T-VAL. LA6 0 
0.02 0 22 1 c O>> 3 
-0. 04 -9 37 2 c ,<.<(O 3 
0 10 0 95 3 c o>:.:,>>>>>>:- 3 
0 02 0 17 4 c O>> 3 
0.03 0 33 5 c O>:>) 3 
0. 01 0 07 6 c 0.s 3 
0 04 0 42 7 c O>>>> 3 
0.05 0. 51 8 c 0>>>>:> 3 

-0.02 -0.19 9 c <<O 3 
-0.03 -0. 27 10 c <<<O 3 
-0.06 -0 56 11 c <<<i<<O 3 
0 .03 0 31 12 c O>>? 3 

-0. 10 -0 95 13 c <(<~:<:<<.:<((O 3 
-0.03 -0 24 14 C < < i O  3 
0.07 0 . 6 7  15 C O>>>>>>.s 3 
-0 03 -0 29 16 C <C<O 3 
0 02 0 .  14 17 C O>> 3 

-0.01 -0 13 18 C <O 3 
0.04 0 40 19 C O>>>> 3 
0 .08  0.72 20 C O>>.s’\>>>> I 

-0.11 -1.00 21 c <<c<<<<c<<<o I 
0.03 0. 31 22 C O>>> 3 
0 . 0 0  0 .  02 23 C 0 3 

-0.09 -0. 06 24 C <c<<<c<<<o 1 

Figure C3.10 Estimation and diagnostic-checking results for model (C3.7). 
CHI-SQUARED+ = 8 . 0 1  FOR DF p 20 

Which model is preferable-(C3.1) or (C3.7)? They appear to fit the data 
about equally well: the RMSEs are nearly identical and the chi-squared 
statistics for the residual autocorrelations are also quite similar, though both 
of these criteria favor model (C3.7) slightly. The important principle of 
parsimony would lead us to select model (C3.1) since it contains one less 
parameter. If we are going to use a model with three estimated parameters, 
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we might as well choose (C3.3) since it has an RMSE even smaller than 
(C3.7). 

We need not be excessively concerned about the choice between (C3.1) 
and (C3.7) since these two models are near& equioalenr marhemarical& as 
well as in their ability to fit the past. To see this. consider that (C3.7) can 
also be written as 

2, = a, ( 1  - 
( I  - e ,B - e2B2) 

Substituting the estimated coefficients in Figure C3.10 gives 

2, = ci, 
(1  - 0.8018) 

( 1  - 0.4238 + 0.2258’) 
(C3.8) 

If we can show that the coefficient of 2, in (C3.8) is virtually the same as 
the coefficient of Z, in (C3.1), we will have shown that our two estimated 
models are nearly the same mathematically. The easiest way to do this is to 
equate the coefficient off ,  in (C3.8) with the coefficient of I, in (C3.1). and 
see if this creates a gross contradiction: 

( 1  - 0.801B) ? 
= ( 1  - 0.4328 - 0.3118’) (C3.9) 

( 1  - 0.4238 + 0.2258’) 

Multiplying through by the denominator on the LHS of (C3.9) gives 

7 

(1 - 0.8018) = ( 1  - 0.8558 + 0.0978’ + 0.035B3 - 0.070B4) 

(C3.10) 

The last three RHS terms are relatively small, while the coefficients of 8 on 
both sides are fairly close in value. Therefore, (C3.1) and (C3.7), while not 
identical. are mathematically quite similar. Comparison of Tables C3.1 and 
C3.3 shows that these two models produce similar forecasts. In this case we 
would be guided by the principle of parsimony and use (C3.1) for forecast- 
ing, or, as mentioned earlier, we might use both models to forecast and see 
which one turns in the better performance. 

With the more careful analysis we applied earlier to the estimated acf and 
pacf in Figure C3.2, we could avoid having to choose between two similar 
models. Nevertheless, even without such careful analysis we see that use of 
the overfitting strategy or application of the principle of parsimony leads us 
to model (C3.1), though by a more indirect path. 
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Table C3.3 Forecasts from model (C3.7) 

Percent 
Forecast 80% Confidence Limits Future Observed Forecast 

Time Values Lower Upper Values Errors 

60 1 36673.2000 32812.3000 40534.1000 n.a.‘ n.a. 
2 37531.4000 33404.oooO 41658.7000 n.a. n.a. 
3 37407.5000 32805.9000 42009.2000 n.a. n.a. 
4 37308.4000 32427.oooO 42189.9000 n.a. ma. 
5 37229.1000 32176.5000 42281.7000 n.a. n.a. 
6 37165.5000 32006.2000 42324.8000 n.a n.a. 
7 371 14.7000 31888.2000 42341.2000 n.a. n.a. 
8 37074.oooO 31804.8000 42343.1000 n.a. n.a. 
9 37041.4000 31745.1000 42337.7000 n.a n.a 

10 37015.3000 31701.7000 42328.9000 n.a. n.a. 
1 1  36994.4000 31669.7000 42319.1000 n.a. n.a. 
12 36977.7000 31645.9000 42309.5000 n.a. n.a. 

‘n.a. = not available. 

Final comments. We make the following points: 

1. The experimental approach to modeling in the last section is not 
recommended as a fundamental strategy, especially if it is a haphazard 
substitute for careful tlunking. Ideally, the analyst engages in enough careful 
thought at the initial identification stage to keep experimentation at a 
minimum. Even if diagnostic checking shows a model to be inadequate, it is 
wise to return to the original acf and pacf to rethink their implications 
instead of just adding terms to the original model. 

However, a certain amount of experimentation is both necessary and 
useful. It is necessary when the acfs and pacfs used for identification are 
too ambiguous to allow clear choices. And it can be instructive, especially 
for the beginning modeler who needs to learn the consequences of estimat- 
ing alternative models. Above all. experimentation should follow sound 
guidelines, such as those stated in Chapter 12. The single most important 
guideline is the principle of parsimony: when two or more models provide 
equivalent fits to the data, choose the one with the least number of 
estimated parameters. 

Of course, the ultimate test of a model is its ability to forecast. Not 
surprisingly. (C3.1) and (C3.7) are able to forecast history with about equal 
accuracy. When model (C3.7) was refitted after dropping the last 12 
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Table C3.4 Forecasts from model ((3.7) using the first 84 observations 

Percent 
Forecast 80% Confidence Limits Future Observed Forecast 

Time Values Lower Upper Values Errors 

59 1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 

35912.8000 
36445.4000 
36572.9000 
36677.oooO 
3676 1.9000 
3683 1.2000 
36887.7000 
36933.9000 
3697 1 S000 
3 7002.2000 
37027.3000 
3 7047.7000 

32048.1000 
32404.oooO 
32066.1000 
3 1885.3000 
3 1789.7000 
3 1742.3OOO 
3 1722.6000 
31718.6000 
3 1 723.1 000 
31731.9000 
3 1742.4000 
3 1753.2000 

39777.5000 
40486.8000 
4 1079.7OOO 
41468.6000 
4 1734.2000 
41 920.1 000 
42052.9000 
42149.2000 
422 19.9000 
42272.6000 
423 12.2000 
42342.3000 

34748.oooO 
36461.oooO 
3 5 7 5 4 . m  
36943.oooO 
35854.oooO 
379 12.oooO 
3 0 0 9 5 . m  
2893 1 .oooO 
3 1 0 2 0 . m  
3 1746.oooO 
346 1 3 . m  
37901.oooO 

- 3.35 
0.04 

- 2.29 
0.72 

- 2.53 
2.85 

- 22.57 
- 27.66 
- 19.19 
- 16.56 
- 6.98 

2.25 

observations, it produced the percent forecast errors shown in the right-most 
column of Table C3.4. Comparison of these percent errors with those in 
Table C3.2 shows that (C3.1) and (C3.7) forecast with nearly identical 
accuracy. 

2. Our success in estimating model (C3.7) illustrates how residual acf 
z-values can, at times, be badly underestimated by the standard formula, as 
discussed in Chapter 9. Although the z-value for the residual autocorrelation 
at lag 2 in Figure C3.8 is only 1.1 1, the b2 coefficient in model (C3.7) has an 
absolute r-value nearly equal to 2.0. Using about 1.25 as a practical warning 
level for z-values at lags 1, 2, and 3 in residual acfs was helpful in this 
instance. Keep in mind, however, that 1.25 is only a warning value; there is 
no guarantee that associated coefficients will prove to have absolute z-values 
greater than 2.0 at the estimation stage. 



CASE 4. HOUSING PERMITS 

Activity in the housing industry typically leads the rest of the economy. The 
number of housing permits issued usually declines before the economy 
moves into a recession, and rises before a recession ends. Therefore, the 
level of activity in the housing industry is of interest not only to those within 
that industry, but also to others following broader economic trends. 

In this case study we develop a model to forecast the index of new 
private housing units authorized by local building permits. These are 
quarterly, seasonally adjusted data covering the years 1947-1967. Figure 
C4.1 is a plot of the 84 observations we will analyze.* This is an especially 
challenging series to model. 

Identification. Our fist task is to dezide if the data are stationary. 
Inspection of Figure C4.1 indicates that the variance is approximately 
constant. Figure C4.2 shows the estimated acf and pacf of the undifferenced 
data. (Why is 21 the proper maximum number of coefficients to calculate?) 
If the estimated acf would not drop quickly to zero we would suspect a 
nonstationary mean, but the estimated autocorrelations in Figure C4.2 fall 
to zero very rapidly. Only the first two autocorrelations extend past the 5% 
significance level indicated by the square brackets, and no absolute 1-values 
after lag 2 exceed the practical warning level of 1.6. There is no evidence 
here that differencing is required to achieve a stationary mean. 

'The data are found in the US. Department of Commerce publication Bwiness Condtrions 
Digesr. July 1978. Q. 98. 
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Figure C4.1 Housing permits issued, 1947- 1967. 
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+ + + + + + + + + + + + + AUTOCORRELATIONS + + + + + + + + + + + + + 
+ FOR DATA SERIES: HOUSING PERMITS + 
+ DIffERENCINC: 0 HEAN = 108. 129 
+ DATA COUNT = 04 STD DEV = 17. 1176 + 

+ 

COEF T-VAL LA6 0 
0.84 7.65 1 c O>>>>>l>>>>>>>>>>>>>>> 
0.54 3.19 2 
0.  19 1.03 3 

-0.07 -0.35 4 
-0.23 -1.21 5 
-0. 27 -1. 38 6 
-0.23 -1. 15 7 
-0. 18 -0. 90 8 
-0. 15 -0.72 9 
-0. 16 -0.80 10 
-0. 19 -0. 94 11 
-0.23 -1 12 12 
-0.21 -1 01 13 
-0. 15 -0 71 14 
-0 04 -0. 17 15 
0 . 0 8  0.39 16 
0 .  18 0.85 17 
0.24 1. 09 18 
0.23 1.06 19 
0.18 0 . 8 2  20 
0.10 0.44 21 

CHI-SQUARED* = 

c 0>>>>>>>3>>>>> 
c o>>>>> 3 
c <co 
c <<<<<<o 
c <<<<<<<o 
c c<<<<<o 
c <<c<<o 
c <cc<o 
c cc<<o 
c <<<<<o 
c <<<<<<o 
c <<<<<o 
c <<<co 
c co 
c O>> 
c O>i>>> 
c O>>>>>> 

c o>>>>>> 
I o> >:. :,> 
c O>>> 

152 05 FOR DF = 21 

3 
3 
1 
3 
3 
3 
3 
3 
3 
1 
3 
3 
3 
1 
3 

3 
3 
3 

+ + + + + + + + + + + PARTIAL AUTOCORRELATIONS + + + + + + + + + + + 
COEF T-VAL LAC 0 
0.04 7.65 1 c o>>>>> 1 >>>>>Y>>>:b;>>>> 

-0. 52 -4. 81 2 <<<<<':< c i<<<<O 3 
-0.25 -2.27 3 c c<<c<o 3 
0. 15 1 41 4 1. o>>>> 3 

-0.09 -0.02 5 c <<o 3 
0.07 0 .  66 6 c o>> 3 

-0.04 -0.32 7 c ( 0  3 
-0.21 -1.89 8 c <<<<co 3 
0.02 0.21 9 c o> 3 

-0.18 -1.69 10 c <.:<<co 3 
-0.02 -0.18 11 c 0 3 
-0.04 -0.39 12 c <o 3 
0 07 0.63 13 c o,> 1 

-0. 03 -0. 27 14 c ( 0  3 
0. 08 0. 73 15 c o>> 3 

-0.01 -0.11 16 c 0 1 
0.01 0. 13 17 c 0 3 
0 .05  0. 48 18 c o> 1 

-0. 04 -0. 36 19 c <o 1 
-0 .02 -0.15 20 c 0 I 
-0. 01 -0. 09 21 c 0 3 

Figure C4.2 Estimated acf and pacf for the realization in Figure C4.1. 
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Although the series is adjusted for seasonal variation before publication, 
it might still have a seasonal pattern if the adjustment procedure is flawed. 
To check for this possibility, look for significant autocorrelations at lags 
which are multiples of the length of seasonality (lags s, 2s, 3s. . . . ). With 
s = 4 (for quarterly data) we look at lags 4,8, 12, . . . . 

The acf in Figure C4.2 shows no significant autocorrelations at the 
seasonal lags: none of the absolute r-values at those lags exceeds the 
practical warning level of 1.25. Sometimes a seasonal pattern shows up more 
clearly in the estimated acf for the first differences (see Figure C4.3). The 
autocorrelation at lag 4 now has a large absolute t-value (2.49), but it is 
difficult to tell if this represents a seasonal pattern or if it merely fits in with 
the overall wavelike decay starting from lag 1. In this case differencing has 
not removed the nonseasonal pattern sufficiently to allow a better judgment 
regarding the possible seasonal pattern. Since the data have been seasonally 
adjusted, and since there is no clear evidence that a seasonal pattern 
remains, we assume for the time being that the seasonal adjustment is 
adequate. After modeling the series, we can inspect the residual acf for 
evidence of a seasonal pattern. 

Our next concern is to tentatively identify one or more models whose 
theoretical acfs and pacfs are similar to the estimated ones. Before you 

+ + + + + + + + + + + + + AUTOCORRELATIONS + + + + + + + + + + + + + 
+ FOR DATA SERIES: HOUSING PERMITS + 
+ DIFFERENCING. 1 WEAN = . 366265 + 
+ DATA COUNT = 83 STD DEV p. 9. 48122 + 
COEF T-VAL LA6 0 
0 .44  3 98 1 c 0>>>>>>>>?3>?>>5>,>>>>>> 
0 .24  1 89 2 c O>>>>>>>>>>>I 
-0 23 -1.70 3 c <<<:.:<<<<<<<o 3 
- 0 . 3 5  -2 4 9  4 <<<:c c<<<c.:;c.:e<<<o 3 
-0.41 -2 78 5 <..:.:.:<.:<c <<:<<<<::‘:<c<<<o 3 
-0 31 -1 92 6 c CC<;r<<,:.:i<<<<<O 3 
-0 07 -0 40 7 c <<<O I 
0 03 0 . 1 5  8 c O> 3 
0 24 1 40 9 c o>:*‘>>>?>>>>> 3 
0 1 1  G . & 3  10 c O>?>>>> 3 
0 10 0 55 11 c O>:>>.:>> 3 

-G. 14 -0.78 12 c <<<.:<c<o 3 
-0 12 -3. 69 13 c <<<c<<o 3 
-0 19 -1 10 14 C i < < : i < < C < < < O  3 
-9. 09 4 4 7  15 c .:<<<0 3 
0 01 0.04 16 L 0 I 
0 . 0 8  o 43 17 c O>>>> 3 
0.21  1. 14 18 c o>.>;.>>>,;>> 3 
0 1 3  0 69 1 9  c o;,.:.>>> 3 
0 . 1 5  0 82 20 c O>.>>.>Y>>> 3 
0 .02  0 1 0  21 c O> 3 

CHI-SGUAREL~ = B L . Y ~  FOR DF = 21 

Figure C43 Estimated acf for the first differences of the housing-permits realiza- 
tion. 



Housing permits 373 

read further, study the acf and pacf in Figure C4.2 carefully. (we have 
decided that differencing is not needed to achieve a stationary mean, so 
Figure C4.2 is the relevant one.) Based on your analysis of these graphs, 
write down one or more ARMA models that seem to be good candidates to 
explain the data. Then compare your reasoning with the discussion in the 
next several paragraphs. 

First, consider a pure AR model. This is not a very good choice. The acf 
in Figure C4.2 does not decay as it should if an AR( p) model is called for. 
If it decays it certainly does so very rapidly. Instead, the autocorrelations 
seem to cut off after lag 2. Although we might describe the acf in Figure 
C4.2 as decaying in wavelike fashion, the autocorrelations after lag 2 are all 
quite insignificant. None of the absolute t-values after lag 2 exceeds the 
practical warning level of 1.6 much less the 5% standard-error level indi- 
cated by the square brackets. It does not Seem justified to interpret this 
estimated acf as decaying either exponentially or in a damped sine-wave 
pattern. Furthermore, the estimated pacf in Figure C4.2 appears to decay 
rather than cut off to zero. This is further evidence that a pure AR model is 
not an attractive alternative. 

What about a pure MA model? The estimated acf cuts off to zero at lag 
3, suggesting an MA(2). The pacf damps out with sign changes along the 
first several lags; h s  is also consistent with an MA(2). [It may help you to 
review the examples of MA(2) acfs and pacfs in Chapter 6 or 12.1 A pure 
MA model of order two is clearly preferable to a pure AR model. 

Finally, consider a mixed model. Properly identifying a mixed model at 
the initial identification stage can be difficult. Nevertheless, we might at 
least consider whether a common mixed model, the ARMA(1, I), is con- 
sistent with the estimated acf and pacf in Figure C4.2. 

Return again to the examples of theoretical acf s and pacf s in Chapter 6 
or 12. Are the present estimated acf and pacf consistent with an A R M (  1,l)  
model? In general, both the acf and pacf of a mixed model tail off toward 
zero rather than cutting off to zero. Although the estimated pacf in Figure 
C4.2 decays, we have already argued that the estimated acf cuts off after lag 
2. Thus an ARMA( 1, 1) model is less preferable than an MA(2). 

Based on the preceding analysis, the model of choice is the MA(2): 

2, = (1 - e , B  - B,B2)a, (C4.1) 

or 

z, = C - #,u,-, - 82a,-2 + a,  

Estimation and diagnostic checking. Estimation results for model (C4.1) 
appear in Figure C4.4 along with the residual acf and pacf for diagnostic 
checking. The two estimated coefficients (8, and d2) are significantly 



+ + + + + + + + + +ECOSTAT U N I V A R I A T E  8-J RESULTS+ + + + + + + + + + 
+ FOR DATA SERIES:  H W S I N G  PERMITS + 
+ DIFFERENCING: 0 DF = 81 
+ AVAILABLE:  DATA = 84 BACKCASTS 5: 0 TOTAL = 84 + 
+ USED TO F I N D  SSR: DATA = 84 BACKCASTS = 0 TOTAL = 84 + 
+ (LOST DUE TO PRESENCE OF AUTOREGRESSIVE TERMS: 0 )  + 

COEFFICIENT ESTIMATE STD ERROR T-VALUE 
THETA 1 -1 133 0. 072 -15.73 
T W T A  2 -0. 771 0. 072 -10. 70 
CONSTANT 106. 837 2.5749 41. 4915 

MEAN 106. 837 2.5749 41. 4915 

+ 

ADJUSTED RUSE = 8. 55591 MEAN ABS X ERR = 6. 11 
CORRELATIDNS 
1 2 3 

1 1.00 
2 0.60 1.00 
3 0. 16 0. 08 1. 00 

++RESIDUAL ACF++ 
C M F  T-VAL LA6 0 
0.21 1 95 1 c 0>>:.5>>>>>3> 
0.29 2. 54 2 c O>>:>>>>>>>>l,> 
0. 17 1.37 3 

-0. 15 -1.23 4 
-0. 17 -1.37 5 
-0. 13 -1.02 6 
-0. 15 -1.11 7 
-0. 09 -0. 70 8 
-0.01 -0.07 9 
-0.12 -0.87 10 
-0. 05 -0. 36 11 
-0. 18 -1.36 12 
-0. 07 -0. 50 13 
-0. 14 -0. 99 14 
0. 01 0. 08 15 
0 .05  0. 36 16 
0 .09  0 .63  17 
0. 18 1.24 18 
0. 12 0 .83  19 
0 .09  0. 63 20 
0 . 0 8  0. 56 21 

+RESIDUAL PACF+ 
CHI-SQUARED* 

COEF 
0. 21 
0. 26 
0. 08 

-0. 30 
-0.21 
0. 03 
0. 08 

-0. 03 
-0. 04 
-0. 17 
-0. 06 

T-VAL L A C  
1 95 1 
2.34 2 
0 70 3 

-2.72 4 
-1. 96 5 
0. 32 6 
0.69 7 

-0. 26 8 
-0.37 9 
-1. 56 10 
-0 .52  11 

-0 16 -1 51 
0 05 0 41 

-0 06 -0 59 
0 0 6  0 5 8  
0 0 0  0 0 4  
0 00 0 01 
0 05 0 47 
0 02 0 19 

-0 02 -0 14 
0 04 0 35 

Figure C4.4 
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15 c O>>> 3 
i 6  C 0 3 
17 c 0 3 
18 c O>>> 3 
19 c O> 1 
20 c CO 3 
21 t O>> 1 

Estimation and diagnostic-checking results for model (C4. I ) .  
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different from zero and satisfy the invertibility requirements for an MA(2). 
However. the residual acf is not good at all: the absolute r-values at lags 1 
and 2 are far larger than the residual acf short-lag warning level of 1.25. 
This suggests that the data have an AR pattern since we already have MA 
coefficients at lags 1 and 2. 

The residual pacf is not very helpful in suggesting which AR coefficients 
we should try. It has 4 spikes that are sigmficant (or nearly so)-at lags 1, 2. 
4, and 5 .  It would violate the principle of parsimony to add four AR terms 
to model (C4.1). Furthermore, if AR terms are called for, we may not need 
8, and 8, in the model. The wisest choice is to reevaluate the original 
estimated acf and pacf in Figure C4.2. 

Further identification, estimation, and diagnostic checking. One point 
seems clear as we reconsider Figure C4.2: we should expect to end up with a 
mixed model. The diagnostic-checking results for model (C4.1) indicate that 
AR terms are needed, whle the estimated pacf in Figure C4.2 decays rather 
than cutting off to zero. If it cut off to zero it would suggest a pure AR 
model. Thus it seems we are now forced to conclude that the acf in Figure 
C4.2 decays since mixed models have acfs and pacfs that tail off. Beyond 
this there is little additional information we can extract from Figure C4.2 
unless we want to derive theoretical acfs and pacfs for a large number of 
mixed models and compare these with our initial estimated acf and pacf. 
Instead, a good choice is to try an ARMA(1, l),  a common, parsimonious 
mixed model: 

or 

Figure C4.5 shows the estimation and diagnostic-checking results for 
model (C4.2). Both 6, and 4, have absolute t-values greater than 2.0 and 
they satisfy the applicable stationarity and invertibility conditions: 16, I < 1 
and 18, I < 1. Unfortunately, the residual acf is miserable: the first six 
absolute r-values all approach or exceed the relevant practical warning levels 
(1.25 at the first two or three lags and 1.6 thereafter). The residual acf has a 
rough decaying pattern implying that another AR term is needed. The 
residual pacf also seems to decay, however crudely. If they both decay, the 
residuals from model (C4.2) follow a mixed model and we need to add both 
AR and MA terms to model (C4.2). 

We have not had much success in finding either a completely satisfactory 
model or one which seems good except for some simple and obvious 



+ + + + + + + + + +ECOSTAT U N I V A R I A T E  8-J RESULTS+ + + + + + + + + + 
+ FOR DATA SERIES:  HOUSING PERMITS + 
+ DIFFERENCING: 0 Df = 80 + 
+ A V A I L A B L E  : DATA = 84 BACKCASTS = 0 TOTAL = 84 + 
+ USED TO F I N D  SSR: DATA = 83 BACKCASTS = 0 TOTAL = 83 + 
+ (LOST DUE TO PRESENCE OF AUTOREGRESSIVE TERMS: 1) + 

COEFFICIENT ESTIMATE STD ERROR T-VALUE 
PHI 1 0.778 0.077 10.06 
THETA 1 -0.333 0. 119 -2.80 
CONSTANT 14. 2858 8.44199 2. 0769 

MEAN 109. 509 5. 59856 19. 5603 

ADJUSTED RUSE = 8. 47442 MEAN ABS Z ERR = 6. 34 
CORRELATIONS 
1 2 3 

1 1.00 
2 0. 46 1. 00 
3 0.10 0.05 1.00 

++RESIDUAL ACF++ 
COEF T-VAL L A C  0 
0. 13 1. 19 1 t o>>>>>>> 3 
0.35 3.10 2 

-0.22 -1.74 3 
-0.18 -1.43 4 
-0. 30 -2.26 5 
4.26 -1.85 6 
-0.02 -0. 16 7 
-0.09 -0.64 8 
0.22 1 50 9 
-0.03 -0. 19 10 
0. 13 0.90 11 

-0. 16 -1.08 12 
-0.01 -0.08 13 
-0.15 -0.98 14 
-0.02 -0. 16 15 
0.04 0.24 16 
0.03 0. 16 17 
0.21 1.38 18 
0.04 0.22 19 
0. 17 1.06 20 

-0.02 -0. 11 21 

+RESIDUAL PACF+ 
CHI-SQUARED* = 

C M F  T-VAL L A C  0 
0. 13 1. 19 1 c O>>>Y>>> 3 
0. 33 3. 04 2 c O>>>>>>>>> I>\>>>>> 

-0.33 -3.02 3 <<<<<<<t<<<<<<<<<O 3 
-0.29 -2.61 4 <<<<C<<<<<<<<<O 3 
-0. 06 -0. 57 5 c <<<O 3 
-0. 14 -1.25 6 c <<<<c<<o 3 
0.00 0.73 7 c O>>>> 3 

-0.11 -1.00 0 c <<<<<<o 3 
0. 07 0.60 9 c O>>> 1 

-0. 11 -0.98 10 c <<<<<o 1 
-0.08 -0.7s 11 c <<<<O 3 
-0. 16 -1.42 12 c <<<<<<i<o 1 
-0.01 -0. 12 13 c i0 I 
-0.04 -0.41 14 c (CO 3 

c 0>>>>>>>>>>>3>>>>> 
c<<c<<<<<<<<o 3 
c <<<<<<<<<o 3 

<C<<<<<<<<<<<<<O 3 
cc<<<<<<<<<<<<o 3 
c (0  3 
c ( ( ( ( (0  I 
c o>>>>>>>>>>> 3 
c <O 3 
c O>>>>>>> 3 

c <<<<<<c<o 3 
c (0  3 
c <c<<<<<<o 1 
c (0  3 
c O>> 3 
c O> 3 
c o>>>>>>>>>>> 3 
c 0>> 3 
E OX>>>>>> > 3 
c (0  3 

53. 83 FOR DF C 18 

-0. 04 -0. 39 15 
0.01 0 13 16 

-0 06 -0. 52 17 
0. 09 0 83 18 
0.01 0 06 19 
0.00 0 01 20 
0. 09 0 81 21 

c c<o 1 
t 02 3 
I c<<o 1 
c o>>>>> 3 
L 0 1 
L 0 1 
c 0>>>:, 1 

Figure C4.5 Estimation and diagnostic-checking for model (C4.2). 
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modifications. We have determined that an ARMA( p, q )  model is ap- 
propriate, but we have encountered difficulty in identifying the orders of the 
model (the values of p and q.) 

One of the practical rules in Chapter 12 is that identification of mixed 
models is sometimes easier if we start with a pure AR model, then modify 
based on the residual acf. Starting with AR terms tends to give a cleaner 
residual acf from which appropriate MA terms may be chosen. Starting with 
just MA terms tends to remove only a few significant autocorrelations, often 
leaving a messy decaying or damped sine-wave pattern in the residual acf. 
Starting with AR terms eliminates a large number of significant autocorrela- 
tions since AR terms are associated with decaying or damped sine-wave 
patterns; it is often relatively easy then to spot the few remaining problem 
areas in the residual acf. 

To apply the strategy suggested above, start by fitting an AR( 1) model to 
the data: 

(1 - + , B ) T ,  = a, (C4.3) 

or 

Figure C4.6 shows the estimation results and the residual acf. 6, is highly 
sipficant and satisfies the stationarity condition l4,l c 1, so we next 
examine the residual acf to see if just a few MA terms could improve this 
model. The residual acf in Figure C4.6 has a decayng, wavelike pattern 
rather than cutting off quickly to zero: the first six residual autocorrelations 
all have absolute r-values larger than the relevant warning levels. Ap- 
parently, the residuals from model (C4.3) can be described with an AR or 
ARMA model; in either case, there is an autoregressive element remaining 
in these residuals. The residual pacf in Figure C4.6 suggests that the pattern 
in the residuals is ARMA rather than just AR since the pacf decays. Our 
present strategy is to focus on the AR portion of the model until we can 
isolate the MA part. 

The autoregressive element in the residuals for model (C4.3) could be 
AR(l), AR(2). or even AR(3); the damped sine-wave appearance of the 
residual acf in Figure (C4.6) is more consistent with an AR(2) or AR(3), but 
sometimes an AR(1) will produce an estimated acf that displays waves 
rather than a simple decay. 

If the AR element in the residuals of model (C4.3) is AR(2). it suggests 
that the original series z, requires an AR(3) model. Alternatively, if the 
residuals follow an AR( 1) pattern, it suggests that z, requires an AR(2). This 



+ + + + + + + + + +ECOSTAT UNIVARIATE B-J  RESULTS+ + + + + + + + + + 
+ FOR DATA SERIES:  HOUSING PERMITS + 
+ D I f f E R E N C I N G :  0 D F  = 81 + 
+ AVAILABLE:  DATA = 84 BACKCASTS 0 TOTAL = 84 + 
+ USED TO F I N D  SSR: DATA = 83 BACKCASTS = 0 TOTAL = 83 + 
+ (LOST DUE TO PRESENCE OF AUTOREGRESSIVE TERMS: 1)  + 

COEFFICIENT ESTIMATE STD ERROR T-VALVE 
PHI 1 0. 636 O.OS8 14. 31 
CONSTANT 18. 0683 6. 39536 2 82522 

MEAN 110. 297 6. 19162 17. 814 

ADJUSTED RUSE = 9 16348 -AN ABS X ERR = 6.87 
CORRELATIONS 
1 2 

1 1 .00  
2 0. 13 1.00 

++RESIDUAL ACF++ 
COEF 
0.47 

1-VAL LAC 
4.25 1 

0.27 2.07 2 
-0.19 -1.37 3 
-0.33 -2.35 4 
-0. 41 -2. 70 5 
-0. 32 -1.98 6 
-0.10 -0 .58 7 
-0.01 -0.06 8 
0 20 1. 16 9 
0.09 0. 52 10 
0. 09 0. 50 11 

-0.12 - 0 . a  12 
-0. 10 -0. 57 13 
-0. 16 -0.92 14 
-0. 06 -0. 36 15 
0.02  0. 14 16 
0.08  0.47 17 
0.21 1. 18 18 
0. 13 0.72 19 
0. 16 0.86 20 
0.03 0. 14 21 

CHI-SQUARED* = 
+RESIDUAL PACF+ 

0 

c 0>>>>>>>>>>>>>3 
c <<<<<<<<<o 3 

<<<c<<<<<<<<<<<<<o 3 
<<<<t<C<<<<<i<<<<<<<O 3 

C<C<<<C<CC<<<<<<O 3 
c <<<<<O 3 

c O>>>>>>>>>I>>>>>>>>>>>>> 

c 
c 
c 
c 
t 

84. 89 FOR DF 

0 
O>>>>>>>>>> 
O>>>>> 
O>>>> 

<<c<<<o 
<<<<<O 

<<<<<<<co 
<<<O 

O> 
O>>>> 
O>>>>>>>>>>> 
O>>>>>>> 
O>>>>>>>> 
O> 

= 19 

1 
3 
3 
3 
3 
3 
3 
3 
3 
1 
3 
3 
3 
3 

COEF T-VAL LAC 0 
0.47 4.25 1 c 0>>>>>>>>>3>>>:>>>>>>>>> 
0.07 0.64 2 c 0>:> 3 

-0. 44 -3. 97 3 iC~<<<.~~~;c<i<C<<(<<<<<<O 3 
-0. 18 -1.61 4 C<<<<<C<C<O 3 
-0.07 -0.62 5 c c<<o 3 
-0. 11 -1.01 6 c c<i<<<o 3 
0.07 0.62 7 c 0:>> 1 

-0. 11 -1.04 8 c i<<<<<o 3 
0.07 0.63 9 c O>>> 3 

-0. 15 -1 36 10 C <:<<Ci<<O 1 
-0.08 -0 .74  11 c C<<CO 1 
-0. 14 -1.30 12 c .c<<<<<<o 3 
0.01 0.05 13 c 0 3 

-0. 08 -0. 70 14 c C<<<O 3 
-0. 03 -0. 25 15 c <O 3 
-0.01 -0 08 16 c 0 1 
-0. 04 -0. 37 17 L <<O 3 
0.09  0 . 8 5  10 c o>>:.>> I 
-0.03 -0.27 19 c <O 1 
0.04 0.33 20 c 0>:'. 3 
0 . 0 7  0.60 21 c O>>> 3 

Figure C4.6 Estimation and diagnostic-checking results for model (C4.3). 
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may be seen by using the substitution procedure described in Chapter 9. 
First write model (C4.3) with 6, in place of a,, where b, is autocorrelated, 
and write the AR coefficient as 9: to distinguish it from other AR 
coefficients at lag 1 encountered in this procedure: 

( 1  - @:B)Z, = b, (C4 -4) 

Now suppose b, is described by an AR(2) model: 

( 1  - 9 ; B  - $;B2)b, = a,  (C4.5) 

where a, is not autocorrelated. Solving (C4.5) for b, and substituting for b, in 
(C4.4) gives 

(1 - $ ; B  - $ J p 2 ) ( 1  - +?B)Z, = a,  (C4.6) 

Expanding the LHS of (C4.6) we have 

( 1  - 9 , B  - +?B2 - 93B3)i, = a, (C4.7) 

where 

We see that (C4.4), an AR( 1) with autocorrelated residuals b,, together with 
(C4.5), an AR(2) describing the behavior of b,, imply (C4.7), an AR(3) 
model for z,. 

Alternatively, suppose b, follows an AR(1) pattern. Using the same 
substitution procedure produces an AR(2) for z,: 

( 1  - b l B  - (p2B2)Z, = a,  (C4.8) 

or 

Hewing to the principle of parsimony, we entertain (C4.8) rather than 
(C4.7) for the time being. 

Estimation results and the accompanying residual acf for model (C4.8) 
appear in Figure C4.7. Both 6l  and 6, have absolute z-values greater than 
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2.0, and together they satisfy the stationarity conditions for an AR(2). The 
residual acf has cleared up considerably. The wavelike pattern has disap- 
peared and only the first three autocorrelations have absolute 1-values 
exceeding the relevant residual acf warning levels (1.25 at the first two or 
three lags, 1.6 thereafter for nonseasonal data). 

The residual autocorrelation at lag 2 is so large that we should focus on 
it. The absolute 1-values at lags 1 and 3 exceed the practical warning values, 
but those autocorrelation coefficients may merely be negatively correlated 
with the dominant autocorrelation at lag 2. Adding a single MA coefficient 

+ + + + + + + + + +€COSTAT UNIVARIATE B-J RESULTS+ + + + + + + + + + 
+ FOR DATA SERIES: HOUSINC PERBITS + 
+ DIFFERENCIW: 0 DF 5 79 + 
+ AVAILABLE: DATA = 84 BACKCASTS = 0 TOTAL = 84 + 
+ USED TO FIND SSR: DATA = 82 BACKCASTS = 0 TOTAL = 82 + 
+ (LOST W E  TO PRESENCE OF AUTORECRESSIM TERNS: 2)  + 

COEFFICIENT ESTIMTE STD ERROR T-VALUE 
PHI 1 1. 305 0. 093 13. 97 
PHI 2 -0. 552 0. 092 -5. 99 
CONSTANT 26. 9703 5.62062 4.79846 

WEAN 109. 204 3.44334 31. 7146 

ADJUSTED R I S E  = 7. 68362 MEAN ABS X ERR = 5. 70 
CORRELATIONS 
1 2 3 

1 1 . 0 0  
2 -0.85 1.00 
3 -0.01 0.05 1 00 

++RESIDUAL ACF++ 
COEF T-VAL LAC 0 

-0. 18 -1. 60 1 c cccccc<<co 3 
0.36 3.20 2 c 0>>>>>>>>>.>>3>?>>>> 
-0.20 -1. 54 3 c c<<<<<cccco 3 
0.04 0. 33 4 c 0>> 3 
-0. 14 -1.04 5 c <cc<<<co 3 
-0. 16 -1 18 6 c c<cccc<<o 3 
0. 04 0.31 7 c O>> 1 
-0. 17 -1.27 8 c c<c<cc<<co 3 
0.20 1.47 9 c O>>>>Y>>>i>. 3 
-0. 14 -1.01 10 c ~ : c c c c ~ c o  3 
0.15 1.08 1 1  c O>>>>>.>>> 3 
-0.20 -1 39 12 c <<.‘<c<<<cco 3 
0. 09 0. 58 13 c O>>,:, 3 
-0. 13 -0. 89 14 L i<<CC<CO 1 
0.04 0. 24 15 c O>> 3 
0.02 0. 15 16 c O> 3 
-0. 01 -0. 06 17 c 0 3 
0. ie 1 21 18 c o,>>>>>>>> 3 
-0.04 -0.26 19 c CCO 3 
0. 14 0 94 PO c 03.>>>>>> 1 

-0.04 -0. 26 21 c C<O 3 
CHI-SQUARED+ = 45. 58 FOR DF = 18 

Figure C4.7 Estimation and diagnostic-checking results for model (C4.8). 
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at lag 2 to model (C4.8) might produce an acceptable model. To find out, 
we postulate the following ARMA(2,2) with 61 constrained to zero: 

( 1  - - +2B2)Z, = ( 1  - ~ , B ’ ) u ,  (C4.9) 

or 

+ + + + + + + + + +€COSTAT U N I V A R I A T E  8-J RESULTS+ + + + + + + + + + 
+ FOR DATA SERIES:  H W S I N G  PERMITS + 
+ DIFFERENCING:  0 D F  = 70 
+ AVAILABLE:  DATA = 84 BACKCASTS = 0 TOTAL = 84 + 
+ USED TO F I N D  SSR. DATA = 82 BACKCASTS = 0 TOTAL = 82 + 
+ (LOST DUE TO PRESENCE OF AUTOREGRESSIVE TERMS: 2 )  + 

COEFFIC IENT ESTIMATE STD ERROR T-VALUE 
P H I  1 1.203 0. 104 1 1  57 
PHI 2 -0. 530 0. 093 -5 67 
THETA 2 -0.408 0. 123 -3 33 
CONSTANT 35. 7761 7. 19599 4 97167 

MEAN 109 271 3. 36689 32. 4546 

ADJUSTED RMSE = 7. 12817 UEAN ABS X ERR = 5. 30 

+ 

CORRELATIDNS 
1 2 3 4 

1 1 00 
2 -0 73 1 00 
3 0 42 -0 15 1 00 
4 -0 01 0 06 0. 02 1 00 

++RESIDUAL ACF++ 
COEF T-VAL i-AC 0 

-0.01 -0 05 1 c <O 3 
0 0 7  0 6 0 2  C O>,> >,>.I>;.>. 3 

-0 07 -0 59 3 C <.:<<<<<o 3 
0 . 1 1  1 01 4 c o;.: >.>>;.>;.:.>;, 3 

-0. 10 -0 86 5 c <(<<:<<<<<<O 3 
-0 17 -1 51 6 C <<iCC<<<<i.:<<<<<<O 3 
-0 02 -9 19 7 c <<O 3 
-0. 13 - I  11 8 C .;<;‘:<<<<:<<‘:(<<O 3 

3 0 11 0.92 9 C . ->,.,*,,.>.>> 
-0.0s’ -0.73 10 c <<:c<<<ii<o 3 
0.05 0 44 11 I o>>>>:, 3 

-0. 15 -1 26 12 C C<<<<<<iC<<<<<<O 3 
0.05 0 . 4 ?  13 L 0>:.;.>> 3 

-0. 07 -3 58 14 C <<<<<<<O 3 
0.03 0 21 15 C OX>> 3 
0.  01 0 06 16 t 0, 3 
0. 01 0. 11 17 C O> 3 
0. 16 1 31 18 t O>>>>>>>>>>>>>>>> 3 

0.09 0. 72 20 O>>>>>>>>> 

o,i .._. . .. .. . . . 

-0.01 -0 04 19 CO 

-0.01 -0 07 21 <O 
CHI-SQUARED* = 16. 06 FOR D F  .i 17 

Figure C4.8 Estimation and diagnostic-checking results for model (C4.9). 
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Figure C4.9 Residuals for model (C4.9). 
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Figure C4.8 shows that model (C4.9) is satisfactory. All estimated coeffi- 
cients are statistically significant and they meet the required stationarity and 
invertibility conditions. (What are those conditions?) The RMSE is smaller 
than the one for model (C4.8). None of the absolute correlations among the 
estimated coefficients exceeds 0.9. Diagnostic checking using the residual 
acf indicates that we have an adequate model. None of the residual 
autocorrelations in Figure C4.8 has an absolute t-value larger than our 
practical warning values, and the chi-squared statistic is not significant at 
the 10% level. (What is the critical ch-squared value at the 10% level with 17 
degrees of freedom?) Note especially that the residual autocorrelations at 
lags 1 and 3 are now satisfactorily small. We were wise to focus on the 
residual autocorrelation at lag 2 in Figure C4.7 since it was so much larger 
than its neighboring values. 

Forecasts from model (C4.9) appear in Table C4.1, and the estimation 
residuals are plotted in Figure C4.9. See if you can calculate the forecasts 
using the difference-equation form of (C4.9), the estimated coefficients from 
Figure C4.8. the realization in Figure C4.1, and the residuals in Figure C4.9. 

Alternative models. Compare the results for (C4.9) with those for (C4.7). 
Estimation and diagnostic-checking results for the latter model appear in 
Figure C4.10. The coefficient & is so insignificant (111 = 0.62) that we 
should drop it from the model. Yet the largest residual autocorrelation is at 
lag 2. Therefore, we replace the AR term at lag 2 with an MA term and 
estimate the following ARMA(3,2) model with @2 and 8, excluded: 

( 1  - + , B  - @$33)Z, = ( 1  - 8,B’)a,  (C4.10) 

or 

Table C4.1 Forecasts from model (C4.9) 

Percent 
Forecast 80% Confidence Limits Future Observed Forecast 

Time Values Lower Upper Values Errors 

68 I 113.6505 104.5264 122.7745 n.a.” n.a. 
2 112.2701 98.0002 126.5401 n.a. n.a. 
3 110.5568 91.8589 129.2547 n.a. ma. 
4 109.2279 88.5988 129.8570 n.a. n.a. 

“n.a. = not available. 
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+ + + + + + + + + +ECOSTAT UNIVARIATE B-J RESULTS+ + + + + + + + + + 
+ FOR DATA SERIES: HOUSING PERUITS + 
+ DIFFERENCING: 0 w = 77 + 
+ AVAILABLE: DATA = 84  BACKCASTS = 0 TOTAL = 84 + 
+ USED TO FIND SSR: DATA = 81 BACKCASTS = 0 TOTAL 5 81 + 
+ (LOST WE TO PRESENCE OF AUTOREGRESSIVE TERMS: 3) + 

COEFFICIENT ESTIUATE STD ERROR T-VALUE 
PHI 1 1.128 0. 104 10. 86 
PHI 2 -0. 099 0. 161 -0. 61 
PHI  3 -0.337 0.  103 -3.26 
CONSTANT 33.4358 5.90394 5.  6633 

MEAN 108.414 2.55597 42. 416 

ADJUSTED RUSE = 7. 0908 UEAN ABS Y. ERR = 5. 12 
CORRELATIONS 
1 2 3 4 

1 1.00 
2 -0.84 1.00 
3 0. 56 -0.85 1.00 
4 -0. 03 0.02 0. 00 1. 00 

++RESIDUAL ACF++ 
COEF T-VAL LAG 0 
0.07 0. 67 1 C 0:,>>>>>> 3 
0 .22  1 . 9 8  2 c O>>>>>>>>>>>>>>>>>>>>>I 

-0.19 -1.50 3 c <<.:<(<<C<<~.:<<<<i<O 3 
0 .05 0 . 3 9  4 c O>>>>> 3 

-0 .07 -0. 55 5 C <<<<<<<O 3 
-0. 11 -0. 91 6 C <<<<<<i<C<<O 3 
-0.03 -0.26 7 C <<<O 3 
-0. 10 -0. 06 8 C <<<<<<<<<<O 3 
0. 14 1. 16 9 C O>>>>>>>>>>>:'>> 3 

-0. 09 -0. 70 10 <<<<<<<<<O 
0.04 0. 34 11 O>>>> 

-0. 21 -1 70 12 <<<<<<;<<~~~<<~:':<~.~(~~o 
0.01 0 . 0 8  13 O> 

-0. 14 -1.05 14 <<<<<<<<<<<<<.cO 
0 .  04 0. 27 15 O>>>> 

-0.05 -0. 40 16 <<<<<o 
0 . 0 5  0. 40 17 O>>>>> 
0. 13 0 . 9 7  18 O>>>>>>>>>>>>> 
0.04 0. 33 19 O>>>> 
0 . 0 9  0.67  20 0>>>>>>>5:> 

-0.04 -0.27 21 <<<<O 
CHI-SQUARED* = 22. 95 FOR DF = 17 

Figure C4.10 Estimation and diagnostic-checking results for model (C4.7). 

See Figure C4.11 for estimation results and the residual acf for (C4.10). 
The results are disappointing. Both 6, and 6, are still significant, but the 
absolute r-value attached to 8, is only 1.5 1. Furthermore, the residual acf 
has a spike at lag 1 with a r-value substantially larger than the relevant 
warning level of 1.25. 

We try adding a 6 ,  coefficient to model (C4.10). Ths seems reasonable in 
light of the residual acf spike at lag 1 in Figure C4.11. We also leave 6, in 
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+ + + + + + + + + +ECOSTAT UNIVARIATE B-J RESULTS+ + + + + + + + + + 
+ FOR DAT4 SERIES: HOUSING PERHITS + 
+ DIFFERENCINC: 0 DF = 77 + 
+ AVAILABLE: DATA = 84 BACKCASTS = 0 TOTAL = 84 + 
+ USED TO FIND SSR DATA = 81 BACKCASTS = 0 TOTAL = 8 1  + 
+ (LOST DUE TO PRESENCE OF AUTOREGRESSIVE TERMS: 3)  + 

COEFFICIENT ESTIMATE STD ERROR T-VALUE 
P H I  1 1 01s 0. 078 13. 08 
P H I  3 -0 360 0. 065 -5. 51 
THETA 2 -0 22s 0. 149 -1.  51 
CONSTANT 37 3364 6. 73429 5. 54423 

MEAN ioe 233 2. 73445 39 5813 

ADJUSTEL RMSE = 6 96192 M A N  AES X ERR = 5. 06 
CQRRELAT I ONS 
1 2 3 4 

1 1 00 
2 -0.64 1 00 
3 0 64 -0 48 1 00 
4 -0 03 0 03 0 3C 1 00 

++RESIDUAL A i F + +  
COEF T-VAL LAC 0 

O>>.’.’ .,”>;””.-.”.’,‘ -,..,.’,,, \. ..>> 0 1 9 1 7 0 1  E ,,, 
0 02 0. 14 2 C O>> 3 
-0 14 -1 23 3 c ;<;(<‘~..:..:.:c.~<<(o 3 
006 0 4 6  4 C  O>>,>>> 3 

-0 02 -0 15 5 I <<O 3 
-0. t i  -0 96 6 C <i<i~:<c<<<<o 3 
-0 08 -0 70 7 E -:<<<<<<<o 3 
-0. @R -0 69 8 C .:.:<<<<<<0 3 
0 11 0 93 9 c O>:>>>:>>?:>> I 
-0 ir4 -0 34 10 c <c<<o 3 
-0 02 -0 19 11 C <<O 3 
-0 18 -1 5 1  12 C ~ ~ ; c i t c ~ ~ ~ < < ~ t c < < < < < o  3 
-0 31 -0 12 13 <O 
-0. 07 -0. 59 14 c<<<<c<o 

-0 05 -0. 36 16 <<<<co 

3 

0 03 0 .21  15 O>>> 

0 . 0 5  0 . 4 1  17 O>>>>> 
0. 14 1 08 18 O>:\>>>>>>>>>>>> 
0 .06  0 47 19 O>:>>>Y> 
0 06 0 . 4 6  20 O>>>>>> 

-0.03 -0.23 21  c<co 
CHI-SQUARED* = 16 13 FOR DF = 17 

Figure C4.11 Estimation and diagnostic-checking results for model (C4.10). 

the model even though its absolute r-value in Figure C4.11 is only 1.5 1. We 
leave it in because the residual acf spike at lag 2 in Figure C4.10 has a large 
r-value, which is why we added 6, in the first place. It would be unusual to 
find an insignificant 8, coefficient at the estimation stage (as we found in 
Figure C4.11) when there is a corresponding large spike in a preceding 
residual acf (as we found in Figure C4.10). Therefore, we include both 8 ,  
and 8, in our next model. an ARMA(3,2) with +, = 0. If 8, continues to be 
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insignificant we can drop it  later. Our new model is 

( I  - + 1 ~  - + 3 ~ 3 ) i r  = ( 1  - e , B  - e 2 B 2 ) u ,  (C4.11) 

or 

As seen from the estimation results and the residual acf in Figure C4.12. 
model (C4.11) is satisfactory. All estimated coefficients are highly signifi- 
cant. The residual acf supports the hypothesis that the shocks of (C4.11) are 
independent: there are no residual acf absolute t-values larger than the 
relevant practical warning levels and the chi-squared statistic is insignificant 
at the 10% level. According to the correlation matrix printed above the 
residual acf, the estimated coefficients are not too highly correlated since 
none of the absolute correlation coefficients exceeds our rule-of-thumb 
warning value of 0.9. 

Model (C4.11) provides an adequate representation of the available data. 
It is slightly unusual to need four estimated parameters to adequately model 
a nonseasonal series, and it is also somewhat uncommon to find a nonsea- 
sonal model whose order is greater than two. (The order of the AR portion 
of the model is p = 3.) But neither of these results is so rare as to cause 
great concern. Forecasts from (C4.11) are shown in Table C4.2. They are 
roughly similar to the forecasts in Table C4.1. though model (C4.9) forecasts 
a decline in housing permits in the second quarter of 1968. while model 
(C4.11) forecasts a slight rise. 

Cycles and AR models. The housing industry has historically moved in 
a strong cyclical pattern matching the overall business cycle fairly closely. 
though with a lead. Box and Jenkins [l, p. 591 point out that AR(2) 
processes where +: + 4+2 c 0 produce quasiperiodic patterns. For model 
(C4.9), t$ + 4& = 1.447 - 2.120 = -0.673, so there is a quasiperiodic 
element in the model. 

Interpreting the estimated acf in Figure C4.2 as a damped sine wave 
consistent with the AR portion of (C4.9), we see that wave repeating itself 
starting at about lag 11. This implies that the cycle in the housing-permit 
series has a period of about 11 quarters or 3 years. Ths result is consistent 
with the length of the typical post-World War I1 business cycle which has 
been about three to five years. 

Jenluns [34, pp. 59-60] emphasizes that the quasiperiodic cycles gener- 
ated by AR(2) models, where (p: + 4+2 c 0. are not deterministic. They 
show stochastic changes in period. phase, and amplitude depending on the 



+ + + + + + + + + +ECOSTAT U N I V A R I A T E  B-J  RESULTS+ + + + + + + + + + 

+ FOR DATA SERIES:  HOUSING PERMITS + 
+ DIFFERENCINC:  0 DF = 76 + 
+ AVAILABLE:  DATA = 84 BACKCASTS = 0 TOTAL = 84 + 
+ USED TO F I N D  SSR: DATA = 81 BACKCASTS = 0 TOTAL = 81 + 
+ (LOST DUE TO PRESENCE OF AUTOREGRESSIVE TERMS: 3)  + 

COEFFICIENT ESTIMATE STD ERROR T-VALUE 
PHI 1 0.859 0.105 8. 20 
P H I  3 -0. 243 0. 091 -2. 68 
THETA 1 -0.378 0. 127 -2.98 
THETA 2 -0.448 0. 134 -3. 29 
CONSTANT 41 6334 9. 10872 4. 57072 

MEAN 108. 380 3. 50826 30. 8952 

ADJUSTED RUSE = 6. 72294 UEAN ABS X ERR = 4. 82 
CORRELATIONS 
1 2 3 4 5 

1 1.00 
2 -0 .65  1 00 
3 0. 56 -0 47 1.00 
4 0 60 -0 54 0. 52 1.00 
5 -0. 06 0 07 -0 02 -0. 04 1. 00 

++RESIDUAL ACF++ 
COEF T-VAL L A 6  0 

-0 02 -0 15 1 C <<0 3 
0.03 0 31 2 C O>:>> 3 

-0.03 -0 23 3 C <<<O 3 
0.06  0.  58 4 C O>>>>:,:' 3 

-0. 10 -0.90 5 C <<i<<<<<<<O 3 
-0.12 -1.10 6 c <<<c<i<<<<<<o 3 
-0.05 -0. 42 7 C *:<<<<0 3 
-0. 12 -1.06 8 C <<<<<<<<<<<<O 1 
0. 10 0.84 9 C O>>>.>>>>>>> 3 

-0.07 -0. 56 10 C ,<<<<<<<O 3 
0.02 0.18 11 c O>> 3 

-0. 16 -1.36 12 C -:<<CC<<<<<i<<C*:<O 3 
0.04 0. 34 13 C O>>>> 3 

-0. 08 -0 47 14 C <<<<<<<<o 3 
0.07 0 54 15 C O>>>>.>>> 3 

-0.05 -0.41 16 C <<C<<O 1 
0.05 0.37 17 C o>>;.>>. 3 
0. 13 1.05 18 C O>>>>>>>S>>>>> 3 
0 .03  0.27 19 C O>>> 3 
0.08 0.66 20 1. 04>:*>>>>> 3 

-0. 04 -0. 36 21 C .:<<<0 1 
CHI-SQUARED+ = 12.85 FOR D F  = 16 

Figure C4.12 Estimation and diagnostic-checking results for model (C4.1 I ) .  
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Table C4.2 Forecasts from model (C4.11) 

Percent 
Forecast 80% CO~fidence Limits Future Observed Forecast 

Time Values Lower Upper Values Errors 

68 1 114.5840 105.9786 123.1894 n.aa n.a 
2 115.0582 101.3689 128.7475 ma. n.a. 
3 112.8267 93.9488 131.7046 ma. n.a. 
4 110.6943 89.7483 131.6403 n.a. ma. 

“n.a. = not available. 

behavior of the random shock 0,. Models of this type can be important in 
describing cyclical economic data since the cycles in these series are not 
deterministic. 

Final comments. We can summarize as follows: 

1. 

2. 

3. 

We have found two parsimonious mixed models (C4.9) and (C4.11) 
that fit the available data satisfactorily; (C4.9) is more parsimonious, 
but (C4.11) has a smaller RMSE and chi-squared statistic. It would 
be wise to monitor the forecast performance of both because one 
might regularly produce better forecasts. 
Models (C4.9) and (C4.11) might be nearly the same mathematically. 
We encountered this phenomenon in Case 3. The reader is encour- 
aged to review the steps followed in Case 3 for checking the mathe- 
matical equivalence of two models and to apply the same procedure 
to (C4.9) and (C4.11). 
This case illustrates the practical value of starting with a pure AR 
model when it proves difficult to identify the order of a mixed model. 
Estimating just a few AR terms often provides a residual acf that 
clarifies the MA pattern considerably. 
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CASE 5. RAIL FREIGHT 

In this case we model the quarterly freight volume carried by Class I 
railroads in the United States measured in billions of ton-miles. The data 
cover the period 1965- 1978, a total of 56 observations. This is close to the 
minimum number of observations (50) for building a univariate ARIMA 
model. As in some earlier cases, these data have been seasonally adjusted for 
simplicity since this is one of the early case studies.* 

The data are plotted in Figure C5.1. The series rises through time, so its 
mean may not be stationary. But deciding if the mean is stationary with 
visual inspection can be misleading. (This is especially true when the origin 
of the graph is not zero; the origin in Figure C5.1 is 166.8.) We must rely on 
the appearance of the estimated acf and on the values of AR coefficients at 
the estimation stage to decide if the mean of the rail-freight data is 
stationary. 

Inspection of Figure 0 . 1  suggests that the variance of the series might 
be increasing along with its level. There is not much supportive evidence, 
however; there are just a few observations (late 1974 and late 1978) showing 
greater variability. For the time being, we will analyze the realization in 
Figure C5.1 without transforming it. 

Identification. We begin the analysis by calculating n/4 autoconelation 
coefficients using the undifferenced data, where n is the number of observa- 

'The original. unadjusted data are taken from the US. Department of Commerce publication 
Business Srurisrrcs. 1911 ed.. pp 120 and 264. and various issues of the Survet oj  Currenr 
Business. 
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RAIL FREIGHT 
--DIFFERENCING: 0 
--EACH VERTICAL AXIS INTERVAL 1.21458 
LOW = MEAN = HIGH = 
166.8 193. 937 225. 1 
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Figure 0 . 1  Rail-freight data, 1965-1978. 
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tions. With n = 56 we calculate 56/4 = 14 autocorrelations and partial 
autocorrelations shown in Figure (3.2. 

Our first concern at the identification stage is whether the mean is 
stationary. To decide this we look at the estimated acf. If the acf fails to 
damp out quickly to statistical zeros at longer lags. we suspect nonstationar- 
ity. The estimated acf in Figure C5.2 suggests that the mean of the 
undifferenced realization is stationary: only the first three autocorrelations 
are statistically different from zero at about the 5% level, and only the first 
four have absolute r-values larger than the practical warning level discussed 
in Chapter 12. (The square brackets on the acf are placed at about the 5% 
significance level corresponding to an absolute r-value of about 2.0. With 
nonseasonal data, the practical warning level for all absolute r-values at the 
initial identification stage is around 1.6.) 

+ + + + + + + + + + + + + AUTOCORRELATIONS + + + + + + + + + + + + + 
+ FOR DATA SERIES RAIL FREIGHT + 
+ DIFFERENCING 0 HEAN = 193 937 + 
+ DATA COUNT = 56 STD M U  = 12 9074 + 

COEF T-VAL LAG 0 
0 00 5 90 1 c O>>>?> I>>>?>:>>?>>>>>> 
0 59 2 94 2 c 0>?>?>>>>>3>>:>> 
0 48 2 07 3 c 0>>>>>>>>>>>3 
0 40 1 61 4 c o>>>>>?>-,>> 1 
0 29 1 12 5 c o>>>>>>> 1 
0 20 0 75 b c O>>>>> 1 
0 12 0 47 7 c O>?> 1 
0 00 0 31 0 c O>? 1 
0 08 0 30 9 c 0>: 1 
0 10 0 38 10 c O>>> 1 
0 14 0 51 1 1  c o>>:?. 1 
0 16 0 60 12 c O>>>> 1 
o ia o 66 13 c 0>>>>-. 1 
0 20 0 74 14 c o>>: > ?  1 

CHI-SWARFD* = 102 37 FOR DF 14 

+ + + + + + - + * + + PkRTIAL AUTOCORRELATIONS + + + + + + + + + + + 
COEF T-VAL LAG 0 
o ao 5 98 1 c o>>>;., 3 >>>:,> ;.;\':.I>>>>> 
-0 13 -0 94 2 c c<:o 1 

0 13 0 96 3 c O>>> 1 
0 01 0 06 4 c 0 1 
-0 1 1  -0 84 5 c i.,'<o 1 
0 01 0 35 6 c 0 1 
-0 05 -0 39 7 c io 1 
0 03 0 22 0 c 0, 1 
0 08 0 01 9 c o>> 1 
0 06 0 48 10 f o:,:. 1 
0 08 0 61 11 E 0>3 3 
0 02 0 15 12 c o:, 1 
0 03 0 20 13 c o> 1 
0 04 0 28 14 c o:, 1 

Figure CS.2 Estimated acf and pacf for the realization in Figure C5.1. 
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Although the mean of the realization in Figure C5.1 seems stationary so 
that differencing is not needed, we will examine the estimated acf of the first 
differences anyway. This should allow any seasonal pattern that has not 
been removed to stand out more clearly. Figure C5.3 shows the estimated 
acf for the first-differenced series. With quarterly data the seasonal lags are 
multiples of 4. The autocorrelation at lag 4 is insignificant, while the one at 
lag 8 has an absolute r-value exceeding the seasonal-lag practical warning 
level of 1.25. Although there might be some slight seasonality remaining in 
the data represented by the autocorrelation at lag 8, we will ignore it for the 
time being. 

Our next concern at the identification stage is whether we should 
estimate an AR, an MA, or an ARMA model. According to the estimated 
acf in Figure C5.2 we should tentatively select an AR model. One piece of 
evidence is that the acf declines fairly smoothly toward the zero line rather 
than cutting off abruptly to statistical insignificance. As discussed in Chapter 
6, a decaying acf suggests that an AR model may fit the data fairly well. 

While an ARUA (mixed) model could also explain a decaying acf, such 
models are frequently difficult to identify initially. I t  is helpful to start with 
a pure AR model when the initial acf decays and move to a mixed model 
when the residual acf suggests it. There are exceptions to this strategy. For 
example, an initial acf decaying toward zero entirely from the negative side 
would be strong evidence for an ARMA(1,l) model. The decay would rule 
out an MA model, and the series of entirely negative autocorrelations would 
rule out the common AR models-AR(1) or AR(2). [See Chapter 6 or 12 
for examples of ARMA( I ,  1) acf s of this type.] 

+ + + + + + + + + + + + + AUTOCORRELATIONS + + + + + + + + + + + + + 
+ FOR DATA SERIES: RAIL FREICHT + 
+ DIFFERENCING: 1 MEAN = 1. 06 + 
+ DATA CWNT = 55 STD DEV = 5.91596 + 

COEF 1-VAL LAC 0 
0 .27  2 .01  1 c 0>>>>>>>>>>>>>3 

-0. 11 -0.73 2 c <<<<<O 3 
-0. 09 -0. 62 3 c <<<<<O 3 
-0.05 -0.34 4 c <<O 
-0. l i  -0.74 5 c <<<<co 
-0 .05  
-0.08 
-0.22 
-0. 21 
-0. 04 
0. 12 
0. 11 
0. 12 

-0. 04 
cnx 

-0. 33 6 c 
-0. 56 7 c 
-1 46 8 c 
- 1 . 3 5  9 c 
-0.23 10 E 

0 .  72 11 c 
0. 70 12 c 
0 73 13 c 

-0.25 14 c 
-SQUARED+ = 16. 37 FOR 

*:<0 
<<<<O 

<<<<<c<<<<co 
c<<c<<<<<<co 

<<O 
0>.>>>:.> 
O>.>>>>> 
O>>>>>> 

c<o 
DF = 14 

3 
3 
3 
3 
3 

3 
3 
3 
3 
3 
3 

Figure C53 Estimated acf for the first differences of the rail-freight data. 
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In this case we tentatively choose an AR model. Next, we turn to the 
estimated pacf in Figure C5.2 to select the order of the AR model. The 
single spike at lag 1 in the pacf calls for an AR( 1). Spikes in the pacf at both 
lags 1 and 2 would suggest an AR(2). In general, pacf spikes through lag p 
followed by a cutoff to zero suggest an AR(p) model. Here we have 
tentatively identified this model: 

(1  - +,B)Z, = 0 ,  ((3.1) 

Estimation and diagnostic checking. Figure C5.4 shows the results of 
estimating (C5.1). The large 1-value (13.79) attached to 6 ,  indicates it is 
significantly different from zero at better than the 5% level. With 6, = 0.897, 
the condition 16, I < 1 is met, so it seems that the model is stationary. But 
we should be cautious in reaching this conclusion because 6 ,  is less than two 

+ + + + + + - + + +ECOSTAT U N I V A R I A T E  B - J  RESULTS+ + + + + + + + + + 
+ FOR DATA S E R I E S :  R A I L  F R E I G H T  + 
+ D I F F E R E N C I N G .  0 DF 53 + 
+ A V A I L A B L E  DATA = 56 BACKCASTS = 0 TOTAL = 56 + 
+ USED TO FINE SSR: DATA = 55 BACKCASTS = 0 TOTAL = 55 + 
+ ( L O S T  DUE TO PRESENCE OF AUTDRECRESSIVE TERMS: 1 )  + 

COEFF I C IENT E S T  I M T E  S T D  ERROR T-VALUE 
P H I  1 0.  897 0 065 13 79 
CDNSTANT 20. 9471 12. 6035 1 662 

MEAN 203 470 10 1054 20. 1554 

AEJUSTED RMSE = s 88923 MEAN ABS x ERR = 2.13  
CORRELATIONS 
1 2 

1 1 00 
2 0 6 5  1 GO 

++RESID~JAL ACF++ 
COEF T-VAL : A G  0 
0 30 2 19 1 c o>>::.> >:?>;\>: ,53.]) 

-0 09 -0 59 2 c <<<CO I 
-0 OR -0 56 3 c iCIi0 3 
-0 02 -0 IS 4 c i0 1 
-0 QB -C 54 5 c iC<:cO 3 
-0 02 -0 14  6 c CO 3 
-0 08 -0 51 7 c c<<co 1 
-0. 22 -1 44 0 [ .:<'<..:(<:c.<c(o 3 
-0.21 - 1  34 9 c c<<~.:<<<c<co I 
-0 05 -0 31 10 c ((0 3 

0.  10 0 60 11 L O>>>>> 3 
0. 10 0 63 12 c O>>>>?. 3 
0 . 0 9  0 57 13 C O>>>>> 3 
-0.06 -0 36 14 c <c<o 3 

CHI-SGUARED, 15.27 FOR DF = 12 

Figure C5.4 Estimation and diagnostic-checking results for model (C5. I ) .  
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standard errors away from 1.0. That is, testing the null hypothesis H,: 
+ I  = 1 by calculating a 2-statistic gives 

0.897 - 1 
0.065 

- - 

= -1.58 

In these calculations we replace with its hypothesized value (1). The 
estimated standard error of is printed at the top of Figure C5.4 under the 
heading STD ERROR. From these calculations. we see that 6, is 1.58 
standard errors below 1.0. Therefore, is not different from 1.0 at the 10% 
level. (The critical r-value at the 10% level is about - 1.67.) 

There is no fixed rule telling us how to proceed in a situation like this; we 
have to exercise some judgment. There is a practical rule which says to 
difference the data if we are in doubt about its stationarity. As pointed out 
in Chapter 7 the chief advantage of this rule is that forecasts from a 
differenced series are not tied to a fixed mean, so we gain some flexibility by 
differencing. 

But unnecessary differencing typically increases the residual variance of 
the final model, so we do not want to difference without good reason. Our 
estimate of (p, comes close to being different from 1.0 at the 10% level. 
Furthermore, the residual acf in Figure C5.4 suggests that model ((3.1) is 
misspecified: the large spike at lag 1 in the residual acf is significant at 
about the 5% level, and its r-value exceeds the residual acf short-lag 
practical warning level (1.25) by a substantial margin. So we have evidence 
that the shocks associated with ((3.1) are not independent, meaning the 
model is not adequate. The point is this: 6 ,  could change greatly if another 
coefficient is added to account for the residual acf spike at lag 1. It might 
move closer to 1 .O or further away. For now we specify a new model for the 
undifferenced data rather than differencing. We can always difference the 
data later if this choice gives unsatisfactory results. 

Further identification For guidance in modifying ((25.1) we return to 
the initial acf and pacf calculated from the original data, and we also 
consider the residual acf in Figure (25.4. 

Unfortunately, the original acf and pacf in Figure C5.2 offer no clues 
about how to modify ((25.1). They are consistent with an AR(1) but with 
little else. 
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However, the acf calculated from the residuals of model (C5.1) is more 
helpful. It says that an MA coefficient at lag 1 should improve our results. 
An MA term at lag 1 is called for because the only significant residual 
autocorrelation is at lag 1, but we already have an AR term at that lag. Ths 
makes adding an MA term at lag 1 the only sensible alternative. In addition. 
the residual acf cuts off to statistical insignificance after lag 1, suggesting 
that an MA term at lag 1 is appropriate. Therefore, we entertain an 
A R M (  1, 1) model: 

(1 - (PIB)I ,  = (1 - ~ , B ) u ,  (C5.2) 

Further estimation and diagnostic checking. Estimating (PI and 8 ,  with a 
nonlinear least-squares method gives the results in Figure C5.5. The esti- 
mated AR coefficient ( 6 ,  = 0.834) is less than 1.0 in absolute value as is the 

+ + + + + + + + + +€COSTAT MIVARIATE 8-J RESULTS+ + + + + + + + + + 
+ FOR DATA SERIES: RAIL FREICHT + 
+ DIFFERENCINC: 0 DF = 52 + 
+ AVAILABLE: DATA = 56 BACKCASTS = 0 TOTAL = 56 + 
+ USED TO FIND SSR: DATA = 55 BACKCASTS = 0 TOTAL = 55 + 
+ (LOST DUE TO PRESENCE OF AUTORECRESSIVE TERMS: 1 )  + 

C M F F I C  IENT ESTIMATE STD ERROR T-VALUE 
P H I  1 0. 834 0. 086 9. 67 
THETA 1 -0. 403 0. 139 -2. 90 
CONSTANT 33. 2991 16. 6956 1. 99440 

HEAN 200 1 7. 18721 27. 0412 

ADJUSTED RMSE = 5. 55445 MEAN ABS Z ERR = 2. 09 
CORRELATIONS 
1 2 3 

1 1.00 
2 0 .37  1 00 
3 0 .49  0 17 1 .00  

++RESIDUAL. ACF++ 
COEF T-VAL LAG 0 
0 . 0 1  0 .11  1 O> 
0 .00  0 . 0 3  2 0 

-0. 05 -0. 41 3 <<.:.<<0 
0 .03  0. 25 4 O>>> 

-0. 07 -0. 51 5 <‘:<<<:;<O 
0.04 0 26 6 O>>>, 

-0.01 -0 05 7 -:0 
-0. 15 -1.07 8 ‘<.:((<((.:‘:<:;<<<O 
-0. 13 -0. 97 9 <<<< <<.<<.<<<<:*:o 
-0. 03 -0 22 10 .:<.:0 
0 .09  0 66 11 O>>?>>>>>> 
0.02 0. 15 12 O>> 
0. 13 0 . 9 2  13 O>??>>.>>>>>>>> 

-0. 13 -0. 08 14 i.:.:(<.~.~.:(i.:’<O 
CHI-SWARED+ = 6. 56 FOR DF = 11 

F i e  C55 Estimation and diagnostic-checking results for model ((3.2). 

x 
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estimated MA coefficient (4, = -0.403), so we might conclude that (C5.2) 
is both stationary and invertible. Since the absolute t-values attached to the 
estimated coefficients are both larger than 2.0, we conclude that +, and 8, 
are nonzero and should be included in the model. 

Next. we want to test whether the shocks (the u, elements) of (C5.2) are 
independent. If they are not independent, we have violated an important 
assumption made in UBJ-ARIMA modeling and (C5.2) is not adequate. 
We would then try to identify another model. 

The estimation stage residuals (6,) are used to construct an estimated acf 
to test the independence of the shocks. The residual acf for model (C5.2) is 
plotted in Figure C5.5 below the estimation results. All the absolute 1-values 
of the residual autocorrelations are smaller than the practical warning levels 
stated in Chapter 12. (These are 1.25 at the first two or three lags in a 
residual acf, and 1.6 at other lags for nonseasonal data.) Note that the 
residual autocorrelation at lag 8 now has an absolute 1-value less than the 
seasonal-lag warning level of 1.25. The chi-squared statistic is also insignifi- 
cant. We conclude that the shocks of (C5.2) are independent and that this 
model is a statistically adequate representation of the available data. This 
does not mean we have identified the true process generating these observa- 
tions. It does mean that we have found a model that fits the available data. 
I t  is also important that we have found a parsimonious model: (C5.2) 
contains only two estimated parameters (4, and 4,) in addition to the mean. 

An alternative model. Model (C5.2) has one troubling aspect: the esti- 
mated AR coefficient falls on the borderline if we test to see if it is 
significantly different from 1.0. Testing the null hypothesis No: + I  = 1.0. we 
obtain a 1-statistic of - 1.93; the critical value for 52 degrees of freedom 
falls between -2.0 and -2.01 for a 5% two-sided test. Although (C5.2) is 
defensible. we could also defend differencing the realization since there is 
some evidence against the hypothesis 

As pointed out in Chapter 6, differencing is preferred in ambiguous 
circumstances. Therefore, we entertain an ARIMA(0,l. 1) model based on 
the estimated acf in Figure C5.3. (Do you agree with this analysis of that 
acf? Why?) In backshift form the ARIMA(0, 1, 1) is 

= 1.0. 

( I  - ~ 1 2 ,  = ( 1  - e , B ) a ,  (C5.3) 

The similarity between the estimated acf in Figure C5.3 and the residual 
acf in Figure C5.4 is no accident. Each represents the acf for the series L, 
after it has been filtered through the operator (1  - + l B ) .  In one case 
(Figure C5.3), +I  has the value 1.0 since the filter is simply the differencing 
operator (1  - B); in the other case (Figure C5.4), has the value 0.897 
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estimated from the data. The numbers 0.897 and 1.0 are close in value, so 
the two filtering operations produce similar series with similar acf s. 

Figure C5.6 shows the results of fitting model (C5.3) to the data and 
performing diagnostic checks on the residuals. The estimated MA coeffi- 
cient (4, = - 0.363) has an absolute value substantially less than 1 .O. thus 
satisfying the invertibility requirement Id,! c 1. It also has an absolute 
r-value greater than 2.0; we conclude that 8 ,  is significantly different from 
zero. The residual acf shows no absolute r-values greater than the relevant 
warning levels, and the residual acf chi-squared is not significant. Our 
conclusion is that model ((3.3) provides a good representation of the 
rail-freight realization. 

Final comments. We conclude: 

1. Either model ((3.2) or ((3.3) could be used to forecast. However. 
our practical rule that differencing should be used in ambiguous 
cases leads to model (C5.3). 

+ + + + + + + + + +€COSTAT U N I V A R S A T E  B - J  RESULTS+ + + + + + + + + + 
+ FOR DATA S E R I E S -  R A I L  F R E I G H T  .+ 
+ D I F F E R E N C I N G :  1 DF = 54 + 
+ A V A I L A B L E .  DATA = 55 BACKCASTS = 0 TOTAL 55 + 
+ USED TO F I N D  SSR. DATA = 55 BACKCASTS = 0 TOTAL = 55 + 
+ (LOST DUE TO PRESENCE OF AUTORECRESSIVE TERMS. 0) + 

C O E F F I C I E N T  E S T I M A T E  S T D  ERROR T-VALUE 
THETA 1 -0. 363 0. 128 -2.84 

ADJUSTED RHEE = 5 72658 MEAN ABS X ERR = 2.21 

++RESIDUAL ACF++ 
COEF T-VAL LAG 0 

-0 02 -0 18 1 -<<o 
-0 06 -0 43 2 ;':::':';<O 
-0 06 -0 46 3 <<*:<~:<o 
-0.01 -0 oa 4 r;O 
-0 10 -c. 74 5 <I(;: :<..:;<;.<o 
-0 01 -0 10 6 ;0 
-0 02 -0 12 7 <CO 
-0 16 -I 19 8 .:::<:; '::I.<.: :.:.:.:.:<.::<o 
-0 15 -1 07 9 .................. ......, .o 
-0.02 -0 15 10 <co 

............ . . c r ..... 

0 1 1  0 79 11 o>>.; >'.>>>>,>.> 
0 03 0. 18 12 0>;..; 
0 15 1 06 13 O>,>.'; >>,>>>;->'.>> 

-0 11 - 0 . 7 4  14 < < C i . ~ < < < C < < O  
CHI-SQUARED* = 8 16 FOR DF = 13 

Figure C5.6 Estimation and diagnostic-checking results for model (C5.3). 
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Table C5.1 Forecasts from the ARMA(1,l) model (C5.2) 

Forecast 80% Confidence Limits Future Observed Percent Forecast 
Time Values Lower Upper Values Errors 

79 1 224.3772 217.2676 231.4869 n.a.“ n.a. 
2 220.3373 209.0321 231.6424 n.a. n.a. 
3 216.96% 203.4977 230.4415 n.a. n.a. 
4 214.1623 199.3705 228.9541 n.a. n.a. 

- 

“n.a. = not available. 

2. 

3. 

Tables C5.1 and C5.2 show the forecasts from models ((3.2) and 
(C5.3), respectively. These two forecast profiles are quite different. 
The forecasts from (C5.2) converge gradually toward the estimated 
mean (200.1) in Figure C5.5 because that model is stationary. But the 
forecasts from ((3.3) are not tied to a fixed mean because that model 
is nonstationary. This makes (C5.3) more flexible and thus prefer- 
able. (See Chapter 10 for examples of how forecasts are calculated.) 

Suppose for the sake of argument that we do not difference the data 
and thus amve at the ARMA(1,l) model ((3.2). Then this case 
shows how difficult it can be to identify a mixed model at the initial 
identification stage. The original acf and pacf in Figure C5.2 do not 
provide evidence that a mixed model is appropriate. Sometimes with 
hindsight we can see acf or pacf patterns that are obscure at the first 
examination, but in this case even hindsight examination of Figure 
C5.2 is of little help. 

Table C5.2 Forecasts from the nonstationary ARIMA(0, 1, 1) model ((3.3) 

Forecast 80% Confidence Limits Future Observed Percent Forecast 
Time Values Lower Upper Values Errors 

79 1 227.4996 220.16% 234.82% n.a.‘ n.a. 
2 227.4996 215.1082 239.8910 n.a. n.a. 
3 227.49% 21 1.5822 243.4170 n.a. n.a. 
4 227.49% 208.7065 246.2927 n.a. n.a. 

‘ n.a. = not available. 
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However. the residual acf in Figure C5.5 is not difficult to analyze. 
It  gives clear evidence that we should estimate an MA coefficient at 
lag 1. in addition to the previously estimated AR term. This il- 
lustrates a practical rule: unless the initial evidence for a mixed 
model is quite clear, start with a pure AR model and rely on the 
residual acf for guidance in modifying the orignal model. This rule is 
especially helpful in modeling the data in Case 4. 



CASE 6. AT & T STOCK PRICE 

The data in Figure C6.1 are the weekly closing price of American Telephone 
and Telegraph (AT & T) common shares for the year 1979. The observations 
were taken from various issues of the Wall Street Journal (AT & T shares are 
traded on the New York Stock Exchange). With only 52 observations, we 
are close to the minimum (about 50) recommended for building an ARIMA 
model. 

Although the variance of this series appears to be roughly constant 
through time, the mean seems to decline. We will be alert for an estimated 
acf that decays slowly to zero indicating a nonstationary mean and the need 
for differencing. 

With weekly data the length of seasonality would be 52;  but with only 52 
observations we cannot calculate 52 autocorrelations, nor can we estimate 
an AR or MA coefficient with a lag length of 52. Therefore, we ignore the 
possibility of seasonality with length 52. 

Identification. We start by examining the estimated acf and pacf for the 
undifferenced data in Figure C6.2. The estimated acf falls to zero slowly, 
indicating that the mean of the data is nonstationary and that nonseasonal 
differencing is required. We will see if estimation-stage results confirm the 
need for differencing. 

Assuming for the moment that differencing is not needed, we start with 
an AR(1) model. This is consistent with the combination of a decaying 
pattern in the estimated acf and the cutoff to zero after lag 1 in the 
estimated pacf. For a pure MA model we would see just the opposite: spikes 
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Figure C6.1 AT & T weekly closing stock price, 1979. 
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+ + + + + + + + + + + + + AUTOCORRELATIONS + + + + + + + + + + + + + 
+ FOR DATA SERIES: AT b T WEEKLY CLOSING STOCK P R I C E  + 
+ D I F F E R E N C I N G :  0 PLAN = 57.7957 + 
+ DATA COUNT = 52 S T D  M V  = 3.4136 + 

COEF T-VAL L A 6  0 
0.93 6 74 1 c O>>>>>I>>>>>>>>>>>>>>>>> 
0 86 3 75 2 c 0>>>>:>>>>>>3>>>>>>>>>> 
o. a1 2 8 5  3 c O>>>>>>>>>>>>>l>>>>>> 
0 75 2 29 4 c O>>>>>>>>>>>>>>>I>>> 
0. 68 1. 91 5 c o>>>>>>>>>>>>: 2 >>>I 
0. 62 1. 62 6 
0. 55 1. 38 7 
0.49 1. 19 8 
0. 44 1. 03 9 
0.38 0.87 10 
0. 29 0 .65  11 
0 .22 0. 49 12 
0. 18 0.39 13 

CHI-SGUARED+ = 

c 
c 
c 

c 
c 
c 
c 
c 

280. 32 FOR D F  = 13 

o>>>>>>>>:>>>>>>> 1 
O>>>>>>>>>>>>>> 3 
O>>>>>>>>>>>> 3 
O>>>>>>>>>>> 3 
0>>>>>>>>:, 3 
O>>>>>>> 3 
O>>>>> 3 
O>>>> 1 

+ + + + + + + + + + + P A R T I A L  AUTOCORRELATIONS + + + + + + + + + + + 
COEF T-VAL L A 6  0 
0 93 6 74 1 c o>>>>>I:>>>:,: :>:.:?>>>>>>>>> 

-0 09 -0.64 2 c <<o 1 
0 . 1 6  1 . 1 5  3 c o>>>> 3 

-0.20 -1.44 4 c <<<<<o 3 
0 05 0.35 5 c o> 1 

-0. 10 -0. 75 6 c c<<o 1 
-0.03 -0.22 7 c eo 3 
0. 00 0.  00 8 c 0 1 
0. 03 0. 20 9 c o> 3 

-0. 14 -1 03 10 c <<<:io 1 
-0.21 -1.54 11 c <<<cco 3 
0 . 0 5  0.36 12 c o> 1 
0. 16 1. 14 13 c o>>>> 3 

Figure C6.2 Estimated acf and pacf for the realization in Figure C6.1. 

followed by a cutoff in the acf, and a tailing off of the pacf. For a mixed 
model we would see a damping out in both the acf and the pacf. An AR( 1) 
is called for rather than a higher-order AR model because the pacf has a 
spike at lag 1 only. Therefore, the model is 

(1  - + , B ) f ,  = a, (C6.1) 

Estimation and diagnostic checking. Figure C6.3 shows the estimation 
results and the corresponding residual acf. The most s t rhng fact in the 
estimation results (Figure C6.3) is that 6, is virtually 1.0. The stationarity 
condition for an AR(1) is 16, I c 1. Testing the null hypothesis that (p, = 1 
gives thrs 1-statistic: 
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+ + + + + + + + + +€COSTAT U N I V A R I A T E  B-J RESULTS+ + + + + * * * + 

+ FOR DATA S E R I E S  A T t T  UEEKLY C L O S I N G  STOCL P R I C E  + 
+ D I F F E R E N C I N O  G DF = 49 + 
+ A V A I L A B L E .  & k T A  = 52 BACKCASTS = 3 T O T P L  52 + 
+ USED TO F I N D  SSR DATA = 51 BACKCASTS = 0 TGTAL 51 T 

+ ( L O S T  D U E  TO PRESENCE JF AUTOREORESSIVE ERWS 1 ,  + 

C O E F F I C I E N T  E S T i M A T E  S T D  ERRJR 
P H I  1 0.906 0. 036 
CONSTANT 62924 1 2. 09346 

MEAN 45 4S80 33 5527 

ADJUSTED RUSE = Bo5084 MEAN ABS 7. ERR 
CORRELATIONS 
1 2 

1 1.00 
2 -0.97 1.00 

++RESIDUAL ACF++ 

-GALUE 
27 33 

300575 

1 35604 

= 1 94 

COEF T-VAL L A C  0 
-0. 03 -0. 23 1 ; .:..I0 
-0 19 -1. 36 2 
0 13 0.89 3 
-0 lG -0. 60 4 
-0. 07 -0. 46  5 
-0 02 -0. 15 6 

0 . O G  0 G2 7 
-0 14 - 0 . 7 1  0 

0.21 1. 37 10 
-0. 17 -1. 05 1 1  
-0. 17 -1. 02 12 
c 12 3.75 13 

Figure 05.3 Estimation and diagnostic-checking results for model (C6.1). 

3.08 0 54 9 

CHI-SQUARED- = 13 22 FJR LF = 1 1  

6 ,  is only 0.39 standard errors below 1.0. This could easily happen just by 
chance in a sample even if = 1, so we accept the null hypothesis that 

The estimated mean is highly correlated with 6 ,  ( r  = - 0.97). As indi- 
cated in Chapter 12 this is a common result when AR coefficients are 
estimated for a nonstationary series if the data are not properly differenced. 
The estimated mean in such cases tends to be unstable. This conclusion is 
reinforced by the estimated value of the mean (fi = 45.4988). The smallest 
value in the realization is 51.875. An estimated mean that falls entirely 
outside the range of the data makes little sense. 

A practical rule is to difference when we have serious doubts about 
whether the mean of a series is stationary. We have powerful support for the 
hypothesis that the mean is nonstationary in this case. Therefore, we try 
modeling the differenced series. 

# I  = 1. 
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Figure C6.4 First differences of the stock-price realization. 
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Further identification. Figure C6.4 is a plot of the first differences of the 
original data. This series does not show the gradual downward movement 
displayed by the data in Figure C6.1. Although the mean of the original 
data falls over time, the first differences seem to fluctuate around a constant 
mean. It is unlikely that the data require differencing more then once. 

The estimated acf for the first differences in Figure C6.5 confirms that 
further differencing is unnecessary. None of the estimated autocorrelations 
has an absolute r-value larger than the practical warning level of 1.6. (There 
are no square brackets showing the 5 %  significance level because they fall 
beyond the bounds permitted by the scale of this graph. Thus none of the 
estimated autocorrelations is significant at the 5% level.) With patternless, 
statistically insignificant autoconelations we get no further information 
from the estimated pacf. 

The first-differenced series is apparently composed of statistically inde- 
pendent elements. Tlus is the random-walk model discussed in Chapter 5. 

+ + + + + + + + + + + + + AUTOCORRELATIONS + + + + + + + + + + + + + 
+ FOR DATA S E R I E S :  AT b T WEEKLY CLOSING STOCK P R I C E  + 
+ DIFFERENCING:  1 HEAN = -. 171569 + 
+ DATA COUNT = 51 S T D  DEV = . 849221 + 
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-0 20 -1 .45  2 <: .,.. ....~~................~.. ~~~0 

-0. 14 -1.03 4 ..,:.;.:<;.; .;.;<<;<<o 
-0. 03 -0 24 5 i:<0 
-0 10 -0.73 b <<.:<<<<<<to 
0 . 0 0  0 .01  7 0 

0.  08 0. 56 9 O>>>>>>>> 
0. 13 0 .89  10 O>>>>>:>>>>>>>> 

.........,. r r r . r r r r r r  
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Figure C6.5 Estimated acf and pacf for the data in Figure C6.4. 
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The random walk is an ARIMA(0, L O )  model written as 

(1 - B ) i ,  = a,  (C6.2) 

where (1 - B) is the differencing operator as discussed in Chapter 5. In the 
backshift notation introduced in that same chapter, the differencing opera- 
tor is always raised to the power d, where d is the number of times the data 
are differenced. In this case d = 1, so we write (1 - B)" simply as (1 - B) .  

Forecasting. Model (C6.2) offers a statistically adequate explanation of 
the available data. The estimated acf of the first differences (Figure C6.5) 
does not indicate the need for any further AR or MA terms beyond the 
implicit AR term = 1) imposed by the differencing procedure. Writing 
(C6.2) in difference-equation form we get 

2, = 21-1 + a,  (C6.3) 

From (C6.3) we see that the one-step-ahead ARIMA forecast ( 2 , )  for our 
data is simply the last observed value: i, = 2,- ,. Since we do not know a, or 
have an estimate of it when forecasting for time t ,  we set a, equal to its 
expected value of zero. However, we do know the last observed z (2, - I ) and 
that becomes our forecast. 

Model (C6.3) contains no constant term. This is because t, is not 
stationary; it is not varying around a fixed mean. Furthermore, the first- 
differenced series (w,  = L, - 2,- ,) appears to have a fixed mean of about 
zero, so there is no deterministic (constant) trend element in I,. If w, had a 
nonzero mean, then (C6.2) and (C6.3) would have a constant term ( C )  equal 
to the mean of w, (see Chapter 7).  Then the model for w, would be 

w , = C + a ,  

where C = p,. Substituting L, - 2,- I for w,, (C6.4) shows that I, is changing 
by a constant amount (C) each period, and our forecast then would be 

i, = c + 

Further estimation. As an exercise let us return to the estimated acf in 
Figure C6.5 and try to construct a model for the first differences. The most 
significant autocorrelation is at lag 2. The absolute r-value (1.43) does not 
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exceed the relevant warning level (Ih), but we will estimate an MA 
coefficient at lag 2 to see if it proves significant. (Why is the warning level 
not 1.25?) An MA coefficient is appropriate since the estimated autocorrela- 
tions cut off to zero after lag 2. Let us also suppose the series has a 
deterministic trend component as discussed in the last section and in 
Chapter 7. Let G, = w, - p,. The model to be estimated is an ARIMA(0, 1.2) 
with 8, = 0: 

G, = ( 1  - e , ~ ) ~ ,  (C6.5) 

Estimation of (C6.5) produces this surprising result (absolute t-values are 
in parentheses): 

W, =; -0.174 -0.311Br-, + ci, 
(2.12) (2.28) 

Both the estimated mean (-0.174) and 6, (0.31 1) are significant at the 5% 
level. 

In Chapter 5 we said ARIMA modeling is based more on statistical 
appearances than on prior reasoning regarding what should appear in a 
model. Nevertheless, an ARIMA model can sometimes be rationalized. But 
the results of estimating (C6.5) do not make sense. The price of AT&T 
stock surely does not trend downward every week by the fixed amount 
0.174; at that rate the price would reach zero in about 300 weeks (0.174 x 
300 = 52.2). We reject (C6.5) as nonsensical, despite the statistical signifi- 
cance of the results, based on our knowledge of the nature of the data. 

Estimating (C6.5) without a constant term produces this result: 

w, = -0.1876,-2 + ci, 
( 1.32) 

8, is no longer significant. Thus we have further evidence that (C6.2) is an 
adequate model for the available data. 

Final comments. We make the following points: 

1. The estimated acf in Figure C6.2 is fairly typical for a series with a 
nonstationary mean. Many such series produce an acf with an 
autocorrelation at lag 1 close to 1 .O (0.9 or larger) followed by a slow 
decay. But the key characteristic of a series with a nonstationary 
mean is the slow decline of the estimated autocorrelations, not their 
level. The first autocorrelation for some nonstationary series may be 
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2. 

substantially less than 1.0, but the remaining autocorrelations will 
move toward zero very slowly. It is the latter characteristic which is 
the critical indicator of a nonstationary mean. The next two case 
studies show examples of acfs whose slow decay indicates non- 
stationarity, but starting from relatively small coefficients. 

The residual acf in Figure C6.3 is quite similar to the acf for the first 
differences in Figure C6.5. This should not be surprising. The resid- 
ual acf in Figure C6.3 represents the behavior of the original data 
after they have been filtered through the operator (1 - cPIB), with 
6, = 0.986. The acf in Figure C6.5 represents the behavior of the 
original data after they have been filtered through the same operator 
(1 - t#q B), but with 9: = 1. Since we have applied the same operator 
(1 - @ I  B) to the same data, and since +, in this operator is nearly 
the same in both cases (0.986 vs. l.O), we should expect the two 
resulting series to behave similarly. Their estimated acf s should look 
much the same, and they do. 

3. Model (C6.2) is the random walk. It is a good ARIMA model for 
many stock-price series. This empirical result is consistent with the 
weak form of the efficient-markets hypothesis summarized in Chap- 
ter 5. 

4. Not every ARIMA model with significant estimates is a sensible one. 
Model (C6.5) is an example of a model which happens to fit a short 
realization, but which is not acceptable on other grounds. We strive 
for parsimonious models which fit the data adequately with signifi- 
cant coefficients, but we should also temper our statistical results 
with insight into the nature of the underlying data. 



CASE 7. REALESTATE LOANS 

The series analyzed here is the monthly volume of commercial bank 
real-estate loans, in billions of dollars, from January 1973 to October 1978, 
a total of 70 observations. The data are derived from reports to the Federal 
Reserve System from large commercial banks. Figure C7.1 is a plot of the 
observations. * 

From inspection of the data we might suspect that nonseasonal dlfferenc- 
ing is needed since the series trends upward over time, although it is quite 
stable in the middle-third of the data set. However, we must examine the 
estimated acf and possibly some estimated AR coefficients to determine 
whether differencing is needed. Although the variance of the series seems to 
be stationary, a logar i tkc  transformation could also be defended. 

Identification. The estimated acf and pacf of the undifferenced data 
appear in Figure C7.2. There is no evidence of seasonal variation since the 
coefficient at lag 12 is statistically insignificant. With monthly data we 
expect observations at multiples of lag 12 {12,24,36,. . . ) to be correlated if 
a seasonal pattern is present. However, a weak seasonal element can be 
obscured in the acf for undifferenced data; the acf of the differenced series 
may yet reveal seasonahty. 

The estimated autocorrelations for the undifferenced data in Figure C7.2 
decay slowly; they do not cross the zero h e  even by the eighteenth lag and 
the f-values exceed the 1.6 warning level out to the seventh lag. This 

*These data are published by the U.S. Department of Commerce in Busrness Siutrsncs. 1975. p. 
90. and various issues of the Survey of Current Butiness. The data used here have been rounded 
to the nearest hundred million dollars 

41 1 

Forecasting With Univariate Box- Jenkins Models CONCEPTS AND CASES 
Edited by ALAN PANKRATZ 

Copyright 0 1983 by John Wily & Sons. Inc 



412 

TIME 
73 

REAL ESTATE LOANS 
--DIFFERENCINC. 0 
--EACH VERTICAL AXIS INTERVAL = 85625 

46. 5 6 2 7  87. 6 
Lou = MEAN - nxw = 

21 \. I 47 
31 A I 47. s 
41 '0 I 49.3 

I*++++~+++++++++++++*+++++++++++++++*++++++++++++ V K V E  
11. I 46. 9 

51 
61 
71 
81 
91 
101 
11 I  
121 

74 1 1  
21 
31 
41 
51 
6 I  
71 
8 I  
91 

101 
1 1 1  
121 

75 11 
21 
31 
41 
SI 
61 
71 

91 
101 
11 1  
121 

76 1 1  
21 
31 
41 
51 
61 
71 
81 
91 

lox 
111 
121 

77 11 
21 
31 
41 
51 
LI 
71 
ex 
91 
101 
111 
121 

78 11 
21 
31 
41 
51 
61 
71 
81 
91 

101 

ex 

, 
' I 49. 1 

I 50. 1 
I 51. 1 
I 52 

' 
*, 
*'* I 53. 2 

c I 53. 9 
c I s4 5 

I 55. 2 
I 55. 6 
I s5. 7 
I 56. 1 

56. 8 
t 

57. 5 

58. 9 
59. 4 
59. 8 
60 * I  

+ I  60 
60. 3 
60. 1 * I  
59. 7 
59. s 
59. 4 
59. 3 
59. 2 
s9. 1 
59 
59. 3 
59. 5 
59. 5 
59. 5 * I  
59. 7 

* I  59. 7 
\* I 60. 5 

- % I  60. 7 
: I  61. 3 
: I  61. 4 

61. 8 
62.4  
62. 4 

c 62. 9 
$0 63. 2 
I: 63. 4 

I '*\ 64. 5 
I *  65 
I :  65. 4 

I '. 67. 7 

I 
I % 71 4 

\0 72. 5 
73. 4 

I 
I 
I 74. 6 

75. 2 
75. 9 

I 

76. 8 
I 
I 

t I 

t I 
t I 

? I  

7 1  

7 1  
7 1  
7 1  

7 1  
7 1  
7 1  

+ I  
'7 I se. 3 

{ I  

+ I  t ;  

-%\I 

I 

? 

I: 63.9 

I 'c 66.3 

69 
70 

I '*, 

\ 

I O'. 77. 9 
I to 79. 2 
I '. 6 0 . 5  

I '* 84.4  
I '* 8 5 . 9  

I '* 62.6 

I '* 87.6  
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

Figure C7.1 Real-estate-loans realization. 
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Figure C7.2 Estimated acf and pacf of the realization in Figure C7.1. 

supports our earlier observation that the mean of the series is nonstationary. 
A check on this is to estimate an A w l )  model. This model is implied by the 
decaying acf and the single significant pacf spike at lag 1 in Figure C7.2. 
Estimation results (t-values in parentheses) are 

(1 - 1.031B)(z, - 42.951) = 8, 
(169.79) (10.17) 
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With l r$ , l  > 1 the nonstationary character of the data is confirmed. As 
with many models estimated for nonstationary series, the estimated mean is 
highly correlated with the estimated AR coefficient ( r  = 0.91); th is  tends to 
produce an unreliable estimate of p. In this case we do not get a sensible 
result since fi = 42.951 is smaller than any of the observed values in Figure 
C7.1. 

First differencing (d = 1) is clearly needed. Figure C7.3 is a plot of the 
first differences and Figure C7.4 is the estimated acf and pacf of the first 
differences. The first-differenced series does not show the same upward 
trend displayed by the original realization, but the middle-third of the 
differenced series lies below the overall mean and the iast-third lies above it. 

The acf for the first differences in Figure C7.4 moves toward zero more 
quickly than the acf for the original data (Figure C7.2), but the decline is 
still not rapid. For the time being we will suppose that the first-differenced 
series is stationary, especially since differencing twice is rarely needed with 
business and economic data. The autocorrelation at lag 12 has an absolute 
r-value less than 1.25, so we still are not concerned about a seasonal pattern. 

We are now in a position to formulate some tentative models. There are 
at least two plausible interpretations of the acf and pacf in Figure C7.4: 

1. An ARIMA(2,l.O) is a good choice. Letting I = 1 indicates that we 
have differenced the data once, so we must subsequently integrate 
the differenced data once to regain the original series. We set p = 2 
because the acf decays, suggesting an AR model; the pacf has two 
spikes followed by a cutoff to zero, implying an AR order of two. 
(The pacf spike at lag 4 is best ignored for now. An AR model of 
order four is unusual.) We therefore consider the following model: 

( 1  - @ , B  - & B 2 ) (  1 - B ) f ,  = a, (C7.1) 

2. An ARIMA( I , ] ,  1) is also a possibility. A decaying acf like the one 
in Figure C7.4 is consistent with a mixed model as well as a pure AR 
model; the pacf could be described as decaying rapidly. When both 
the acf and pacf tail off rather than cut off, a mixed model is called 
for. Choosing an appropriate mixed model at this stage is difficult, 
but the ARMA(1,l) is fairly common. [See Chapter 6 or 12 for 
theoretical acfs and pacfs for ARMA(1,I) processes.] In this in- 
stance, the data are differenced once, so the model is an 
ARIMA(1, 1, 1): 
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Figure C73 First differences of the real-estate-loans reakation. 
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+ + + + + + + + + + + + + AUTOCORRELATIONS + + + + + + + + + + + + + 
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Figure C7.4 Estimated acf and pacf of the first differences in Figure (3.3. 

Estimation. Estimation of (C7.1) and (C7.2) gives these results (1-values 
in parentheses): 

(1 - 0.6378 -0.353B2)(1 - B)Z, 6, 
(5.43) (2.94) 

(1 - 1.0058)(1 - B ) i ,  = (1 - 0.381B)6, 
(31.82) (3.14) 
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(Both models were also tried with a constant term but it was insignificant.) 
The striking result is that both models are nonstationary. For (C7.2) the 
condition 14i I < 1 is clearly violated; for (C7.1), 6, + 42 = 0.99. Allowing 
for sampling error this result is easily consistent with the hypothesis 

+ +2 = 1, thus violating one of the stationarity requirements for an AR 
model of order 2. Estimation results show that both the original series and 
its first differences have a nonstationary mean, so we should difference the 
data again. 

Further identification. Figure C7.5 is the second differences of the 
real-estate-loans data. Figure 0.6 is the estimated acf and pacf for the 
second differences. The data now appear to fluctuate around a fixed mean, 
and the estimated acf is consistent with the stationarity hypothesis. The acf 
cuts off to zero sharply at lag 2 and then bounces closely around the zero 
level thereafter. A significant spike at lag 1 followed by insigruficant 
autocorrelations signifies a stationary MA(1) process. Since the data are 
differenced twice, the appropriate model is an ARIMA(O,2,1): 

(1 - lq2i, = (1  - 8 ,B)a ,  (C7.3) 

In the backshift notation presented in Chapter 5 the nonseasonal dif- 
ferencing operator is (1 - B ) d ,  where d is the number of times the data are 
differenced, We have differenced twice so d = 2. 

The pacf in Figure C7.6 is really not needed at this point, but you should 
verify that its behavior is roughly consistent with an MA(1) model for the 
twice-differenced data. 

Before estimating (C7.3) consider whether we overlooked any early clues 
about the need for differencing twice to acheve a stationary mean. In 
general, differencing once is needed if the overall level of a series is shifting 
through time. This certainly seems to characterize the origmal data series in 
Figure C7.1. Differencing twice is needed if both the level and slope of a 
series are changing. This, too, is true of the series in Figure C7.1. The slope 
is positive for the first-third of the original data, about zero across the 
middle-third, and positive again in the last-third. Thus there was a clue at 
the beginning of the analysis that differencing twice is necessary. 

Consider the first differences in Figure C7.3. We observed earlier that the 
mean seems lower for the middle-third of the first differences than for the 
remaining values. It is difficult to determine from inspection if these 
apparent shifts in the mean are statistically significant. But estimation 
results for models (C7.1) and (C7.2) violate stationarity conditions, thus 
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Figure 0 . 5  Second differences of the real-estate-loan realization. 
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Estimated acf and pacf of the second differences in Figure C7.5. 

giving clear evidence that the mean of the first differences shifts by 
statistically significant mounts. 
Does the estimated acf for the first differences (Figure 0 . 4 )  suggest a 

nonstationary mean? The first five autocorrelations have r-values larger than 
the relevant warning value (1.6). Although the autocorrelations from lags 6 
through 12 are not very significant, they barely decline at all. This evidence 
for a nonstationary mean is easier to see by hindsight than it was earlier. 
Note that the first autocorrelation in Figure C7.4 is not very close to 1.0. 
The primary evidence of nonstationarity in the first differences is the slow 
decay of the acf, not the height from which the acf begins its descent. 
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Further estimation and diagnostic checking. Estimation results for (C7.3) 
in Figure C7.7 show that the estimated MA coefficient (6, = 0.375) is 
significant at better than the 5% level since its t-value is greater than 2.0. 8, 
also easily satisfies the invertibility condition 18, I < 1. The mean absolute 
percent error (0.36%) indicates that model (C7.3) is exceptionally accurate, 
at least insofar as it fits the past. 

Next, we subject the residuals to autocorrelation analysis to test whether 
the shocks of (C7.3) are independent. The residual acf in Figure C7.7 reveals 
no significant residual autocorrelation coefficients since all absolute 1-values 
are less than the relevant warning levels. Furthermore, the chi-squared 
statistic is small enough to allow acceptance of the null hypothesis that the 
shocks are independent as a set. The critical chi-squared statistic for 16 
degrees of freedom at the 10% level is 23.5 compared with our calculated 
value of 12.55. The conclusion is that an ARIMA(O,2,1) provides an 
adequate representation of the observed real-estate-loans data. 

Before using the model to forecast we should examine the residuals 
(Figure C7.8). One aspect of this plot should lead us to question model 
(C7.3): there is some tendency for the variance of the residuals to increase 

+ * + + 4 + * + + +€COSTAT UNIVARIATE 8-J RESULTS+ + + + + + + + + + 
+ FOR DAT4 SERIES. REAL ESTATE LOANS + 
+ DIFFERENCING. 1 1  DF = 67 + 
+ AVAILABLE DATA = 68 BACKCASTS = 0 TOTAL D: 68 + 
+ USED TO FIND SSR. DATA = 68 BACKCASTS = 0 TOTAL = 68 + 
+ (LOST DUE TO PRESENCE OF AUTOREGRESSIVE TERMS: 0 )  + 

COEFFICIENT EST I HATE STD ERROR T - VALUE 
THETA 1 0 375 0 113 3. 32 

AnJUSTEG RMSE = 286079 MEAN ABS Z ERR = 0 36 

++RE5 I DUAL A.- F++ 
CDEF T-VAL LA6 0 
-0 03 -0 28 1 C C<<O 3 
0 0 2  0 2 0  2 :  O>> 3 

a:.; :.->;.>;, 1 
3 

0 1 2  1 0 2  3 c  
-0 08 -0 6 S  4 C 
-0 04 -0 34 5 I 3 
-0 19 - 1 .  54 6 C 1 
-0.03 -0 23 7 
-0 14  - 1  10 8 
4. 09 -0 66 9 
0 16 1 23 10 
0 . 1 1  0 83 1 1  
0 01 0 37 12 
0 14 1 01 13 
0 07 0 48 14 
-0. 01 -0 04 1 5  
0.06 0 42 16 
0.00 0 02 17 0 

CHI-SB'JARED* = 12 55 FOR DF = 16 

Figure C7.7 Estimation and diagnosticchecking results for model (C7.3). 
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over time. Because the level of the original data also increases over time, a 
logarithmic transformation might be useful. (As discussed in Chapter 7, the 
logarithmic transformation is appropriate when the variance is proportional 
to the mean.) Since the evidence favoring the logarithmic transformation is 
not overwhelming, we leave it as an exercise for the reader to model these 
data in log form. 

Forecasting. Forecasts for up to six periods ahead are shown on the left 
of Table C7.1. As pointed out in Chapter 10, they are dominated by the 
trend imparted by the second-differencing since the effect of the MA term is 
lost after the first forecast. The difference-equation forecast form of 
(C7.3) is 

An estimate of u,-,  is available when forecasting for period 71: it is the 
estimation residual (6,-, = 0.0897713) for period 70 (October 1978) shown 
in Figure C7.8. But with a forecast lead time I = 2 from origin r = 70 we do 
not even have an estimate of the corresponding u,- ,: the estimation residual 
for period 71 is unknown because our last available observation is for 

Table 0 . 1  Forecasts from model (03) 

Future Percent 
Forecast 80% Confidence Limits Observed Forecast 

Time Values Lower upper Values Errors 

78 I 1  89.2664 88.8994 89.6333 11. a. n.a. 
12 90.9327 90.2325 91.6330 n.a. n .a  

79 1 92.5991 91.5163 93.6820 n.a. n.a. 
2 94.2655 92.7534 95.7776 n.a. n.a 
3 95.9319 93.9476 97.9161 n.a. n.a. 
4 97.5982 95.1021 100.0944 n.a. n.a. 
5 99.2646 96.2196 102.30% n.a n.a. 
6 100.9310 97.3025 104.5595 n. a. n.a 
7 102.5973 98.3525 106.8422 n.a. n.a. 
8 104.2637 99.3714 109.1560 n.a. n.a. 
9 105.9301 100.3605 111.4997 n.a n.a. 

10 107.5965 101.321 1 113.8718 n.a n.a. 

“n.a. = not available. 
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period 70. To forecast beyond one period ahead from origin t = 70, we 
simply use the expected value of a,- ,  which is zero. Thus the forecasts for 
period 72 and further ahead are dominated by the first two terms, 2 z , - ,  - 
z , - ~ ,  in equation (C7.4). 

Of course, the estimation residual for period 70 continues to affect these 
forecasts because it affects i,,, which in turn affects 272, whch affects i,,, 
and so forth. Starting with forecasts for lead time 1 = 3 (January 1979), we 
are generating strictly bootstrap forecasts: the z , - ~  used in producing the 
period 73 forecast must be the period 71 forecast (.2,-2), At forecast origm 
t = 70 we have not yet observed any data for period 71. All we have is the 
forecast for that period. Once again we make the point that ARIMA models 
should generally be reestimated and new forecasts produced as new data 
become available. 

Additional checks. As an added check on the stability of the model we 
delete the last seven observations and reestimate. The outcome (Figure 
C7.9) gves no cause for alarm. The reestimated 8, remains statistically 

+ + + + + + + + + +€COSTAT UNIVARIATE B-J RESULTS+ + + + + + + + + + 
+ FOR DATA SERIES: REAL ESTATE LOANS + 
+ D I FFERENC I NC . 1 1  DF = 60 + 
+ AVAILABLE: DATA = 61 BACKCASTS = 0 TOTAL = 61 + 
+ USED TO FIND SSR: DATA = 61 BACKCASTS = 0 TOTAL = 61 + 
+ (LOST DUE TO PRESENCE OF AUTOREGRESSIVE TERPIS: 0 )  + 

COEFFICIENT ESTIMATE STD ERROR T-VALUE 
THETA 1 0. 418 0. 117 3. 58 

ADJUSTED RNSE = .274524 HEAN ABS X ERR 0.36 

++RESIDUAL ACF++ 
COEF 1-VAL LAC 0 
-0.04 -0 .28  i <<cco 
0.05 0 35 2 O>>>>> 
0. 13 1. 05 3 O>>>>>>>>>>>>> 
-0. 08 -0.63 4 <<<c<<cco 
-0.01 -0.09 5 co 
-0. 1 1  -0. 84 6 i<<i<<<<<c<o 
-0. 09 -0 70  7 <cc<<c<~:co 
-0 16 -1.21 8 < i < < c i < C < ~ : < i < < < : t O  
-0. 05 -0. 35 9 <<i<CO 
0 .08  0 . 5 7  10 O>>>>>>>> 
0.  1 1  0 76 1 1  O>>>>>>>>>>> 

0.03 0. 21 13 O>>> 
0.01 0. 09 14 01 
0 . 0 4  0 . 2 8  15 O>>>> 

-0.02 -0. 11 12 ( ( 0  

CHI-SQUARED* = 7.00 FOR DF = 14 

Figure (3.9 Estimation and diagnostic-checking results for model (C7.3) using the 
first 63 observations. 
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Table 0 . 2  Forecasts from model (C7.3) using the first 63 observations 

Future Percent 
Forecast 80% Confidence Limits Observed Forecast 

Time Values Lower Upper Values EKOrS 

78 4 77.6371 77.2857 77.9884 77.9000 0.34 
5 78.4741 77.8165 79.1317 79.2000 0.92 
6 79.31 78.3059 80.3 164 80.5000 1.48 
7 80.1482 78.7549 81.5416 82.6000 2.97 
8 80.9853 79.1663 82.8042 84.4000 4.05 
9 81.8223 79.5429 84.1018 85.9000 4.75 

10 82.6594 79.8869 85.4319 87.6000 5.64 

significant and is within 0.1 of the origmal 6, estimate in Figure C7.7. The 
residual acf shows no absolute t-values worthy of attention and the chi- 
squared statistic is insignificant. 

Using this model with the shortened data set to forecast history, we find 
that it performs quite satisfactorily for the first few periods ahead as shown 
in Table C7.2. UBJ-ARIh4A models usually forecast better over the very 
near term than over a long forecast horizon and this one is no exception. 
The percent forecast errors grow fairly steadily across the first half-dozen 
forecasts. This is not unusual and it suggests once again that an ARIMA 
model should be reestimated and new forecasts generated as new data 
become available. 

The reader is encouraged to forecast history (deleting the last 7 observa- 
tions, as above) with the data modeled in logarithmic form. 



CASE 8. PARTS AVAILABILITY 

The data for this case are adapted from a series provided by a large US. 
corporation. There are 90 weekly observations showing the percent of the 
time that parts for an industrial product are available when needed. 
UBJ-ARIMA models are especially useful for forecasting data of this type 
where the time interval between observations is short. 
Look at the data in Figure C8.1. Does this series appear to be stationary? 

The variance seems constant, though the mean may rise and fall through 
time. We cannot tell from inspection of the data if these apparent changes 
in the mean are statistically significant. We must rely on autocorrelation 
analysis and perhaps estimated AR coefficients to decide if the mean is 
stationary. 

Identification. The estimated acf and pacf for these data are shown in 
Figure C8.2. With 90 observations we may safely examine up to about 23 
autocorrelations. Our first concern is to decide if the mean is stationary 
without differencing; for this we focus on the estimated acf. If the estimated 
acf fails to die out rapidly toward zero, we conclude the mean is nonsta- 
tionary and the series must be differenced. 

The estimated acf in Figure C8.2 indicates that the mean is nonsta- 
tionary. Rather than dying down along the first several lags, the estimated 
autocorrelations actually increase up to lag 3. After lag 3 they decline very 
slowly. The t-values either exceed or come close to the warning level of 1.6 
out to lag 7. This is the same phenomenon we observed in the last two cases, 
where we found nonstationary series. There we saw initial estimated acfs 
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+ + + + + + + + + + + + + AUTOCORRELATIONS + + + + + + + + + + + + + 

+ FOR DATA S E R I E S :  PARTS A V A I L A B I L I T Y  + 

+ DATA COUNT = 90 STD M V  = 2.36796 + 
+ D I F F E R E N C I N G ,  0 rtEAN f 02.1211 + 

COEF T-VAL LAC 0 
0 37 3 51 1 c o>>>=:,>>> 3 >>>>>>>>> 
0 42 3 54 2 c o>>>>, >>>>>>I>>>>>>>>> 
0 47 3 46 3 c O > > > > > > > > > > ) > i I > > > > ~ > ~ > >  
0 37 2 47 4 c o>:,>>>>>>>>i>>>> I>>> 
0 36 2 23 5 
0 26 1 52 6 
0 26 1 52 7 
0 15 0 85 0 
0 12 0 65 9 
0 20 1 11 10 
0 00 0 42 1 1  
0 07 0 40 12 

-0 04 -0 22 13 
-0 05 -0 27 14 
-0 1 1  -0 59 15 
-0 10 -0 54 16 
-0 17 -0 '/c? 17 
-0 10 -0 94 18 
-0 21 - 1  11 19 
-0 14 - 0 . 7 5  20 
-0 28 - 1  46 21 
-0 26 -1 34 22 
-0 27 -1 35 23 

CHI-SQclAREf+ = 

+ + + + + + A + + + + P A R T I A L  AUTOCORRELATIONS + + + + + + + + + + + 
COEF 1-V4L LAG 0 
0 37 3 51 1 c 0;); :,: >>:,:,3>>>>,)>>>> 
0 33 3 13 2 I: o>: >>;;;:>;]>>:,>>> 
0 31 2 95 3 
0 12 1 15 4 
0 07 0 A 5  5 
-0 08 -0 78 6 
-0 02 -0 19 7 
-0 13 -1 23 8 
-0 09 -0 82 9 

0 11 1 07 10 
0 00 0 02 11 
0 00 0 01 12 

-0 17 -1 61 13 
-0 13 -1 19 14 
-0 15 -1 43 15 
0 01 0 07 16 

-0 05 -0 50 17 
0 04 0 38 18 

-0 03 -0 24 19 
0. 09 0 90 20 

-0 18 -1 66 21 
-0 14 -1 35 22 
-0 13 -1 19 23 

Figure a 2  

~ ~ ~ ~ ; . > ~ . ~ ~ ~ . ~ ~ . " ~ ~ ~ ~ , ' - . ' . ~ '  c ,..,., /. / / d J  
c o>:,:..:.:,.::. 3 
c O>>>. I 
t .:<..:-:o 3 
c <O 3 
c .<<.:<<<o 3 
c < < i < O  3 
t o>:;>>>> 3 
c 0 3 
c 0 3 
c ;C<<*:<<co 3 
c <<<<,<<o 3 
c c<<<<<<<o 3 
c 0 3 
c < C i O  3 
c O>> 3 
c CO 3 
c o>>>>> I 
c<<<c<<<,<+:o 3 
c ci<c<c<o 3 
c *:<<<i<o 3 

Estimated acf and pacf for the realization in Figure C8.1. 
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(see Figures C6.2 and C7.2) with r-values of 1.6 or larger out to lags 6 or 7. 
We have good reason for concluding that the mean of the data in the 
present case is also nonstationary. 

Estimated autocorrelations need not start out close to 1.0 to suggest a 
nonstationary mean. The key indicator is when the estimated acf fails to die 
out quickly at longer lags. The estimated autocorrelations in Figure C8.2 do 
not start out close to 1.0, but that does not matter. What matters is their 
slow decline toward zero. 

With a nonstationary mean we should calculate the first differences and 
find the estimated acf and pacf for this new series. Figure C8.3 is a plot of 
the first differences of the parts-availability data; Figure C8.4 is the esti- 
mated acf and pacf for the first differences. Inspection of Figure C8.3 
suggests the mean is now stationary. The estimated acf clearly suggests the 
first differences are stationary and that they can be represented by an 
MA(1) model: the spike followed by a cutoff to zero in the estimated acf 
says an MA model is appropriate, and since the spike occurs at lag 1 we 
choose an MA model of order q = 1. The estimated pacf is consistent with 
an MA(]) model: pure MA models of order one are typically associated 
with pacfs that tail off toward zero starting at lag 1; the estimated pacf in 
Figure C8.4 displays this behavior. 

From the preceding analysis we tentatively select an ARIMA(0, I, 1) 
model. In backshift form the model is 

(1 - B)Zt  = (1  - ~ , B ) u ,  (C8.1) 

Estimation and diagnostic checking. Estimation results and the residual 
acf appear in Figure C8.5. All indications are that (C8.1) is satisfactory. The 
estimated MA coefficient is significant judging by its large absolute t-value 
(9.84), and the invertibility condition (6, I < 1 is satisfied. 

According to the residual acf in Figure C8.5, we may accept the hypothe- 
sis that the shocks of model (C8.1) are independent. There are no absolute 
r-values in the residual acf exceeding any of the relevant practical warning 
levels, and the chi-squared statistic is insignificant at the 10% level. We 
conclude that model (C8.1) is a statistically adequate representation of the 
available data. 

Alternative models. We have argued that the estimated acf in Figure 
C8.2 indicates that the original realization is nonstationary. The important 
clue is that the estimated acf does not die out to zero rapidly enough. As a 
learning exercise suppose we fail to see that important clue. How would we 
try to model the undifferenced realization? 
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Figure C83 First differences of the parts-availability series. 



+ + + + + + + + + + + + + AUTOCORRELATIONS + + + + + + + + + + + + + 
+ FOR DATA SERIES: PARTS AVAILABILITY + 
+ DIFFERENCING: 1 MEAN 0 ,955056E-01 + 
+ LMTA COUNT = 89 STD DEV - 2. 56563 + 
COEF T-VAL LAC 0 

-0 .47 -4.45 1 <c<ccC<c<~cc<<cccccccc<co 3 
-0. 05 -0.42 2 c c<<o 3 

0 .  09 0 72 3 c O>>>>> 3 
-0.04 -0.30 4 
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-0.07 -0.48 19 
0. 19 1. 42 20 

-0.12 -0.80 21 
-0.01 -0.04 22 
0.02 0. 16 23 

o. 12 0.91 7 

CHI-SQUARED* = 

c 
c 
c 
c 

c 
c 
c 
1 
c 
c 
c 
c 
c 
c 
f 
c 
c 
c 
c 
c 

38 93 FOR DF = 

cco 

ccc<co 

ccco 
cccco 

O>>>>Y>>> 
<<ccco 

O>>>>> 
c<ccco 

O>>> 
( (0  

O> 
cco 

0 
c<<o 

O>>>>>>>:>>:. 
<<<<C<O 

0 
O:, 

O>>> 

O>>>>>> 

23 

1 .  
3 
3 
3 

+ + + + + + + + + + + PARTIAL AUTOCORRELATIONS + + + + + + + + + + + 
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Figure C8.4 Estimated acf and pacf of the first differences in Figure C8.3. 
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+ + + + + + + + + +€COSTAT UNIVARIATE 8-J RESULTS+ + + + + + + + + + 
+ FOR DATA SERIES: PARTS AVAILABILITY + 
+ DIFFERENCING. 1 Df = 88 + 
+ AVAILABLE: DATA = 89 BACKCASTS = 0 TOTAL 89 + 
+ USED TO FIND SSR. DATA = 89  BACKCASTS = 0 TOTAL = 89 + 
+ (LOST DUE TO PRESENCE OF AUTOREGRESSIVE TERMS. 0 )  + 

COEFFICIENT ESTIMATE STD ERROR T-VALUE 
THETA 1 0 725 0. 074 9.  84 

ADJUSTED fiWSE = 2 02967 MEAN ADS X ERR = 1 97 

++RESIDUAL ACF++ 
COEF T-vaL LAG 0 

3 -0. 10 -0 94 1 c -. -. .,<c<c;o 
-0 01  -0 14 2 C .‘,O 3 
0 11 1 . 0 7  3 C o>>;,.;>.>>>>.>., 3 
0 04 0. 34 4 C 0>:,>:; 3 
0 06 0. 59 5 C 0;. ::.:. >;,:, 3 
-0. 05 -0 4 3  6 C <<<<.;O 1 

0 0 7 0 6 4  7 C o:;.:, :,.:: :, :: > 3 
-0 05 -0 4 9  a c <<<<iO 1 
-0. 05 -0 47 9 C <<:<<(0 1 

0 . 1 5  1 . 3 9  10 c O>:.~:,.:.>:;.:;.)S.~jj;r;i> 1 
0 00 -0.01 11 c 0 3 
0 06 0. 51 12 C o;;,:,.>‘;>. 3 
-0. 08 -0. 7 0  13 C .,<:<(<(.:(O 3 
-0. 02 -0 22 14 C <<O 1 
- 0 . 0 8  -0 72  15 c .;i<<<ceo 3 
-0 02 -0 20 16 C (CO 3 
-0 07 -0. 59 17 C (<c(<*:::O 3 
-0 03 -0 26 18 C ii;0 1 
-0 04 -0 33 19 C ;<..<0 3 
0 13 1 15 20 C o>.;:,>.>>>>;>;>> 1 

-0 10 -0. 86 21 C <Ci::.:;<<<:<O 1 
-0 05 - 0 . 4 5  22 c <C<<<O 3 
-0. 03 -0 .27 23 C <<<O 1 

..(.?/ r 

CHI-SQUARED+ = 1 2 . 7 1  FOR DF = 22 

Figure C8.5 Estimation and diagnostic-checking results for model (C8.1). 

It should be clear that a pure MA model is not appropriate for the 
undifferenced data. The estimated acf in Figure (28.2 does not display 
spikes followed by a sharp cutoff to zero. The decaying pattern calls for 
either a pure AR model or an A R M  model. 

The estimated acf and pacf in Figure C8.2 together suggest that a pure 
AR model of order three might fit the undifferenced data. The acf decays 
and the estimated pacf has three spikes (at lags 1, 2, and 3) followed by a 
cutoff to zero (at lag 4 and beyond). The number of spikes in the estimated 
pacf indicates the order of a pure AR model. We tentatively select an AR(3) 
model, written in backshift form as: 

( 1  - + , B  - + p 2  - $P3B3)r’, = (C8.2) 
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Estimation results for this model (not shown) produced a t-value for 6, 
of only 1.45. With 6, not different from zero at the 5% level, we remove that 
coefficient from our model. This gives us an AR(3) with 9, constrained to 
zero: 

(C8.3) 

+ + + + + + + + + +€COSTAT UNIVARIATE 8-J RESULTS+ + + + + + + + + + 
+ FOR DATA SERIES: PARTS AVAILABILITY + 
+ DIFFERENCING: 0 DF = 8 4  + 
+ AVAILABLE: DATA = 90 BACKCASTS = 0 TOTAL = 90 + 
+ USED TO FIND SSR: DATA 87 BACKCASTS = 0 TOTAL = 87 + 
+ (LOST DUE TO PRESENCE OF AUTDRECRESSIVE TERMS: 3) + 

COEFFICIENT ESTIMATE STD ERROR T-VALUE 
PHI 2 0. 294 0. 107 2. 74 
PHI 3 0. 309 0.108 3. 61 
CONSTANT 25.9915 9. 17251 2.83362 

=AN 82.233 .WE507 119. 437 

ADJUSTED RRSE = 2.02339 PlEAN ABS X ERR - 1.91 
CMIRELATIONS 
1 2 3 

I 1.00 
2 -0. 46 1. 00 
3 0.02 0. 06 1. 00 

++RESIDUAL ACF++ 
C M F  T-VAL LAG 0 
0.11 1.00 1 c O>>>>>>>>>>> 1 

-0.07 -0.44 2 C <z<c<c<o 1 
-0 .05 -0.50 3 C <<<c<o 3 
0. 14 1.31 4 C O>>>>>>>>Y>>>>> 1 
0. 14 1.30 5 C O>>>>>>:>>>>>>>> 3 
0.03 0. 23 6 C O>>> 1 
0.01 0 . 0 5  7 c O> 3 

-0 .08  -0. 70 8 C c<<<<<<<o 3 
-0.01 -0.09 9 C <O 3 
0. 19 1.68 10 C . . . . . . . . . . . . . . . . . . . .  1 
0. 11 0.96 1 1  C O>>>>>>>>>>> 3 
0. 05 0. 40 12 C OX>>>> 3 

-0. 11 -0.91 1 3  C <<c.:<c<<<<<o 3 
-0. 02 -0.20 14 C <<O 3 
-0.05 -0. 38 IS C C<<<<O 3 
0.00  -0.04 1 6  C 0 3 
-0. 13 -1. 10 17 C <<C<<<<CC<<<<O 3 
-0.07 -0. 54 18 C <<i.:i<<0 3 
-0.02 -0. 13 1 9  C <<O I 
0.12 0.97 20 c O>>>>>>>>>>>> 3 
-0.07 -0. 57 21 C <<<c<c<o 3 
-0.09 -0.74 22 C <z<<<<<c<o 3 
-0 10 -0. 76 23 <<<<<<C<C<O 

CHI-SQUARED* i. 20.00 FOR DF = 20 

Figure C8.6 Estimation and diagnostic-checking results for model (C8.3). 
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Figure C8.6 shows the estimation and diagnostic-checking results for this 
model. The full set of stationarity conditions for an AR(3) model are 
difficult to determine and we will not do so here. In any case, a necessary 
(but not sufficient) condition is that the AR coefficients must sum to less 
than 1.0, and 6, + 4, = 0.683. Model (C8.3) is not as satisfactory as (C8.1). 
The residual acf in Figure C8.6 has larger t-values at lags 4, 5, and 10. The 
residual autocorrelations in Figure C8.5 are less significant judging by their 
smaller t-values and by the smaller chi-squared statistic. 
Now consider if a mixed model is consistent with the estimated acf and 

pacf in Figure C8.2. The estimated acf is consistent with a mixed model 
because it decays. We could argue that the estimated pacf also decays, 
though it does so very slowly along the first three lags. When both the acf 
and pacf decay toward zero, a mixed model is called for. In practice it is 
often difficult to determine from an initial estimated acf and pacf which 
mixed model is best. Perhaps the best we can do in this case is to begin with 
the common A R M (  1,l): 

( 1  - +,B)z ' ,  = (1 - B,B)a ,  (C8.4) 

The estimation and diagnostic-checking results for (C8.4) in Figure C8.7 
show that it is superior to model (C8.3). The RMSE is about the same while 
the residual acf is cleaner. The most important thmg to note is that 6, is 
very close to 1.0: it falls only about one standard error below 1.0. (The 
estimated standard error of &is 0.059. One minus this value is 0.941, which 
is approximately equal to cpl.) This result suggests that the data are 
nonstationary and should be differenced at least once. This brings us back 
to model (C8.1), which we have already discussed. 

Tbe ARIMA(O,1,1) as an EWMA. Forecasts and confidence intervals 
from (C8.1) are plotted in Figure C8.8. You should be able to show from 
the material presented in Chapter 5, Section 5.5 that a one-step-ahead 
forecast from ((3.1) is an exponentially weighted moving average (EWMA) 
with these weights applied to past observations: 

Past Observation Weight 

2,- I 0.275 
2 , - 2  0.199 
' 1 - 3  0.145 
zr-4 0.105 
2 , - 5  0.076 
' 1 - 6  0.055 
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+ + + + + + + + + +ECDSTAT W I V A R I A T E  B-J RESULTS+ + + + + + + + + + 
+ FOR DATA SERIES PARTS AVAILABILITY + 
+ DIFFERENCIN6 0 DF = 0 6  + 
+ AVAILABLE' DATA = 90 BACUCASTS = 0 TOTAL = 90 + 
+ USED TO F IND SSR DATA = 89 BACKCASTS = 0 TOTAL * 89 + 
+ (LOST DUE TO PRESENCE OF AUTORECRESSIVE TERMS 1 )  + 

COEFFICIENT ESTIMATE STD ERROR T-VALUE 
P H I  1 0 944 0 059 16 09 
THETA 1 0 699 0 112 6 23 
CONST4NT 4 a3683 4 81488 96302 1 

MEAN 82 8587 1 43932 57 568 

ADJUSTED RMSE 2 0271 MEAN ABS Z ERR = 1 93 
CORRELATIONS 
1 2 3 

1 1 00 
2 0 72 1 GO 
3 0 57 0 38 1 00 

++RESIDUAL ACF+* 
0 C O W  T-VAL LA6 

-0. 10 -0 9 0 '  1 C .. c... ...\\<r;<O 3 r . .  ._... C 

0 .  00 -0. 03 2 C 0 3 
0. 13 1. 19 3 C O>>>>>>>>>>>>> 3 
0 . 0 5  0 .45  4 c O>>>>> I 
0.07 0 69 5 C O>>>>>>> 3 

-0. 04 -0. 33 6 C C<<<O 3 
0. 08 0. 70 7 C O>>=.Y>>>> 3 

- 0 . 0 5  - 0 . 4 5  8 1 <<CC<O 1 
-0.05 -0 47 9 c <<<CCO 3 
0. 15 1 . 3 5  10 C O>>>>>>>S>>>>>>> 3 
0. 00 -0 04 11 C 0 I 
0.  05 0.  47 12 C 0>>;.>> 3 

- 0 .08  -0.72 13 C <<<<<<<<O 3 
-0. 03 -0. 27 14 C c<<o 3 
-0. 09 -0 79 15 C <<c<c<<<<o 3 
-0 .03  -0. 26 16 C <<<O 1 
-0. 08 -0. 66 17 C C<<<C<<<O 3 
-0. 04 -0. 34 18 I c<<<o 3 
-0 .05  -0.46 19 C <<<<<O 3 
0 . 1 1  0.98 20 c 0>>:.>>>>>>>> 3 

- 0 . 1 2  -0.99 21 c <<C<<<<<<C<<O I 
-0. OL -0.55 22 c <<<c<co 3 
-0. 04 -0. 36 23 C <<c<o 3 

CHI-SWARED* = 13.71 FOR DF = 20 

Figure C8.7 Estimation and diagnostic-checking results for model (C8.4). 

We did not choose this EWMA arbitrarily. The identification stage led us 
to difference the data and choose an MA(]) for the differenced series. The 
estimation and diagnostic-checking stages confirmed this choice and pro- 
vided an optimal estimate of the weighting factor. A great advantage of the 
UBJ method is that we are led to appropriate models from the behavior of 
the data, rather than having to choose a model ahead of time. 
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Figure a . 8  Forecasts from model (C8.1). 
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Figure cB.9 Residuals from model (C8.1). 
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Residuals. The residuals obtained by estimating model (C8.1) are plotted 
in Figure C8.9. The 37th, the 57th, and the last two are especially large, 
falling more than two standard deviations away from the mean of the 
residuals. Sometimes &us happens when data are recorded incorrectly; 
residual analysis can help detect these errors. A check of the data source in 
this case reveals that these four observations were recorded correctly. 
Further study of those weeks might reveal events that caused these deviant 
observations (e.g., the breakdown of a critical machine, severe weather that 
curtailed parts shipments, etc.). If specific, potentially repeatable events can 
be identified, forecasts might be improved by expanding (C8.1) into a 
multivariate intervention model. (See Case 2 for references about this 
method.) Of course, large residuals can occur just by chance and we must be 
prepared to accept that possibility. 
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CASE 9. 

This is the first case study in this text where the data have seasonal 
variation. All subsequent cases involve data with a seasonal pattern. Experi- 
ence has shown that ARIMA models can often forecast seasonal series 
rather well; but because most seasonal series also have nonseasonal pat- 
terns, finding an appropriate model is often challenging. The seasonal and 
nonseasonal elements are mixed together in the estimated acf s and pacf s at 
the identification stage; separating these two patterns in one's eye and mind 
may not be easy. Nevertheless, adherence to the UBJ model-building cycle 
of identification, estimation, and diagnostic checking, along with the practi- 
cal modeling rules in Chapter 12, usually guides the analyst to an adequate 
model. You may want to review seasonal models in Chapter 11 and the 
practical rules pertaining to them in Chapter 12 before reading the remain- 
ing cases. 

In t h i s  case we study the volume of freight, measured in ton-miles, hauled 
by air carriers in the United States. There are 120 monthly observations 
covering the years 1969- 1978.* 

Identification. The first step in identification is to look at a plot of the 
data (see Figure C9.1). Three features of this series stand out: (i) the overall 
level rises through time, suggesting that the mean is not stationary and that 

'The data are taken from various issues of the Survey of Currenr Business published by the US. 
Department of Commerce. 
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Figure 0 . 1  Monthly air-carrier freight in ton-miles, 1969-1978. 
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Figcw 0 . 1  ( Continued ) 
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Figure C9.2 Natural logarithms of the realization in Figure C9.1. 
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Figure 0 . 2  (Continued) 
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nonseasonal differencing is required; (ii) there is an obvious seasonal 
pattern within each year, with high values occurring in August and low 
values in February; (iii) the variance appears to rise over time, so that a 
transformation is needed to induce a stationary variance. 

We consider item (iii) first. Often a logarithmic transformation is ade- 
quate when the variance of a series is nonstationary; however, ths transfor- 
mation should not be used arbitrarily. It  is appropriate only when the 
standard deviation is at least roughly proportional to the mean. The data in 
Figure 0 . 1  may qualify on this count: the variability of the data is greater 
for the later observations when the mean also is larger. 

There are some sophisticated statistical tests to check for constancy of 
variance, but visual inspection of the data is as effective as any other 
procedure. Figure C9.2 is a plot of the natural logarithms of the original 
data. Inspection indicates that the log transformation is acceptable since the 
log series has a roughly constant variance. 

Throughout the rest of this case we analyze the log series. But our 
purpose is to construct a model to forecast the original series, not the log 
series. After modeling the log data, we must be careful to correctly translate 
the log forecasts into forecasts of the original series. (See Chapters 7 and 10 
for discussions of the use of the log transformation.) 

Figure 0 . 3  is the estimated acf and pacf of the log data. The slow decay 
of the acf along the first six lags shows that the mean of the data is 
nonstationary; calculating nonseasonal first differences is appropriate. We 
must be careful when making this decision. Sometimes strong seasonality 
can make the nonseasonal pattern in the estimated acf appear nonstationary 
when the nonseasonal element is, in fact, stationary. Large autocorrelations 
at the seasonal lags can be highly correlated with other autocorrelations, 
pulling them up and preventing them from dropping rapidly to zero. In this 
case the slow decay of the acf confirms our tentative conclusion based on 
visual analysis of the data in Figures C9.1 and C9.2: we see there that the 
level of the series is rising through time. If the mean of the data is 
nonstationary, the estimated pacf provides no additional useful information. 

The acf in Figure C9.3 has peaks at lags 12 and 24; with monthly data 
these are the seasonal lags. As discussed in Chapter 11, the frequency with 
which data are recorded determines the length of periodicity. Monthly data 
have seasonality of length 12, quarterly data have seasonality of length 4, 
and so forth. 

Even if the mean of the original series appears stationary, it is still wise to 
examine the estimated acf and pacf of the first differences as an aid in 
identifying the seasonal pattern. Often the acf and pacf of the first dif- 
ferences reveal more clearly the nature of the seasonal element. In this case 
we have two reasons for considering the acf and pacf of the first differences: 
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Figure C93 Estimated acf and pacf for the log data in Figure C9.2. 
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we think first differencing is needed to induce a stationary mean and we 
want to get a better picture of the seasonal pattern. 

The first differences are plotted in Figure C9.4. This series no longer has 
an upward trend, suggesting the nonseasonal portion is now stationary. The 
estimated acf and pacf of the first differences of the log data are shown in 
Figure C9.5. The acf confirms that the nonseasonal part of the series is now 
stationary since the acf drops quickly to zero: the autocorrelations at lag 2 
through 5 are not significantly different from zero. But the seasonal part of 
the data could be nonstationary and seasonal differencing might be re- 
quired. 

The slow decay of the autocorrelations at lags 12 and 24 suggests that 
seasonal differencing is needed. If they decayed expbnentially the value at 
lag 24 would be (0.61)2 = 0.37, instead of 0.55. Visual examination of the 
first differences of the log values (Figure C9.4) confirms that March and 
December observations, for example, regularly lie above September observa- 
tions. 

It is possible that the acf spikes at lags 12 and 24 in Figure C9.5 
represent a seasonal MA(2) time structure. Then the seasonal pattern would 
automatically be stationary since pure MA models are always stationary, 
and seasonal differencing would not be needed. Ideally, we would have 
more observations allowing us to calculate enough autocorrelations to 
decide if the estimated acf decays (indicating an AR model) or cuts off 
(indicating an MA model) at further multiples of lag 12, but with 120 
observations we may safely use only about 120/4 = 30 estimated autocorre- 
lations. In this case inspection of Figure C9.4 suggests that the mean of the 
realization varies regularly by months; in addition, the pacf in Figure C9.5 
offers mild confirmation that the seasonal element in the first differences is 
autoregressive because the partial autocorrelation at lag 24 has a r-value less 
than 2.0. All things considered, seasonal differencing seems appropriate. 

The noticeable spikes at the half-seasonal lags (6, 18, 30) in Figure C9.5 
are best ignored for now. As pointed out in Chapte. 11, strong seasonality 
can produce reflections in the estimated acf at fractional-seasonal lags. 
These reflections frequently disappear in residual acf s after the seasonal 
element has been modeled with seasonal differencing or appropriate sea- 
sonal AR and MA terms. 

Figure C9.6 is the estimated acf and pacf after both seasonal and 
nonseasonal first differencing. It is now fairly easy to identify an ap- 
propriate model. Note that the autocorrelations are insignificant at lags 6 
and 18. The spike at lag 1 suggests a nonseasonal MA term, and the spike at 
lag 12 calls for a seasonal MA coefficient. Although the autocorrelation at 
lag 12 has an absolute r-value of only 1.54, this exceeds the approximate 
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Figure 0 . 5  Estimated acf and pacf of the first differences of the log data ( d  = 1 )  
in Figure C9.4. 
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Figure 0 . 6  Estimated acf and pacf for the differences of the log data ( d  = 1. 
D = 1). 
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practical warning level (1.25) for seasonal lags suggested in Chapters 11 
and 12. 

A multiplicative model as presented in Chapter 1 1  is a good starting 
place for data with both seasonal and nonseasonal variation. In this case we 
have selected an ARMA(O,I)(O, model for the stationary (logged and 
dlfferenced) series w,: 

(C9.1) wI = ( I  - @ , 2 B ’ 2 ) (  1 - ~ , B ) u ,  

+ + + + + + + + + +ECOSTAT UNIVARIATE B-J RESULTS+ + + + + + + + + + 
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Figure 0 . 7  Estimation and diagnostic-checking results for model (C9.3). 
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Model (C9.1) for w, implies a model for the original series z,. We know that 

w, = ( 1  - B)(1 - P ) l n  z, (C9.2) 

Substituting (C9.2) into (C9.1) gives the following model for z,, an 
ARIMA(0, 1,1)(0.1, l),,, where z; stands for the log value of z,:  

Estimation. Estimation results for model (C9.3) are shown in Figure 
C9.7. Both estimated coefficients have absolute t-values exceeding 2.0 and 
each satisfies its invertibility condition: 18, I < 1 and 19,,1 < 1. Recall 
from Chapter 11 that in a multiplicative model the invertibility require- 
ments apply separately to the seasonal and nonseasonal coefficients. 

Note that e,, is quite large and highly significant despite the fact that the 
t-value at lag 12 in Figure C9.6 is only - 1.54. This common result 
illustrates why the practical warning value (about 1.25) for seasonal-lag 
t-values is substantially less than 2.0. 

As shown at the top of Figure C9.7 we employed backcasting in 
estimating this model. (Backcasting is discussed in Appendix 8B of Chapter 
8.) Backcasting is especially valuable in estimating seasonal models. We 
employ the backcasting technique in all remaining cases in this text since 
they all involve data with seasonal variation. 

Diagnostic checking. The diagnostic checking of seasonal models is 
essentially the same as the checking of nonseasonal models, except we pay 
special attention to residual autocorrelations at the seasonal lags, as well as 
those at the short lags. 

The residual acf for (C9.3) appears below the estimation results in Figure 
C9.7. This model appears to explain the available data exceptionally well: 
none of the residual autocorrelations has an absolute r-value even approach- 
ing the practical warning values summarized in Chapter 12, and the 
chi-squared statistic is quite insignificant. There is no evidence that (C9.3) 
must be reformulated. 

Residual plot. The residuals plotted in Figure C9.8 reveal one trouble- 
some aspect of our results. The residual for March 1978 is quite large. A 
check of the data source confirms that the corresponding observation was 
copied correctly. A single aberrant value like this one can sometimes affect 
estimation results substantially. 
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As a rough check on the effect of this observation we drop the last 12 
observations and reestimate. The result (r-values in parentheses) is 

W, ( 1  - 0.873BI2)(1 - 0.361B)~, 
(10.87) (3.85) 

While 6,, is virtually unchanged, 6, is less than half the value obtained 
when estimating the full data set. This is in sharp contrast to the results 
obtained in Case 2 where an outlying residual (and observation) occurred. 
There the estimation results were quite stable when the data segment 
starting with the aberrant observation was removed. 

Outlying residuals can be dealt with in a variety of ways. 

1. 

2. 

3. 

4. 

They can be effectively removed if investigation reveals data tran- 
scription errors. 
They may be ignored on the grounds that they reflect the chance 
element inherent in the underlying process. Further aberrant ob- 
servations are Likely to arise as more data are gathered; the analyst 
can choose to let current deviant observations reflect the stochastic 
possibilities of future values. 
They may be accounted for with a more sophsticated technique such 
as a multivariate intervention model, referred to at the end of Case 2. 
Careful investigation of the time periods involved sometimes reveals 
specific, identifiable events that are logically responsible for large 
deviations in the data. When this occurs this method of intervention 
analysis can be helpful. 
They can be removed through adjustment of the data. If thorough 
investigation reveals no data errors or identifiable causal events, the 
analyst might choose to alter the offending observation. This must be 
done very cautiously. Arbitrary manipulation of data to produce a 
better-fitting model can be a dangerously misleading practice. On the 
other hand, the analyst may be convinced that an inexplicably 
deviant observation reveals little about the true stochastic properties 
of the underlying process, and that this value is likely to have 
seriously negative effects on estimation and forecasting results. Then 
adjustment of that observation can be considered. A reasonable 
adjustment procedure, if enough data are available, is to estimate an 
ARIMA model using all available data preceding the deviant ob- 
servation. and to produce a one-step-ahead forecast from this 
model. Then replace the aberrant observation with thls forecast value 
and construct an ARIMA model using the full data set. 
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Figure C9.8 Residuals from model (C9.3). 
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Forecasting. We will forecast using (C9.3) on the assumption that the 
observation (and corresponding residual) for March 1978 could have arisen 
by chance due to the stochastic nature of the underlying process. Forecasts 
for lead times I = 1,2,. . . , 24 appear in Table C9.1 and Figure C9.9 along 
with an 80% confidence interval for each forecast and the corresponding 
future observed values. These forecasts are for the original series (i.e., they 
are not in log form). As dixussed in Chapter 10 they are found by 
calculating the antilog of the sum of the log forecast pius one-half the 

A I R  CARRIER TON MILES FORECASTS 
--EACH VERTICAL A X I S  INTERVAL = 6 4 . 1 6 5  

T I E  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  VALUE 
77 101 
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81 
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80 1 1  
21 
31 
41 
51 
61 
71 
81 
91 

101 
111 
121 

C F* 3 
C F+3 

C F 3  
t F* 3 

C F 3  
C F+ 3 

C F *I 
C F *I 

C F* 3 
C F * I  

t *F 3 
C F+ 3 

t +F 3 

C F I *  
C F+ 3 

C *F 3 
t + F  3 

C * F  3 
C * F  

t + F  
C +  F 3 
t +  F 3 

+t F 3 
* C  F 3 

3 
3 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
Q VALUES AFTER T H I S  TIUE ARE FORECASTS 
* = OBSERVATION 
F = FORECAST 

C J  = 80 X LIBITS 

Figure C9.9 Forecasts from model (C9.3). 
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estimated forecast-error variance of the log forecast. The confidence inter- 
vals for the original-data forecasts, however, are found by calculating the 
antilog of the upper and lower bounds of the corresponding log forecast 
confidence interval. 

Model (C9.3) forecasts rather well. The forecasts faithfully track the 
strong seasonal pattern. Only four of the 24 confidence intervals fail to 
contain the observed values-the two March forecasts and the last two 
forecasts. Since the data are seasonally differenced, the starting place for 
each forecast is the observed (or forecast) value 12 months earlier. Thus the 
March 1979 forecast starts from the observed value in March 1978; the 

Table 0 . 1  Forecasts' from model (0.3) 

Future Percent 
Forecast 80% Confidence Limits Observed Forecast 

Time Values Lower Upper Values EKOrS 

79 1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
I 1  
12 

80 1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
I 1  
12 

2397.7509 
2 174.1441 
233 3 3393 
2541.4241 
2572.9062 
2825.4678 
2995.6592 
3144.9185 
26 13.3908 
2667.7343 
2492.6981 
2739.6237 
2566.3956 
2327.1284 
2497.8648 
2720.4086 
2754.1870 
3024.6305 
3206.9105 
3366.7923 
2797.8457 
2856.1069 
2668.7879 
2933.24 12 

2221.1560 
2009.7517 
2152.6838 
2339.6756 
2363.9847 
259 1.0242 
2741.8957 
2873.1702 
2383.2235 
2428.4303 
2265.1076 
2485.1858 
2817.9193 
2097.3398 
2246.509 I 
244 I .6324 
2466.9577 
2703.8 16 1 
286 1 . I  584 
2998.0209 
2486.6678 
2533.7045 
2363.1668 
2592.6 13 1 

2579.5630 
2343.5264 
2520.1290 
2749.6 1 16 
2788.6532 
3067.7437 
3258.0836 
3426.1340 
285 1.7364 
29 15.7043 
2728.6828 
3003.6135 
2824.6 1 17 
2566.1104 
2759.4766 
3010.7770 
305 3.5 803 
3359.2728 
3567.821 5 
3752.0007 
3123.1170 
3193.3391 
2988.6799 
3290.0089 

2445.oooO 
2275.oooO 
2857.oooO 
2601.oooO 
2593.oooO 
2939.oooO 
3 149.oooO 
3333.oooO 
2650.oooO 
2764.oooO 
2608.oooO 
2668.oooO 
2536.oooO 
2415.oooO 
2883.oooO 
2635.oooO 
2665.oooO 
2914.oooO 
3050.oooO 
3236.oooO 
2540.oooO 
2629.oooO 
2379.oooO 
2590.oooO 

1.93 
4.43 

18.32 
2.29 
0.77 
3.86 
4.87 
5.64 
1.38 
3.48 
4.42 

- 2.68 
- 1.20 

3.64 
13.36 
- 3.24 
- 3.35 
- 3.80 
-5.14 
- 4.04 
- 10.15 
- 8.64 
- 12.18 
- 13.25 

'Forecasts are in original metric. 
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March 1980 forecast starts from the March 1979 forecast. Both of the 
March forecasts are substantially lower than the corresponding observed 
values. Apparently, the unusually low March 1978 value is truly aberrant 
rather than indicating some new, lower overall level for March observations. 

We may, of course, forecast the log series instead of the original series. 
See Chapter 10 for a discussion of how log forecasts are interpreted as 
percent change forecasts of the original series. Log forecasts are calculated 
as shown in Chapter 10, using the difference-equation form of (C9.3): 

2; = z;-, + z;-,2 - z;-13 - eI26,-  12 - 6,6,- I + d,6126,-13 (C9.4) 

where z’ represents a log value. 
Use the observed log values in Figure C9.2 and the residuals (the ci 

values) in Figure C9.8. Substituting forecast values for unobserved z ’s and 
the expected value of zero for unobserved 6 terms where necessary, the first 
two log forecasts from (C9.4) are: 

= 7.84189 + 7.66996 - 7.74716 - 0.857(0.00799) 

- 0.766( -0.00648) + (0.857)(0.766)(0.02709) 

= 7.78057 

= 7.78057 + 7.57456 - 7.66996 - 0.857(0.00913) 

- 0.766( 0) + (0.857)( 0.766)( 0.00799) 

= 7.68260 

Alternative models. As an exercise consider some alternatives to (C9.3). 
Suppose we are not sure that differencing is needed to induce a stationary 
mean. The estimated acf and pacf for the undifferenced data in Figure C9.3 
suggest an ARIMA( I ,  O,O)( 1, 0.0) 12 model. The acf decays after lag 1, while 
the estimated pacf has a spike at lag 1 followed by a cutoff to zero; this calls 
for a nonseasonal AR(1) term. The acf decay at lags 12 and 24 suggests a 
seasonal AR coefficient. Therefore, we estimate this model: 

(1 - +,B)(l - * 1 2 B ’ z ) i ;  = 0,  (C9.5) 



+ + + + + + + + + +€COSTAT UNIVARIATE B-J RESULTS+ + + + + + + + + + 
+ FOR DATA SERIES: LOD(e) AIR CARRIER TON MILES + 
+ DIFFERENCING: 0 DF - 117 + 
+ AVAILABLE: DATA = 120 BACKCASTS = 380 TOTAL = 500 + 
+ USED TO FIND SSR: DATA = 120 BACKCASTS = 347 TOTAL = 487 + 
+ (LOST DUE TO PRESENCE OF AUTOREORESSIVE TERMS: 13) + 

COEFFICIENT ESTIHATE STD ERROR T-VALVE 

PHI*  12 0.994 0.033 30. 56 
CONSTANT . 104031E-01 ,79512s-01 . 130836 

MEAN 0. 44254 10. 2604 .824135 

P H I  1 0.444 0. 071 9. 37. 

ADJUSTED RHSE ST . 448528E-01 E A N  ADS Y. ERR = 0. 47 
CORRELATI WS 
1 2 3 

1 1 . 0 0  
2 -0. 18 1.00 
3 -0.20 0.97 1.00 

++RESIDUAL ACF++ 
C M F  T-VAL LAC 0 
-0.35 -3.40 1 <<<<<<ccc<<<<<<<co 3 

0 . 0 9  0.07 2 c o>>>>> 3 
0. 04 0. 53 3 1 O>>> 3 

-0. 02 -0. 15 4 c <O 3 
0.02 0 .15  5 c O> 3 

-0.02 -0. 14 6 c co 1 
0.07  0 . 4 1  7 c O>>> 3 

-0. 01 -0. 09 0 c 0 3 
0. 02 0. 14 9 C O> 3 
0. 01 0. 04 10 c 0 3 
0. 07 0. 42 11 c O>>> 3 

-0. 17 -1. 57 12 c<c<<<<<<<o 3 
0. 00 0. 70 13 c O>>>> 3 

-0.01 -0.07 14 c 0 3 
-0. 10 -0.91 15 c c<<<<o 3 
0.04 0. 52 14 c O>>> 3 
0. 00 -0. 04 17 c 0 3 

-0.04 -0.37 ie c <<O 3 
0. 04 0. 37 19 c 0>> 3 

-0.05 -0.45 20 c <<co 3 
0.02 0.22 21 c O> 3 

-0.03 -0.26 22 c <O 3 
-0. 11 -0.93 23 c cc<<<o 3 
0. 11 0. 94 24 c O>>>>>> 3 

-0. 09 -0. 78 25 c <<<<<O 3 
-0.01 - 0 . 0 4  24 c 0 3 
0.05 0. 40 27 I 0>> 3 

CHI-SQUARED* = 27.91 FOR DF = 24 

Figure 0.10 Estimation and diagnostic-checking results for model (C9.5). 
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Estimation results in Figure C9.10 show that the seasonal AR coefficient 
4,, is close enough to 1.0 to warrant seasonal differencing. As commonly 
happens when estimating a nonstationary series, the mean is highly corre- 
lated with the offending AR coefficient ( r  = 0.97 in this case). The esti- 
mated mean makes little sense since it is larger than any of the observed log 
values in Figure C9.2. The residual acf in Figure C9.9 has spikes at lags 1 
and 12 suggesting the addition of MA terms at those lags. This leads us to 
an ARIMA(1,O. 1x0, 1, l),,: 

(1 - @ , B ) (  1 - Bl2)Z; = ( 1  - 8 , 2 B ’ 2 ) (  1 - 6 , B ) a ,  (C9.6) 

The key result of estimating this model (not shown) is that 6, = 0.999, 
which is virtually 1.0. This indicates that nonseasonal differencing is re- 
quired. With both seasonal and nonseasonal first differencing we are led 
back to the estimated acf and pacf in Figure C9.6 and to model (C9.3). 

As demonstrated in some of the preceding case studies, the need for 
differencing can be confirmed with estimation results. Although excessive 
differencing must be avoided, in borderline cases it is better to difference 
than not. Differencing frees the forecasts from a fixed mean; this added 
flexibility often produces more accurate forecasts. 

Final comments. In Chapter 5 we demonstrated that forecasts from an 
ARIMA(0, 1, 1) model are exponentially weighted moving averages 
(EWMA’s) of the past values of a series. The same is true for an 
ARIMA(0, 1, l), model, but in the seasonal case the exponential weighting 
applies to observations that are s, 2s, 3s,. . . periods in the past rather than 
1, 2, 3,. ~. periods in the past. Thus the forecasts from model (C9.3) may be 
interpreted roughly as the combination of two EWMA’s, one (the nonsea- 
sonal part) which is a weighting of all past observations after the seasonal 
element has been accounted for, and the other (the seasonal part) a 
weighting of all past observations of the month being forecast. 



CASE 10. PROFIT MARGIN 

The data in this case are after-tax profits, measured in cents per dollar of 
sales, for all U.S. manufacturing corporations.* As shown in Figure C10.1 
these quarterly data cover the period 1953-1972, a total of 80 observations. 

Identification. Inspection of the data in Figure C10.1 is not greatly 
revealing. The variance appears to be stationary. The series does not have an 
obvious rising or falling trend, but this does not guarantee that the mean is 
stationary. It is always possible to calculate a single mean for a data series 
(the calculated mean for the present series is the line through the center of 
the graph), but this single mean may not be appropriate for the entire data 
set. In fact, the data seem to spend rather long periods of time entirely 
above or entirely below the calculated mean, suggesting that the mean may 
be shifting. We rely on autocorrelation analysis and estimation results to 
determine whether the mean of this series is fixed. 

Unlike the air-freight data in the preceding case, the profit-margin data 
do not display an obvious seasonal variation. Any clues about seasonality 
will have to come from estimated autocorrelation coefficients at the seasonal 
lags. With quarterly data, the seasonal lags are multiples of 4 (4, 8, 12,. . . ). 

Figure (30.2 is the estimated acf and pacf for the original data. The acf 
drops to zero fairly quickly so the mean of the data seems to be stationary. 
The decay toward zero (rather than a cutoff to zero) implies that an AR 
model is a good starting point. The estimated pacf has a single spike at lag 1 

'The data are taken from Bwrness Conditions Digesr, January 1978, p. 103. 
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PROFIT MAROIN 
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Figure C10.1 Quarterly-profit-margin realization. 1953- 1972. 
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followed by a cutoff to zero, suggesting an AR(1) with 6, approximately 
equal to 0.87 (the value of 6, ,). 

Although the mean of the data may be stationary, we examine the 
estimated acf of the nonseasonal first differences. This should be done 
routinely whenever the data might have seasonal or other periodic variation, 
even if nonseasonal differencing is not needed to induce a fixed mean. Often 

+ + + + + + + + + + + + + AUT()CDRRaATICINS + + + + + + + + + + + + + 
+ FOR DATA S E R I E S :  P R O F I T  MARGIN + 
+ D I F F E R E N C I N C :  0 K A N  = 4.7425 + 
+ DATA C W N T  = 80 STD DEW . 541474 + 

COEF T-VAL LAC 0 
0. 07 7. 70 1 c 0>>>>>3>>>>>>>>>>>>>>>> 
0. 71 4 .01  2 c 0>>>>>>>3>>>>>>>>>> 
0. 56 2. 69 3 c 0>>>>>>>>>3>>>> 
0 .40  1.74 4 c o>>>>>>>>>> 3 
0. 29 1. 24 5 c o>>>>>>> 3 
0.21 0 . 0 0  4 c O>>>>> 3 
0. 11 0. 46 7 c O>>> 3 
0.02 0 .09  0 c O> 3 

-0. 02 -0. 07 9 c 0 1 
-0.04 -0. 15 10 c co 3 
-0 .05  -0.19 11 c ( 0  3 
-0.00 -0.34 12 c CCO 3 
-0. 12 -0 .40  13 c ccco 3 
-0. 16 -0 63 14 c <c<co 3 
-0.21 -0 .04  15 c cc<cco 3 
-0. 24 -0 90 16 c ccc<c<o 3 
-0.26 -1 05 17 c <<<<<<<o 3 
-0 .31 - 1  23 10 c <<c<<cc<o 3 
-0. 36 -1. 40 19 c cc<c<cccco 1 
-0 40 -1 .  50 20 c CC<<<<<<<CO 3 

CHI-SQUARED, = 223.02 FOR DF = 20 

+ + +  
COEF 
0. 07 

+ + + + + + + + P A R T I A L  AUTOCORRELATIONS + + + + + + + + + + + 

7. 70 1 c O>>>>>l>>>>>>>>>>>>>>>> 
T-VAL LAC 0 

-0 10 -1 43 2 c c<<<<o 3 
-0.04 -0 32 3 c <o 3 
-0.20 -1 75 4 c<cc<<o 3 
0. 19 1 .72  5 c O>>>>>J 

-0. 07 -0. 46 6 c <<o 3 
-0. 13 -1. 18 7 c c<co 3 
-0.09 -0. 83 0 c c<o 3 
0.20 1 .77  9 c 0>>>>>3 
0 .00  0 .00  10 c 0 3 

-0 05 -0 .45  11 c co 3 
-0. 25 -2. 20 12 c <ccc<o 3 
0. 12 1 .09  13 c o>>> 3 

-0. 05 -0. 44 14 c <o 3 
-0. 11 -1.03 15 c cc<o 3 
-0. 14 -1.29 14 c c<<co 3 
0. 11 0 . 9 7  17 c o>>> 3 

-0. 17 -1.54 10 c <cc<o 1 
-0. 09 -0. 79 19 c CCO 3 
-0. 10 -1.64 20 c<ccc<o 3 

Figure C10.2 Estimated acf and pacf for the realization in Figure C 10.1. 



+ + + + + + + + + + + + + IWTOC#)RELATIONS + + + + + + + + + + + + + 
+ FOR DATA SERIES: PROFIT W C I N  + 
+ DIFFERENCING: 1 MAN = .126582E-O2 + 
+ DATA C W N T  = 79 STD DEV = .274436 + 

COEF T-VAL LAC 0 
0.09 0.84 1 c o)>>>>>>>> 3 

-0.04 -0.37 2 c cccco 1 
0. 06 0. 55 3 C m>>>>> 3 

-0.25 -2.18 4 CC<C<CCCCCC<CCCC<<CCCCCC<O 3 
-0. 06 -0. 50 5 C cccc<co 3 
0. 07 0. 58 6 C O>>>>>>> 3 

-0.04 -0.29 7 C c<c<o 1 
-0. 19 -1. 58 8 C <<<<CCC<CC<CCC<<CCCO 1 
-0 .05  -0.39 9 c<<<co 
-0.03 -0. 21 10 cc<o 
0.11 0 . 8 8  11 o>>>>>>>>>>> 
0.00 0.01 12 0 
0 .02  0. 13 13 0>> 
0. 04 0. 33 14 O>>>> 

-0. 05 -0. 42 15 cc<cco 
-0.05 -0. 38 16 ccc<<o 

-0. 02 -0. 14 18 cco 
-0. 07 -0. 56 19 ccccccco 

0. 10 0.75 17 O>>>>>>>>>> 

0.08 0.65 20 O>>>>>>>> 
CHI-SQUARED, = 15. 17 FOR DF = 20 

+ + +  
C M F  
0.  09 

-0.05 
0. 07 

-0.27 
0. 00 
0. 05 

-0.01 
-0. 26 
-0. 03 
0. 00 
0. 16 

-0.18 
0. 02 
0. 03 
0. 05 

-0. 18 
0. 11 

-0. 04 
0. 04 

-0 .05 

Figure 

+ + + + + + + + PARTIAL AUTOCORRELATIONS + + + + + + + + + + + 
T-VAL LAC 0 
0.84 I 1 O>>>>> 3 

-0.44 2 c <<co 3 
0. 64 3 c O>>>> 3 

-2.39 4 ccccc<<ccccc<o 3 
0.04 5 c 0 3 
0.41 6 c 0>> 3 

-0.11 7 c co 3 
-2.35 8 ccccc<cc<cc<co 3 
-0.26 9 c co 3 
-0.04 10 c 0 3 

1.46 11 c o>>>>>>>> 3 
-1.64 12 c <<ccc<c<<o 1 
0. 17 13 c 0, 3 
0.22  14 c O> 3 
0.47 15 c O>>> 3 

-1. 61 16 c c<c<cc<cco 3 
0.98 17 c O>>>>>> 3 

-0.36 18 c cco 3 
0.32 19 c O>> 3 

-0.47 20 c <c<o 3 

C103 Estimated acf and pacf of the first differences of the profit-margin 
realization. 
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the nature of a seasonal pattern emerges more clearly in the acf of the 
differenced series. 

Figure C10.3 is the estimated acf and pacf of the first differences. The 
striking characteristic of the acf is the spikes at lags 4 and 8. Since these are 
seasonal lags the relevant practical warning level for their absolute r-values 
is 1.25. Both of these spikes have r-values exceeding this level, so they 
deserve special attention in our modeling plans. 

To identify the seasonal part of a model, we focus on the estimated 
autocorrelations and partial autocorrelations at the seasonal lags while 
suppressing the nonseasonal acf and pacf patterns in our minds. Figure 
C10.3 has a spike at lag 4, a spike at lag 8, and a cutoff to zero at lags 12, 
16, and 20. This pattern suggests an MA(2), model for the seasonal part of 
the data. This tentative conclusion is confirmed by the estimated pack it 
decays (roughly) at the seasonal lags (4,8, 12, 16,20) rather than cutting off 
to zero. When an acf cuts off while the pacf decays, an MA model is called 
for. Consult Chapter 6 or 12 for theoretical acfs and pacfs of MA(2) 
processes. 

The preceding analysis suggests that we should estimate an 
ARIMA( 1, 0, OKO, 0,2), model. However, we will proceed more slowly for 
pedagogical purposes. Suppose we fail to examine the acf and pacf of the 
first differences and thus miss the seasonal pattern. The acf and pacf for the 
undifferenced data (Figure (210.2) call for an AR(I): 

(1 - (P,B)P, = 0 ,  (C10.1) 

Estimation and diagnostic checking. Estimation results for (C10.1) ap- 
pear in Figure C10.4. The estimated AR coefficient 6 ,  is significantly 
different from zero and satisfies the stationarity condition < 1: it is 
almost 16 estimated standard errors above zero and more than two standard 
errors below 1.0. 

Diagnostic-checking reveals that (C10.1) is inadequate. The spikes in the 
residual acf at the seasonal lags 4 and 8 have absolute r-values larger than 
the seasonal-lag warning level of 1.25. 

This diagnostic check illustrates very well how the UBJ method guides us 
to a proper model: even if we start with an inappropriate model because of 
incomplete analysis at the identification stage, the diagnostic-checking stage 
gives warning signals that the model must be reformulated. See Chapter 9 
for guidelines on reformulating a model from the residual acf. 

There is a strong similarity between the estimated acf for the first 
differences w, in Figure C10.3 and the acf for the residuals 2, in Figure 
C10.4. This is no accident. The first differences w, are the result of filtering 
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+ + + + + + + + + +ECOSTAT UNIVARIATE B-J RESULTS+ + + + + + + + + + 
+ FOR DATA SERIES: PROFIT MAROIN + 
+ DIFFERENCING: 0 DF = 78 + 
+ AVAILABLE: DATA = 80 BACKCASTS = 39 TOTAL = 119 + 
+ USED TO FIND SSR: DATA 0 80 BACKCASTS = 38 TOTAL = 118 + 
+ (LOST DUE TO PRESENCE OF AUTOREGRESSIVE TERMS: 1) + 

COEFFICIENT ESTIMTE STD ERROR 1-VALUE 
PHI 1 0.876 0.055 15. 99 
CONSTANT . 583765 25-63 2.25424 

MEAN 4. 70189 197549 23. 801 1 

ADJUSTED RMSE = 267297 PIEAN ABS X ERR = 4. 58 
CORRELATIONS 
1 2 

1 1.00 
2 -0 01 1.00 

++RESIDUAL ACF++ 
COEF 1-VAL LAC 0 
0. 14 1 27 1 C O>>>>>>>>>>>>>> 3 
0.01 0. 06 2 I: O> 3 
0. 09 0 80 3 C O>>>>>>>>> 3 
-0.21 -1. 79 4 c . . . . . . . . . . . . . . . . . . . . . . .  1 
-0. 04 -0. 30 5 C <<<<O 1 
0 . 0 8  0.67 6 C O>>>>>>>> 3 
-0. 02 -0. 19 7 C ( (0  3 
-0. 17 -1 41 8 C <<<<<<<<<<c<<<<<<o 3 
-0. 04 -0. 31 9 C <<<<o 3 
-0.02 -0.1s 10 c <<O 1 
0. I1 0 . 8 9  11 c O>>>>>>>>>>> 3 
0.00 0.02 12 0 
0.01 0. 10 13 O> 
0.03 0.24 14 O>>> 
-0. 06 -0. 50 15 c<<<<<o 
-0. 06 -0. 47 16 <<<<<co 

-0. 04 -0. 31 18 <<<<o 
-0. 10 -0.76 19 c<<<<<<<cco 

0. 07 0. 57 17 O>>>>>>> 

0. 04 0. 33 20 O>>>> 
CHI-SOUARED+ = 13.48 FOR DF = 18 

Figure C10.4 Estimation and diagnostic-checking results for model (ClO.1). 

the original series through the differencing operator ( 1  - B ) :  

( 1  - B ) i ,  = w, (C 10.2) 

From (ClO. 1 )  we see that the residuals 6, used to construct the acf in Figure 
C10.4 are the result of filtering z ,  through the AR operator ( 1  - @il?), 
where the estimate 6, = 0.876 is substituted for the unknown 

( 1  - 0.876B)FI = ci, (C10.3) 
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Comparison of (C10.2) and (C10.3) shows that w, and h, are quite similar. 
The implicit coefficient of B in (C10.2) is 1.0, while in (C10.3) the explicit 
coefficieni of B is 0.876. These two coefficients are close in value, so the two 
filtering operations produce similar series with similar estimated acf s. 

Further estimation and diagnostic checking. Based on our initial identifi- 
cation analysis and on the estimation and diagnostic-checking results in the 
last section, we now tentatively consider an ARIMA( 1, 0, 0x0, 0,2), model: 

+ + + + + + + + + +€COSTAT UNIVARIATE B-J RESULTS+ + + + + + + + + + 
+ FOR DATA SERIES: PROFIT CURSIN + 
+ DIFFERENCINO: 1 DF = 77 + 
+ AVAILABLE: DATA = 79 BACKCASTS = B TOTAL = 87 + 
+ USED TO FIND SSR: DATA - 79 BACKCASTS = 8 TOTAL = 87 + 
+ (LOST DUE TO PRESENCE OF AVTOREWESSIM TERM: 0 )  + 

COEFFICIENT ESTIHATE STD ERROR 1-VALUE 
THETA 4 0. 529 0. 104 5.  08 
THETA B 0. 396 0.105 3. 76 

ADJUSTED R%E - .223258 UEAN ABS X ERR = 3. 041 
CORRELATIONS 
1 2 

1 1.00 
2 -0. 66 1. 00 

++RESIDUAL ACF++ 
COEF T-VAL LAC 0 
0 .  13 1. 16 1 C O>>>>>>>>>>>>> 3 
0.02  0. 19 2 C O>> 3 
0 . 1 1  0 99 3 c O>>>>>>>>>>> 3 

-0.10 -0.06 4 c <c<<<<<<<<o 3 
0.02  0. 15 5 C 0>> 3 
0 .09  0.80 6 C O>>>>>>>>> 3 
0.02 0. 14 7 C 0>> 3 
0.00 0 .04  8 c 0 3 
0 .02  0.  13 9 C 0>> 3 
0.01 0.12 10 c O> 3 
0 .  11 0 .90  11 C O>>>>>>>>>>> 3 

-0.05 - 0 . 4 5  12 c <<<c<o 3 
0.00 0 . 0 0  13 C 0 3 

-0.02 -0. 14 14 C <co 3 
-0. 08 -0 15 C <<<c<<<<o 3 
-0. 07 -0. 60 16 C <<<<<<<O 3 
0 . 0 0  -0. 01 17 C 0 3 

-0.09 -0 .74 18 C <<<<<<<<<o 3 
-0.10 -0.04 10 c <<<<<<<<<<o 3 
0.00  -0.04 20 r 0 3 

CHI-S(IUARED* = 8.71 FOR DF = 18 

C10.5 Estimation and diagnostic-checking results for model (C10.6). 
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Figure C10.6 Residuals from model (C10.6). 
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Estimation of this model produces these results (r-values in parentheses): 

(1 - 0.945B)i, = (1 - 0.515B4 -0.420B8)ci, 
(22.08) (4.54) (3.87) ((210.5) 

The critical aspect of these results is the value of 6l  : it is close enough to 
1.0 to warrant nonseasonal first differencing. Although 6, is less than 1.0 it 
is not significantly different from 1.0. Its estimated standard error is 0.043, 
so 6, is less than 1.3 standard errors below 1.0. This is good evidence that 
the data do not have a stationary mean and should be differenced. A rule of 
thumb is that we should difference when in doubt; we do not want to tie our 
forecasts to a fixed mean if the mean does not seem to be stationary. 
This analysis leads us back to the estimated acf and pacf of the first 

differences in Figure C10.3. An MA(2), model is appropriate for the 
differenced data: 

(1 - B ) f ,  = (1  - 84B4 - 88B8)a, (C10.6) 

The estimation and diagnostic-checking results for this model (Figure 
C10.5) indicate that it provides an adequate representation of the data. Both 
coefficients have r-values greater than 2.0 and together they satisfy the 
invertibility requirements for an MA(2),: 

le81 = 0.396 < 1 

9 8  + 8 4  = 0.396 + 0.529 = 0.925 < 1 

8 8  - 8, = 0.396 - 0.529 = -0.133 < 1 

The coefficients are not too highly correlated since the absolute correla- 
tion between them is less than 0.9. The residual acf has no absolute r-value 
in excess of the practical warning levels, and the chi-squared statistic is 
insignificant, so we accept the hypothesis that the random shocks in (C10.6) 
are independent. The residual plot in Figure C10.6 shows that neither the 
very early nor the very late portions of the data are poorly explained by the 
model. 

Final comments. The seasonal coefficient 68 in Figure C10.5 is highly 
significant: its 1-value (3.76) is well in excess of 2.0. Yet the estimated 
autocomelation at lag 8 in Figure C10.3 has an absolute r-value of only 1.58. 
This illustrates the importance of using the practical warning value of 1.25 
for seasonal autocorrelations at the identification and diagnostic-checking 
stages. 



CASE 11. 

In 1977, S. J. Deutsch and F. B. Alt published a journal article [35] in which 
they present an ARIMA model for the number of armed robberies reported 
each month in Boston, Massachusetts. Their work was subsequently criti- 
cized by R. A. Hay, Jr. and R. McCleary [36], who present an ARIMA 
model different from the Deutsch and Alt model. (See also McCleary and 

In this case study we examine the Same data set analyzed by these 
authors and contrast our identification procedures with theirs. We will 
emphasize the importance of the practical warning levels for acf r-values 
SuIIlIllilIlzed ’ in Chapter 12. 

Hay WI.) 

Identification. Inspection of the data in Figure C1l.l leads to the 
tentative conclusion that the data are nonstationary in two ways: both the 
mean and the variance rise over time. As pointed out in Chapter 7, the 
natural log transformation will induce a constant variance when the stan- 
dard deviation is proportional to the mean. Fortunately, many series with 
nonstationary variances come close to displaying this property. The armed- 
robbery data might satisfy this criterion since the variance rises along with 
the mean. 

The log values of the armed-robbery data are shown in Figure C11.2. The 
variance is now roughly constant throughout the series, so we construct an 
ARIMA model using the log values. After building this model, we translate 
the log forecasts back into the units of the original data. 

The estimated acf for the log values is shown in Figure C11.3 and 
confirms that the data have a nonstationary mean: the acf approaches zero 
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very slowly. Therefore, nonseasonal first differencing (d = 1) is required. 
The first differences in Figure C 1 1.4 no longer trend upward; this series also 
c o n f i i  that the log transformation is acceptable since it has an approxi- 
mately constant variance. The estimated acf and pacf of the differenced 
series appear in Figure C1l.S; the differenced data apparently have a 
stationary mean since the estimated acf falls quickly to zero. 

With monthly data a seasonal pattern produces significant autocorre- 
lations at multiples of lag 12. The autocorrelation at lag 12 in Figure C11.5 
has a relatively small r-value, but it exceeds the practical seasonal-lag 
warning value of 1.25 suggested in Chapters 1 1  and 12. The autocorrelation 
at lag 24 is about zero, so the seasonal acf pattern matches an MA(l),, 
process: there is a spike at lag 12 followed by a cutoff to zero at lag 24. 

The nonseasonal pattern suggests an MA(2): there are two short-lag 
spikes (at lags 1 and 2) with absolute r-values larger than 1.6, followed by a 
cutoff to zero. This interpretation is reinforced by the appearance of the 
estimated pacf: it decays (irregularly) toward zero. As discussed in Chapters 
3 and 6, MA processes have a decaying pattern in the pacf. But as 
emphasized in Chapter 3, estimated acfs and pacfs do not match their 
theoretical counterparts exactly because of sampling error. This may explain 
why the estimated pacf in Figure C11.4 does not decay smoothly like a 
theoretical MA(2) pacf. 

We have tentatively identified an ARIMA(0, 1,2)(0,0, 1)12 model for the 
log series. Letting z; represent the log values, we have 

(1 - B ) Z ;  = (1  - 8 , , ~ ~ ~ ) ( 1  - e , B  - e , ~ ~ ) ~ ,  (cii.1) 

Estimation and diagnostic checking. The results of estimating t h i s  model 
(Figure C11.6) show that it is largely satisfactory. One troubling aspect is 
that the t-value associated with d2 is only 1.91, slightly less than the 
rulesf-thumb minimum value of 2.0. But as pointed out in Chapter 8, 
estimated standard errors and r-values are only approximate whenever MA 
terms are present in an ARIMA model. An MA(2) is sufficiently common 
and the estimated r-value is sufficiently close to 2.0 that we may legitimately 
leave fl, in the model. We return to this question shortly. 

This model satisfies all the relevant invertibility conditions: 

19,,1 = 0.206 < 1 

16,1 = 0.177 < 1 

8, + 6, = 0.177 + 0.319 = 0.496 < 1 

8, - 8, = 0.177 - 0.319 = -0.142 < 1 
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Figure C1l.l Monthly Boston armed robberies, 1966-1975. 
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Figure (31.2 Natural logarithms of the realization in Figure C1 1 .1 .  
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Figure C11.2 (Continued) 
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+ + + + + + + + + + + + + AUTOCORRELATIONS + + + + + + + + + + + + + 
+ FOR DATA SERIES: L06(e) BOSTON ARMED ROBBERIES + 
+ DIFFERENCING: 0 MEAN = 5.01457 + 
+ DATA COUNT = 118 STD DEV = ,783586 + 
COEF 
0 95 
0 91 
0 88 
0 85 
0 04 
0 81 
0 70 
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0 70 
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0 65 
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0 59 
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0 53 
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Figure C11.3 Estimated acf for the log data in Figure C11.2. 

The residual acf indicates that (Ci 1.1) is statistically adequate. The 
t-value at lag 7 exceeds the relevant practical warning value (1.6), but it is 
not unusual for several residual autocorrelations out of 30 to be moderately 
significant just by chance. Furthermore, lag 7 is not one that warrants 
special attention, unlike the seasonal lags (12, 24) or the short lags (1, 2, 
perhaps 3). Finally, the chi-squared statistic is not significant. We have 
constructed a common, parsimonious, and statistically adequate model to 
represent the available data. 

Forecasting. Model (Cll.1) was built using the logs of the original data, 
but our interest is in forecasting the original data. Therefore, we must 
translate forecasts of the log values into appropriate antilog units. 

Recall from Chapter 10 that if the random shocks of the log form of a 
model are Normally distributed, then the shocks of the corresponding 
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model for the original data are log-Normally distributed. It can then be 
shown that. each forecast for the original data is the antilog of the sum of 
the corresponding log forecast and one-half the log forecast-error variance. 
The confidence limits for each forecast for the original data, however, are 
simply the antilogs of the limits for the corresponding log forecast. It 
follows that the confidence interval around each forecast for the original 
data is asymmetric, as seen in Table C11.1 

The residuals in Figure C11.7 are satisfactory. The few large ones that 
appear could occur just by chance. The model fits the data fairly uniformly 
throughout the series. 

Comparison with earlier models. Deutsch and Alt propose an 
ARIMA(0, 1, 1x0, 1, 1)12 model for the original data. This can be criticized 
for two reasons. First, modehg the original data ignores the nonstationary 
variance. Second, there is no evidence that seasonal differencing ( D  = 1) is 
required. 

McCleary and Hay propose a more defensible ARIMA(0, 1,1)(0,0, 1)12 
model for the log data. The only difference between their model and (C11.1) 
is that they exclude 0,. 

McCleary and Hay [32] admit to some difficulty justifying the presence 
of a seasonal term in the model. They indicate that the autocorrelation at 
lag 12 is insignificant (in Figure C11.5), but they claim to see seasonal 
variation in the plotted data. They also suggest that following the overfitting 
strategy would probably have led to the inclusion of a seasonal term. But as 
discussed in Chapter 12, experience suggests that seasonal autocorrelations 
with absolute t-values of about 1.25 or greater call for further attention 
since the corresponding coefficients are often much more significant at the 
estimation stage. This practical rule leads immediately to consideration of a 
model with a seasonal component. 

McCleary and Hay do not discuss including an MA term at lag 2. We are 
led to consider such a term by using the practical nonseasonal-lag warning 
level of about 1.6 for absolute acf r-values. It is instructive to compare our 
results for (C11.1) with the ARIMA(O,l, lMO,O, 1),2 model proposed by 
McCleary and Hay: 

(1 - B ) f ;  = (1 - 8, ,B12)(  1 - B,B)a,  (Cl1.2) 

Results in Figure C11.8 show that both 6, and 6,, are significantly 
different from zero since their absolute r-values exceed 2.0. Both estimated 
coefficients also satisfy their respective invertibility conditions since their 
absolute values are less than 1.0. (See Chapter 11 for a discussion of the 
invertibility conditions for multiplicative models.) 
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Figure C11.4 First differences of the log data in Figure C11.2. 
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Figure Cll.4 (Continued) 
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+ + + + + + + + + + + + + AUTOCORRELATIONS + + + + + + + + + + + + + 
+ FOR DATA SERIES: LOC(e) BOSTON ARMED ROBBERIES + 
+ DIFFERENCING: 1 plE4N = .201071E-01 + 
+ DATA COUNT = 117 STD DEV = ,206181 + 
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Figure C11.5 Estimated acf and pacf for the first differences in Figure C11.4. 
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+ + + + + + + + + +€COSTAT UNIVARIATE B-J RESVLTS+ + + + + + + + + + 
+ FOR DATA SERIES: LOC(r) BOSTON ARMED ROBBERIES + 
+ DIFFERENCINC: 1 DF = 114 + 
+ AVAILABLE: DATA = 117 BACKCASTS = 14 TOTAL = 131 + 
+ USED TO FIND SSR: DATA = 117 BACKCASTS = 14 TOTAL = 131 + 
+ (LOST W E  TO PRESENCE OF AUTDREQRESSIVE TERHS: 0 )  + 

COEFFICIENT ESTIMATE STD ERROR T-VALUE 
THETA 1 0. 319 0. 093 3. 45 
THETA 2 0. 177 0. 093 1. 91 
THETA* 12 -0. 206 0. 094 -2. 19 

ADJUSTED RISE = . 194059 REAN ABS X ERR = 3.20 
CORRELATIONS 
1 2 3 

1 1.00 
2 -0.41 1.00 
3 -0.11 0.10 1.00 

++RESIDUAL ACF++ 
COEF T-VAL LAC 0 

-0.04 -0 39 1 c c<<co 3 
-0. 03 -0. 29 2 c <<<O 1 
0.01 0. 14 3 c O> 1 

-0.11 -1.22 4 c c<<<<<c<<<<o 3 
0 .  08 0. 80 5 c O>>>>>>>> 3 

-0. 05 -0. 50 6 c c<c<<o 1 
-0. 17 -1.78 7 C<<<<<<<<<<<<<<<<<O 3 
0. 10 1. 04 8 c O>>>>>>>>>> 1 

-0. 12 -1. 19 9 c <<<<<<c<c<<<o 1 
-0.10 -1.00 10 c c<c~~:c<<c<o 3 
0.09 0.94 11 c O>>>>>>>>> 3 

-0 .04 -0. 40 12 c ( ( ( ( 0  3 
0.01 0. 12 13 c O> 1 
0.04 0.40 14 c O>>>> 3 

-0. 11 -1. 11 15 c <<<<<<cc<<<o 1 
0.01 0.06 16 c O> 3 

-0.04 -0. 39 17 c <cc<o 3 
- 0 . 0 5  -0.48 18 c <cc<<o 1 
0.03 0.33 19 c O>>> 3 

-0.03 -0.30 20 c <<<O 3 
-0.06 -0.63 21 c <c<c<<o 1 

0 .05  0. 47 22 c O>>>>> 3 
-0.03 -0.30 23 c <<<O 1 
0.06 0.60 24 c O>>>>>> 3 
0.04 0.40 25 c O>>>> 1 
0.06 0. 57 26 c O>>>>>> 1 

-0. 10 -0.97 27 c <c<<<<<c<co 3 
-0.07 -0.63 28 c <<c<<<co 3 
-0.04 -0. 37 29 C <c<co 1 
-0.05 -0.44 30 C c<c<<o 1 

CHI-SQUARED* = 20. 28 FOR DF = 27 

Figure C11.6 Estimation and diagnostic-checking results for model (CI 1 . 1 ) .  
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Table C11.1 Forecasts” from model (C11.1) 

Future Percent 
Forecast 80% Conlidence Limits Observed Forecast 

Time Values Lower Upper Values Err0l-S 

75 I I 422.5603 323.4702 531.6038 ma.’ n.a. 
12 415.4990 299.2%7 545.8881 ma. ma. 

76 1 440.4777 307.9883 590.5194 n. a n.a. 
2 433.2207 294.5597 591.5899 n.a. n.a. 
3 421.6933 279.2184 585.7065 n.a. n.a. 
4 424.9268 274.3275 599.5765 n.a. n.a. 
5 409.9089 258.2832 586.9745 n.a n.a. 
6 412.4238 253.8581 598.8143 n.a. n.a 
I 430.8649 259.2769 633.8249 n. a n.a 
8 428.2626 252.1 193 637.8522 n.a n.a. 
9 441.7800 254.5900 665.7815 n.a n.a. 

10 438.8901 247.7250 668.8947 n.a. n.a 

“Forecasts are in original metric. 
5 not available. 

Is (C11.2) better than (C11.1)? (C11.1) has a smaller RMSE, a smaller 
chi-squared statistic associated with its residual acf, and a more satisfactory 
residual acf across the very important short lags. However, these advantages 
for (C11.1) are slight. The advantage of (C11.2) is that it is more parsimoni- 
ous. Nevertheless, (C1l.l) is not profligate in its number of estimated 
parameters. 

It is not clear which of these two models should be used for forecasting. 
One way of deciding is to use the one which forecasts history better. We 
drop the last few observations, refit each model, forecast, and compare the 
forecasts with the last few observed values. The results of this exercise are 
shownin FiguresC11.9andC11.10. 

Model (C11.2) is the better choice for these reasons: (i) Its estimated 
coefficients are more statist idy significant. Two of the t-values for (C 1 1.1) 
have dropped below 1.9. (ii) It forecasts the immediate future somewhat 
better as shown in Tables C11.2 and C11.3. It has smaller percent forecast 
errors for three of the first four forecasts. These near-term forecasts are the 
most important since AFUMA models are best suited to short-term forecast- 
ing. [Considering all 12 forecasts, (C1 1.1) performs somewhat better: the 
mean of its percent forecast errors for all 12 forecasts is somewhat smaller.] 
(iii) Model (C11.2) is more parsimonious. When two models are quite 



LClG(e) BOSTON ARMED ROBBERIES RESIDUALS 
--DIFFERENCING: 1 
--EACH VERTICAL AXIS INTERVAL = .219873E-01 
Low = MEAN = HIGH = 

-. 540157 325404E-01 515235 
TIHE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  VALUE 

51 
61 
71 
81 
91 
101 
11 1  
121 

60 1 1  
21 
31 
41 
51 
61 
71 

91 
101 
11 1  
121 

69 11 
21 
31 
41 
31 
61 
71 
81 
91 
101 
111 
121 

70 1 1  
21 
31 
41 
51 
61 
71 
81 
91 

er 

- 279908E-01 
- 151474 
634974E-01 

- 12295 
1 12807 - 204254 
581385E-01 

- 121738 
- 206458 
415 
117501 
286 168 

121 
67 1 1  

21 
31 . 128591 

66 21 
31 231 57 
41 
51 
61 
71 
81 

- 540157 @ 
*\ 335896E-01 

. 125513 

. 137145 
2351 3 

. 267868E-01 
-. 201049E-01 

I .* 
:>* +--- 332250 
I -*,* . 250231 

-. 414144E-01 
-. 18825 - 194167 
106415 - 197340 
438393 e 

I\* 38494 
,305381 

-. 133355 
. 15614 
. 163411 

f/*' . 337369E-01 
<* 

I '  ? 
179781 

-. 112028 
. 14287 

-. 338709 
-. 333479E-01 
-.399763 Q 
221079 

-. 109025 
-. 161111 

-. 293013 
114183 
103103 
L85796E-01 

-. 103379 
. S82439E-01 
310128 

. 250611 

. 326639 
,399058 

. 577131E-01 

- . 5 ~ a 1 8  1 E-o i 

Figure C11.7 Residuals for model (CI 1. I ) .  
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Figure C11.7 (Conlinued) 
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+ + + + + + + + + +€COSTAT UNIVARIATE B-J RESULTS+ + + + + + + + + + 
+ FOR DATA SERIES: LDG(c) BOSTON MEED ROBBERIES + 
+ DIFFERENCING: 1 DF = 11s + 
+ AVAILABLE: DATA = 117 BACKCASTS - 13 TOTAL * 130 + 
+ USED TO FIND SSR:  DATA = 117 BACKCASTS = 13 TOTAL 130 + 
+ (LOST DUE TO PRESENCE OF AUTORECRESSIM TERMS: 0 )  + 

COEFFICIENT ESTIflATE STD ERROR T-VALVE 
THETA 1 0.394 0. 085 4. 61 
THETA* 12 -0. 227 0. 093 -2 .4s  

ADJUSTED RPlSE = 195704 r(EAN ABS X ERR = 3.29 
CORRELATIONS 
1 2 

1 1.00 
2 -0. 07 1. 00 

++RESIDUAL ACF++ 
COEF 1-VAL LAG 0 
0.04 0 . 4 5  1 c O>?>> 3 

-0.15 -1.&4 2 c <<<<<<<<<c<<<<<o 3 
-0. 05 -0. 50 3 c <<<<<O 3 
-0 .11  - 1 . 1 4  4 c <<<<<<<<<<<O 3 
0 . 0 8  0 83 5 c O>>>>>>>> 3 
-0.05 -0.49 6 c <<<<<o 1 
-0.15 -1 57 7 c <<<<<<<<<<<<<<<o 3 
0.10 0.97 8 c O>>?>>>>>>> 1 

-0.10 -1.00 9 c C<<<<<C<<<O 1 
-a. 10 -0 95 10 c C<C<<<C<<<O 1 
0.10 0.95 11 c O>i>>>>>?>> 3 

-0.03 -0.31 12 c <<<o 3 
0.02 0.22 13 c O>? 3 
0 .04 0.38 14 c O>>>> 3 

-0. 10 -0.9s 15 c <<<<<<<C<<O 3 
0.00 0.00 16 c 0 3 
-0.03 -0.31 17 c <<<O 3 
-0.04 -0. 35 10 E <C<<O 3 
0.04 0 41 19 c O>>>> 1 

-0.03 -0. 32 20 c <<co 1 
-0.06 -0. 58 21 c <<<<<<O 1 
0.03 0.33 22 c O>>> 3 

-0.02 -0.21 23 [: <<O 3 
0.06 0.59 24 c O>>>>>> 3 
0.07 0. 70 25 c O>>>>>>> 3 
0.06 0 .58  26 c O>>>>>> 1 
-0. 10 -0.96 27 c <<<<<<<c<<o 3 
-0.08 -0.78 28 C <<<<<<<<o 3 
-0 .04 -0.36 29 C <<c<o 3 
-0.04 -0. 3& 30 C <<<<O 1 

CHI-SWARED* = 21.75 FOR W = 28 

Figure C11.8 Estimation and diagnostic-checking results for model (C11.2). 
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+ + + + + + + + + +€COSTAT UNIVARIATE B-J RESWTS+ + + + + + + + + + 
+ FOR DATA SERIES: LOC(r) BOSTON A R K 0  ROBBERIES + 
+ DIFFERENCINQ: 1 DF = 102 + 
+ AVAILABLE: DATA = 105 BACKCASTS = 14 TOTAL = 119 + 
+ WED TO FIND SSR: DATA = 105 BACKCASTS = 14 TOT& - 119 + 
+ (LOST DUE TO PRESENCE OF AUTOREORESSIM TERRS: 0 )  + 

COEFFICIENT ESTIMTE STD ERROR T-VALE 
THETA 1 0. 318 0.099 3. 19 
THETA 2 0. 169 0. o w  1. 70 
THETA+ 12 -0. 191 0.101 -1.89 

ADJUSTED RMSE = .200939 MEAN ABS X ERR = 3. 39 
CORRELATIONS 
1 2 3 

1 1.00 
2 -0.39 1.00 
3 -0. I0 0.07  1. 00 

++RESIDUAL ACF++ 

-0.04 -0.38 1 c <<<<O 3 
-0. 03 -0.35 2 c <<<O 3 
-0.02 -0. 16 3 c <<O 3 
-0.00 -0.84 4 t <<<<<<<<O 3 
0.07 0.76 5 c O>>>>>>> 3 

-0.06 -0.60 6 c < < < < < < 0 3 
-0. 15 -1.51 7 c <<<<<<<<c<<<<<<o 3 
0 . 1 1  1 .12  B c a>>>>>>>>>>> 3 

-0.10 -0.99 9 c <<<<<<<<<<o 3 
-0.08 -0.79 10 c <<c<<<<<o 3 
0 . 0 0  0.75 11 c O>>>>>>>> 3 

-0.04 -0.38 12 c <<<<O 3 
-0.02 -0. 15 13 C <<o 3 
0.02 0.22 14 C O>> 3 

-0. 14 -1.29 15 C <<<<<<<<<<<<<<o 1 
0.02 0.22 16 C O>> 3 

-0.05 -0. 51 17 C <<<<<O 3 
-0. 05 -0.49 18 C <<<<<O 3 
0.05 0.49 19 C O>>>>> 3 

-0. 05 -0 .46 20 C <<<<<O 3 
-0.05 -0.45 21 C c<c<<o 3 
0. 06 0. 51 22 C O>>>>>> 3 

-0. 05 -0. 46 23 C <<<<<O 3 
0.08 0.73 24 C O>>>>>>>> 3 
0.01 0.10 25 c O> 3 
0.05 0.44 26 C O>>>>> I 

COEF T-VAL LA6 0 

CHI-SQUARED* = 15.25 FOR DF = 23 

Figure C11.9 Estimation and diagnostic-checking results for model (C1l.l) using 
the first 106 observations. 
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+ + + + + + + + + +ECOSTAT UNIVARIATE 8-J RESULTS+ + + + + + + + + + 
+ FOR DATA SERIES Lo6(c )  BOSTON ARRED ROBBERIES + 
+ DIFFERENCING 1 DF = 103 + 
+ AVAILABLE: DATA = 105 BACKCASTS = 13 TOTAL = 1 1 8  + 
+ USED TO FIND SSR: DATA = 105 BACKCASTS = 13 TOTAL = 1 1 8  + 
+ (LOST DUE TO PRESENCE OF AUTORECRESSIVE TERMS: 0 )  + 

COEFFICIENT ESTINATE STD ERROR T-VALUE 
THETA 1 0 387 0.091 4. 24 
THETA* 12 -0.206 0.100 -2. 06 

ADJUSTED RNSE = 20~149a NEAN ABS x ERR = 3 48 
CORRELATIONS 
1 2 

1 1 00 
2 -0. 07 1.00 

++RESIDUAL ACF++ 
COEF T-VAL LAC 0 
0.04 0 .39  1 c O>>>> I 

-0. 16 -1 h2 2 c <<<<<<<<<<<<<<<<o 3 
-0. 07 -0. 72 3 c <<<<<<<o 3 
-0.00 -0.76 4 c <.(<<<<<<o 3 
o.oa 0 .82  5 c O>>>i>)>> 1 

-0.06 -0. 59 6 c C<<<C<O 3 
-0.14 -1 34 7 c <<<<<<.:<:<<<<<<o 3 
0 .11  1 . 0 5  8 c 0>3>>>>>>>>> I 

-0 09 -0 81 9 C <<<<<<<<<O 3 
-0.08 -0.77 10 c .:<<<<<<<0 3 
0 .08  0 79 1 1  c O>>>>>>>> 3 

-0. 03 -0 28 12 C <C<O 1 
0.00 -0.03 13 C 0 I 
0. 02 0. 17 14 L O>> 1 

-0. 12 - 1  1 1  15 C <<<C.<<<<C<<<O 3 
0 . 0 2  0. 17 16 C O>> 3 

-0.04 -0.38 17 c ( ( ( ( 0  3 
-0.04 -0. 35 18 C <C<<O 3 
0.06 0. 56 19 C O>>>>>> 3 

-0 .05  - 0 . 4 4  20 C <<<<<O 3 
-0.05 -0. 42 21 C <<<<<O 3 
0. 04 0. 38 22 C O>>>> 3 

-0. 04 -0. 34 23 C ( ( ( (0  3 
0 .07  0. 68 24 C O>>>>>>> 3 
0 .04  0. 38 25 C O>>>> I 
0 . 0 5  0. 43 26 C O>>>>> 3 

CHI-SQUARED* = 16. 54 FOR DF = 24 

Figure Cll.10 Estimation and diagnostic-checking results for model (C11.2) using 
the Fist 106 observations. 
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similar in most respects, we invoke the principle of parsimony in making the 
final selection for forecasting. 

Regardless of which model is used we should produce forecasts with both 
models and monitor their relative performance over time, even if only one 
set of forecasts is used for making decisions. 

Final comments. This case illustrates the usefulness of the practical 
warning levels for absolute acf f-values as discussed in Chapter 12. Ad- 
herence to these warning values in this case study leads to the appropriate 
inclusion of a seasonal MA coefficient. It also leads to the possible inclusion 
of a 0, coefficient. Although we might not include 0, in the final model, 
estimation results indicate that its inclusion is worthy of consideration. 
Furthermore, we should continue to be alert to the possible addition of this 
term as more data become available. 

The practical warning levels for r-values proposed in Chapter 12 are not 
foolproof. Sometimes a coefficient has a corresponding autocorrelation 
r-value exceeding the warning level, but the coefficient proves insignificant 
at the estimation stage. 

Furthermore, the warning values provide only practical guidelines, not 
fixed rules. Sometimes we should accept a model with some significant 
residual autocorrelations since these can occur by chance. This is especially 

Table C11.2 Forecasts" from model (Cl1.1) using the first 106 observations 

Future Percent 
Forecast 80% Confidence Limits Observed Forecast 

Time Values Lower Upper Values Errors 

74 1 1  461.3408 349.5850 584.7303 452.oooO - 2.07 
12 439.3036 312.3853 582.2915 391.oooO - 12.35 

75 1 435.8429 300.1089 590.2795 5OO.oooO 12.83 
2 438.3756 292.8728 605.4325 451.oooO 2.80 
3 428.4718 278.1843 602.4750 375.oooO - 14.26 
4 421.7325 266.4408 602.9425 372.oooO - 13.37 
5 420.1122 258.5648 610.0131 302.oooO -39.11 
6 437.6896 262.6817 644.8456 316.oooO -38.51 
7 457.3997 267.9076 683.1800 398.oooO - 14.92 
8 478.6405 273.8085 724.2283 394.oooO -21.48 
9 464.2856 259.5727 711.1977 431.oooO - 7.72 

10 491.4510 268.6884 761.6681 431.oooO - 14.03 

"Forecasts are in original metric. 
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Table C113 Forecasts" from model (C11.2) using the first 106 observations 

Future Percent 
Forecast 80% Confidence Limits Observed Foreat  

Time Values Lower Upper Values Errors 

74 1 1  458.7373 346.8100 582.4088 452.oooO - 1.49 
12 458.3587 328.8100 603.9116 391.oooO - 17.23 

75 1 455.4194 311.8031 619.1070 500.oooO 8.92 
2 459.2084 301.2624 641.5250 451.oooO - 1.82 
3 448.8316 282.9934 642.4585 375.oooO - 19.69 
4 442.4875 268.7578 647.4576 372.oooO - 18.95 
5 441.1321 258.5906 658.5831 302.oooO -46.07 
6 462.1112 261.8506 702.8154 316.oooO -46.24 
7 485.4834 266.2687 751.1837 398.oooO -21.98 
8 510.4304 271.2798 802.5810 394.oooO -29.55 
9 495.2846 255.3317 790.5947 431.oooO - 14.92 

10 527.3068 263.9159 853.7406 431.oooO -22.34 

'Forecasts are in original metric. 

so when the troublesome autocorrelation occurs somewhere other than at 
the short lags (1, 2, 3) or the first few seasonal lags. The point is that 
autocorrelation coefficients with r-values exceeding the warning levels should 
receive serious attention whether or not their corresponding coefficients are 
included in a final model. 



CASE 12. 

The realization for this case study (machine-tool shipments) is shown in 
Figure C12.1*. The variance appears to be stationary. However, the series 
appears to change level, suggesting that nonseasonal differencing may be 
needed to acheve a stationary mean. Since it also seems to change slope, 
with a negative slope from 1968 through 1971 and a positive slope through 
the remainder of the series, differencing twice may be required before the 
mean is stationary. But we must examine estimated acf s and perhaps obtain 
some estimates of AR coefficients to choose the proper degree of differenc- 
ing. 

This series seems to have some seasonal variation. For example, Decem- 
ber observations are typically higher than November figures, and June 
higher than May. Since the data are recorded monthly we look closely at 
estimated acf and pacf coefficients at multiples of lag 12. 

Identification. Figure C12.2 shows the estimated acf for the orignal 
data. With 84 observations our practical rule is that we may safely examine 
about 84/4 = 21 autocorrelations. 

The slow decay of the acf from lags 1 through 9 suggests that the mean of 
the original series is not stationary, so we difference the data once (d = 1). 
This may also help to expose more fully the nature of any seasonal 
variation. 

The nonseasonal first differences in Figure C12.3 appear to fluctuate 
around a fixed mean. The estimated acf is shown in Figure C12.4. We have 

'These data are taken from various issues of the S m e y  o/ Current Burinerr. published by the 
US. Department of Commerce. 
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Figure C12.1 Machine-tool shipments. 1968- 1974. 
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+ + + + + + + + + + + + + AUTOCORRELATIONS + + + + + + + + + + + + + 
+ FOR DATA SERIES:  MACHINE TOOL SHIPPZNTS + 
+ DIFFERENCING: 0 HEAN - 8869.05 + 
+ DATA COUNT = 84 STD DEV = 2758.98 + 

6. 19 1 c O>>>>>l>>>>>>>>>>> 
4. 17 2 c O>>>>>>>I>>>>>>>> 
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CHI-SQUARED+ = 329.42 FOR DF = 21 

Figure c12.2 Estimated acf for the realization in Figure C 12. I .  

pushed the number of autocorrelations to 24 to get a better picture of the 
seasonal pattern. This acf has an unusual pattern for differenced data. The 
most striking feature is the nondecaying positive autocorrelations at multi- 
ples of lag 3, suggesting a nonstationary periodic pattern of length three. It 
also resembles an AR(2) acf with both $, and (p2 negative. The critical fact, 
however, is that the acf is not falling rapidly to zero, so the mean of the data 
is still nonstationary and further differencing is required. 

We have three choices for further differencing. First, we could difference 
again by length one, setting d = 2. Second, we could perform seasonal 
differencing ( D  = 1). With monthly data we would difference by length 12. 
This is supported by the acf spikes at lags 12 and 24 that are decaying quite 
slowly (Figure C12.4). Third, we might difference by length three on the 
assumption that the nondecaying spikes at multiples of lag 3 reflect a 
nonstationary periodicity of length three. 

A periodicity of length three in monthly data is unusual, though not so 
peculiar that we should rule it out. But the practical rule is to start with the 
common alternatives. Therefore, we consider the first and third possibilities, 
setting d = 2 or D = 1. 

Nonseasonal second differencing is not often required. but we saw in 
Figure C12.1 that the data appear to have two different slopes. Seasonal 
differencing is commonly needed. We pursue both of these possibilities. 
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Figure C123 First differences of the realization in Figure C12 . I .  
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+ + + + + + + + + + + + + AUTOCORRELATIONS + + + + + + + + + + + + + 
+ FOR DATA SERIES: HACHINE TOOL SHIPMENTS + 
+ DIFFERENCING: 1 MEAN = 74.0361 + 
+ DATA COUNT = 83 STD DEV = 2068. 1 + 
COEF T-VAL LAC 0 
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CHI-SQUARED+ = 316.95 FOR DF = 24 

Figure (32.4 Estimated acf of the first differences in Figure C12.3. 

Figure C12.5 is the estimated acf of the second differences of the data. It 
is barely different from the acf of the first differences in Figure C12.4. It 
does not fall rapidly to zero, so the mean of the data is still not stationary. 

But seasonal first differencing (along with nonseasonal first differencing) 
induces a stationary mean. The estimated acf in Figure C12.6 moves rapidly 
to zero at the short lags, and the spike at lag 12 is followed by an 
insignificant autocorrelation at lag 24. 

This result is an excellent illustration of two practical points. First, a 
strong seasonal pattern can sometimes make identification difficult. As 
pointed out in Chapter 11, strong seasonality can produce large autocorre- 
lations at fractional-seasonal lags. In this example the seasonal element 
induced large autocorrelations at multiples of lag 3 in the acf in Figure 
C 12.4. This pattern disappears completely after seasonal differencing. Sec- 
ond, we should always start with the common alternatives. The common 
step of seasonal first differencing (along with nonseasonal first differencing) 
has eliminated the unusual alternative of a nonstationary periodicity of 
length three. Indeed, experience show that common procedures and models 
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+ + + + + + + + + + + + + AUTOCORRELATIONS + + + + + + + + + + + + + 
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Figure C12.5 Estimated acf of the second differences (d = 2). 

are nearly always adequate; the analyst must have the mental discipline to 
focus on these common alternatives. 

Our task now is to tentatively choose one or more models based on the 
estimated acf and pacf in Figure C12.6. The spike at lag 12 followed by a 
cutoff to zero at lag 24 clearly calls for a seasonal MA coefficient. The 
absolute r-value at lag 12 (1.92) is well in excess of the practical warning 
level for seasonal lags (1.25). 

The short-lag autocorrelations could be interpreted as one or two spikes 
followed by a cutoff to zero. The spike at lag 2 is only borderline signifi- 
cant; its r-value falls slightly short of the practical warning level of 1.6. The 
pacf is consistent with an MA model for the nonseasonal part of the data: it 
decays starting from lag 1. 

We will entertain two models: an ARIMA(O,I, 1)(0,1, l ) , z  and an 
ARIMA(0, 1,2)(0,1, 1)12: 

(1  - B ) (  1 - ~ ~ ~ ) f ~  = (1  - e1,~l2)( 1 - e l B ) a f  (C12.1) 

(1 - ~ ) ( i  - B I ~ ) ~ ,  = ( I  - ~ , , B * ~ ) ( I  - e , B  - e2B2)a1  (c12.2) 
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CHI-SQUARED* = 90.23 FOR DF 24 

+ + + + + + + + + + + P A R T I A L  AUTOCORRELATIONS + + + + + + + + + + + 

COEF T-VAL L A 6  0 
-0 42 -5 .  21 1 <<* - _ _  c+:<;<<*:<c< c *:ccc<T<o 3 
-0 23 -1 91 2 c<<<<<<<o 1 
-0 09 -0 77 3 c i<<o 3 
0 01 0 05 4 c 0 3 

3 0.05 0. 41 5 c O>> 
0.02 0. 15 
0 .20 1 68 
0. 02 0. 18 

-0. 13 -1. 12 
0. 13 1. 12 

-0. 17 - 1 . 4 1  
-0.08 -0.1% 
-0.18 -1. M 
-0.10 -0.01 
-0.01 -0.10 
-0. 10 -0.04 
-0. 15 -1.24 
0.23 1. 91 
0.00 -0.03 

-0.08 - 0 . a  
-0.04 -0.31 
0.20 1. M 

-0. 16 -1.33 

0. ie 1. 55 

Figure C12.6 

4 c O> 1 
7 c o>>>>>>> 3 
8 c O> 3 
9 c o>>>>>> 3 

10 c <<<<o 3 
11 c o>>>> 3 
12 c <<<<<<o 3 
13 c <<<o 3 
14 c <<<<cco 1 
15 c <<<o 3 
16 c 0 3 
17 c <cco 3 
18 c <<<<co 3 
19 c o>>>>>>> 3 
20 I 0 3 
21 t <c<o 3 
12 c <O 3 
23 c o>>>>>>> 3 
24 c c<<<<o 1 

Estimated acf and pacf for the differenced series ( d  = I ,  D = 1). 
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Estimation, diagnostic checking, reformulation. Results shown in Fig- 
ures C12.7 and C12.8 indicate that (C12.2) is superior since its adjusted 
RMSE and chi-squared statistic are both smaller. However, both models 
have somewhat troubling residual autocorrelations at lags 6 and 7, and the 
residual autocorrelation at lag 9 in Figure (212.7 also has a t-value greater 
than 1.6. Although we must sometimes accept moderately large residual 
autocorrelations, especially at uncommon lags, both chi-squared statistics 
suggest our models are inadequate. They are both significant at the 10% 
level. 

In Chapter 12 we emphasize that autocorrelations at certain lags require 
special attention: the short lags (1,2, perhaps 3), the seasonal lags (multiples 

+ + + + + + + + + +€COSTAT UNIVARIATE 8-J RESVLTS+ + + + + + + + + + 
+ FOR DATA SERIES: HACHINE TOOL SHIPPENTS + 
+ DIFFERENCING: 12 1 DF = 69 + 
+ AVAILABLE: DATA = 71 BACKCASTS = 13 TOTAL = 84 + 
+ USED TO FIND SSR: DATA = 71 BACKCASTS = 13 TOTAL = 84 + 
+ (LOST W E  TO PRESENCE OF AUTOREORESSIVE TERMS: 0 )  + 

COEFFICIENT ESTIMATE STD ERROR 1-VALUE 
THETA 1 0. 430 0. 104 4. 12 
THETA* 12 0.799 0. 109 7 .  36 

ADJUSTED RffiE = 926. 592 MEAN ABS X ERR = 9. 15 
CORRELATIONS 
1 2 

1 I .  00 
2 -0.10 1.00 

++RESIDUAL ACF++ 
C M F  1-VAL LAC 0 

-0.10 -0.84 1 c <c<c<<<cc<o 3 
0. 10 0. 87 2 C O>>>>>>>>>> 3 
0. 12 1.03 3 C O>>>>>>>>>>>> 3 
0 .11 0 . 8 9  4 c O>>>>>>>>>>> 3 
0. 08 0. 64 5 C O>>>>>>>> 3 
0.23 1. 82 6 C O>>>>>>>>>>>>>>>>>>>>>>>l 
0.24 1.86 7 O>>>>>>>>>>>>>>>>>>>>>>>> 

0.24 I .  76 9 O>>>>>>>>>>~>>>>>>>>>>>>> 

0. 17 1 .22  11 O>>>>>>>>>>>>>>>>> 
0 03 0.23 12 O>>> 
0. 17 1. 19 13 O>>>>>>>>>>>>>>>>> 

0.07 0.46 15 O>>>>>>> 
0.14 0 .90  16 O>>>>>>>>>>>>>> 

0. 13 0. 84 18 O>>>>>>>>>>>>> 

-0.03 -0. 19 8 CCCO 

-0 .05 -0. 33 10 <<<<co 

-0.04 -0.37 14 <<<<c<o 

-0. 18 -1. 19 17 cc<<cc<<<c<<c<<<c<o 

CHI-SQUARED* = 30.84 FOR DF = 16 

Figure C12.7 Estimation and diagnostic-checking results for model (C12.l). 
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+ + + + + + + + + +€COSTAT UNIVARIATE 8-J RESULTS+ + + + + + + + + + 
+ FOR DATA SERIES: MACHINE TOOL SHIPMENTS + 
+ DIFFERENCING: 12 1 DF = M  + 
+ AVAILABLE. DATA - 71 BACKCASTS 14 TOTAL = 85 + 
+ USED TO FIND SSR: DATA = 71 BACKCASTS = 14 TOTAL = 85 + 
+ (LOST DUE TO PRESENCE OF AUTOREORESSIM TERW: 0 )  + 

COEFFICIENT ESTIMATE STD ERROR T-VALUE 
THETA 1 0. 620 0.111 5. 59 
THETA 2 -0 232 0. 113 -2. 07 
THETA+ 12 0 835 0. 087 9. 63 

ADJUSTED RHSE = 913. 592 WAN ABS X ERR = 9. 27 
CORRELATIONS 
1 2 3 

1 1.00 
2 - 0 . 5 4  1 00 
3 0.02 0.01 1 00 

++RESIDUAL ACF++ 
COEF T-VAL LAC 0 
0 08 0.70 1 t O>>>> 3 

-0 03 -0. 27 2 c <co 1 
0 03 0.21 3 t O> 1 
0.04 0.37 4 c 0>> 1 
0. 10 0 86 5 c O>?>>> 1 
0 . 2 9  2 . 4 2  6 c 0>>5>>>>>>>>1>>> 
0.26 1 99 7 c 0>>>>>>>>>>>>>3 
0 00 -0.04 8 c 0 1 
0. 15 1 10 9 c O>>>>>>>> 3 
-0.03 -0. 19 10 c <O 1 
0. 13 0 90 11 c O>>>>>> 1 
0. 1 1  0.77 12 1. O>>>>> 1 
0. 16 1 12 13 c o>>>>>>>> 1 

-0.02 -0 16 14 c CO 1 
0. 05 0. 35 IS t O>>> 1 
0 .06  0 . 4 4  16 c O>>> 1 

-0. 17 -1 15 17 c <<<C<C<<O 1 
0. 13 0 . 9 0  18 c O>>>>>>> 3 

CHI-SQUARED+ = 25.82 FOR DF = 15 

Figure C12.8 Estimation and diagnostic-checking results for model (C12.2). 

of 12 in the present case), and fractional or near-seasonal lags. In this case 
lag 6 deserves primary consideration since it is the half-seasonal lag. 
Machine-tool shipments could have a six-month seasonal pattern in addi- 
tion to a twelve-month pattern. 

Adding an MA term at lag 6 to each previously estimated model gives 
these new models: 

(1 - B)(1 - B I 2 ) i ,  = (1 - 812B’2)(1 - B I B  - e2B’ - O6Bb)u, 

(C 12.4) 
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Estimation and diagnostic-checking results are displayed in Figures C12.9 
and C12.10. In both cases 8, is highly significant with an absolute i-value 
well in excess of 2.0; all other coefficients remain significantly different 
from zero. Model (C12.4) has a substantially smaller chi-squared statistic, 
but the chi-squared for (C12.3) is also satisfactory. (C12.3) has a slightly 
larger RMSE. 

As a final check on these two models, drop the last 12 observations, 
reestimate the parameters, forecast 12 periods ahead, and compare these 
forecasts with the last 12 available observations. The percent forecast errors 
for (C12.3) and (C12.4) are shown in the last column in Tables C12.1 and 
C12.2, respectively. (C12.4) forecasts with slightly more accuracy, except for 
the first forecast. 

+ + + + + + + + + +€COSTAT UNIVARIATE B-J RESULTS+ + + + + + + + + + 
+ FOR DATA SERIES: HACHINE TOOL SHIPSNTS + 
+ DIFFERENCING: 12 1 DF = 6 e  + 
+ AVAILABLE: DATA 71 BACKCASTS - I 8  TOTAL = W + 
+ USED TO FIND SSR: DATA = 71 BACKCASTS = 18 TOTAL = 89 + 
+ (LOST DUE TO PRESENCE OF AUTOREORESSIVE ERHS: 0 )  + 

COEFFICIENT EEiTIMlE STD ERROR 1-VALUE 
TMTA 1 0. 579 0. 089 6. 49 
TMTA 6 -0.473 0. 095 -5. 00 
THETA* 12 0.818 0. 103 7.98 

ADJUSTED RRSE = 809.93 MEAN ABS X ERR = 8. 10 
CORRELATIONS 
1 2 3 

1 1.00 
2 0. 07 1.00 
3 0.02 0.20 1.00 

++RESIDUAL ACF++ 
CMF T-VAL LAC 0 

-0. 14 -1.22 1 C <<<<<<<<<<<<cco 3 
0 .08  0 . 6 5  2 C O>>>>>>>> 3 
0.08  0.63 3 I O>>>>>>>> 3 
0.09 0. 76 4 C O>>>>>>>>> 3 
0.08  0.63 5 C O>>>>>>>> 3 

-0.02 -0. 14 6 C <<O 3 
0.12 0.94 7 c O>>>>>>>>>>>> 3 

-0.09 -0. 75 8 <<<<<<<<<o 
0 . 2 0  1. 56 9 O>>>>>>>>~>>>>>~.>>>>> 

-0.12 -0.89 10 <<<<<<<<<<<<O 
0. 13 1. 02 11 O>>>>>>>>>>>>> 

-0. 05 -0. 37 12 <c<<<o 
0.08  0. 59 13 O>>>>>>>> 
0. 00 0. 00 14 0 
0. 02 0. 14 15 0>> 
0. 11 0. 80 16 O>>>>>>>>>>> 

-0. 17 -1.25 17 <<<<<<<<<<<<<<<<<O 
0. 18 1.26 18 O>>>>>>>>>>>>>>>>>> 

CHI-SQUARED* = 19.24 FOR DF = 15 

Figure C12.9 Estimation and diagnostic-checking results for model (C12.3). 
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+ + + + + + + + + +ECOSTAT UNIVARIATE B - J  RESULTS+ + + + + + + + + + 
+ FOR DATA SERIES: MACHINE TOOL SHIPMENTS + 
+ DIFFEREWING: 12 1 DF = 67 + 
+ AVAILABLE: DATA = 71 BACKCASTS = 18 TOTAL = 89 + 
+ USED TO FIND SSR: DATA = 71 BACKCASTS = 18 TOTAL = 89 + 
+ (LOST DUE TO PRESENCE OF AUTORECRESSIW TERMS: 0 )  + 

COEFFICIENT ESTIMATE STD ERROR T-VALUE 
THETA 1 0.812 0. 104 7. 04 
THETA 2 -0. 224 0. 103 -1. 16 
THETA 6 -0 401 0. 075 -5.35 
THETA. 12 0.  808 0 .  107 7. 58 

ADJUSTED RMSE = 808. 14 MEAN ABS X ERR = 7.84 
CORRELATIONS 
1 2 3 4 

1 1 .00  
2 -0.76 1.00 
3 0.34 -6.26 1 00 
4 -0 .05 0.  10 0 . 0 9  1. 00 

++RESIDUAL ACF++ 
C M F  T-VAL LAG 0 
0. 06 0.  54 1 C m>>>>> 3 

-0.01 -0.10 2 c <O 3 
0 .04  0. 34 3 C O>>>> 3 
0 .08  0 . 6 5  4 C O>>>>>>>> 3 
0. 11 0.93 5 c O>>>>>>>>>>> 3 
0 . 0 5  0.44 6 C O>>>>> 3 
0 . 0 5  0 .40  7 C O>>>>> 3 

-0. 05 -0.42 8 C <<<<<O 3 
0 . 1 8  1.43 9 c o>>: >>>>>>>>>>>>>>> 3 

-0.04 -0.34 10 <<<<o 
0. 08 0 64 11 O>>>>>>>> 

-0.02 -0. 16 12 <<O 
0. 10 0 . 8 2  13 m>>>>>>>>> 
0. 01 0. 11 14 O> 
0.02 0.  17 15 0>> 
0.06 0. 47 16 O>>>>>> 

0 . 1 8  1 34 18 O>>>>>>>>>>>>>>>>>> 
-0. 12 -0. 95 17 <<<<<<<<<<<<O 

CHI-SQUARED+ 11. 67 FOR DF = 14 

Figure C12.10 Estimation and diagnostic-checking results for model (C12.4). 

The forecast accuracy of both models deteriorates sharply after the first 
two forecasts. Accuracy would presumably be improved if each model were 
reestimated and forecasts recalculated each period as a new observation 
becomes available. Much of the improved accuracy would stem from the 
reduction of bootstrapping. Because the data have been differenced, fore- 
casts are based in part on past values of the machine-tool series; however, to 
forecast the longer lead times we must use forecast values in place of 
observed values. As indicated in Chapter 10 this substitution is known as 
bootstrapping. (See Case 3 for a numerical illustration of bootstrapping.) 



Table C12.1 Forecasts from model (C123) using the first 72 observations 

Future Percent 
Forecast 80% Confidence Limits Observed Forecast 

Time Values Lower Upper Values Errors 
~~ ~ 

74 1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
I I  
12 

8701.4441 
9498.45 14 

I 07 7 1 .lo9 1 
9939.0788 
10669.4823 
1 1820.8572 
91 79.3928 
8868.8662 
11217.7873 
10535.2013 
9769.4898 
12834.3903 

77 17.3491 
8430.0041 
9625.0984 
8719.3032 
9380.6887 
10466.5582 
7608.4636 
7 107.7553 
9285. I 195 
8445.0105 
7532.8426 
10460.3044 

9685.5391 
10566.8986 
11918.3198 
1 1  158.8544 
11958.2760 
13175.1561 
10750.322 1 
10629.9771 
I3 150.4550 
12625.3921 
1 2006.1 370 
152M.476 1 

84 1 O.oo00 
9585.oooO 
I2930.oooO 
123OO.oooO 
I 1990.m 
12575.oooO 
I0500.oooO 
8935.oooO 
15135.oooO 
1 2 9 0 5 . m  
12890.oooO 
16430.oooO 

- 3.47 
0.90 
16.69 
19.19 
11.01 
6.00 
12.58 
0.74 
25.88 
18.36 
24.2 1 
21.88 

Tabk C12.2 Forecasts from model ((32.4) using the first 72 observations 

Future Percent 
Forecast 80% Confidence Limits Observed Forecast 

Time Values Lower Upper Values Errors 

74 1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
I I  
12 

8784.5 177 
%58. I291 
I1043.9062 
10045.8285 
10929.8991 
11925.1353 
9293. I801 
8987.8747 
11316.3784 
10658.4266 
9905.2428 
1300 I .9596 

7817.3999 
8685.9 I42 
997 1.9591 
8882.6694 
%82. I78 1 
10598.2305 
7770.4033 
7291.6959 
9462.9503 
8660.085 1 
7771.8085 
10741.49 16 

975 1.6356 
10630.344 1 
121 15.8532 
11208.9876 
12177.6200 
13252.0400 
10815.9570 
10684.0535 
13 169.8065 
12656.7682 
12038.6772 
15262.4275 

84 l o . m  
9585.oooO 
I2930.oooO 
12300.oooO 
1 1990.oooO 
12575.oooO 
10500.oooO 
8935.oooO 
I5 135.oooO 
12905.oooO 
12890.oooO 
16430.oooO 

- 4.45 
- 0.76 
14.59 
18.33 
8.84 
5.17 

1 1.49 
- 0.59 
25.23 
17.41 
23.16 
20.86 
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Alternative models. In h s  section we consider two other models based 
on different interpretations of the acf and pacf in Figure C12.6. Stretching 
our imaginations, we could interpret these graphs as representing an 
ARIMA( 1,1,0)(0,1, 1) ,2 .  The acf seems to decay (wy rapidly) while 
alternating in sign, and the pacf has one spike with an absolute z-value 
greater than 2.0. 

Estimation (results not shown) of an ARIMA(1, 1,0)(0,1, 1),2 gives 
satisfactory coefficients and r-values, but the residual acf reveals a signifi- 
cant spike at lag 6 and the chi-squared statistic is significant. Adding an 
MA coefficient at lag 6 gives the results shown in Figure C12.11. This model 
is inferior to both (C12.3) and (C12.4): it has a noticeably larger RMSE and 
chi-squared statistic. 

+ + + + + + + + + +€COSTAT UNIVARIATE B-J RESVLTS+ + + + + + + + + + 
+ FOR DATA SERIES: MCHINE TOOL SHIPt"lS + 
+ DIFFERENCINC: 12 1 DF - 68 + 
+ AVAILABLE: DATA = 71 BACKCASTS = 429 TOTAL - 500 + 
+ USED TO FIND SSR: DATA - 71 BACKCASTS = 428 TOTAL = 499 + 
+ (LDST WE TO PRESENCE OF AUTORECRESSIVE TERMS: 1) + 

COEFF I C  IENT EST I M T E  STD ERROR T-VALVE 
PHI 1 -0. 505 0.099 -5. 09 
THETA 6 -0.284 0. 119 -2. 39 
THETA* 12 0. 806 0. 107 7. 53 

ADJUSTED RMSE = 877.901 S Q A N  ABS X ERR = 8.93 
CORRELATIONS 
1 2 3 

1 1.00 
2 -0.10 1.00 
3 0 .09  0. ia  1.00 

++RESIDUAL ACF++ 

-0. 11 -0. 90 1 E <<<<<<<<<<<O 3 
-0. 16 -1. 33 2 E <<<<<<<<<<<<<<<<O 3 
0. 13 1.04 3 I O>>>>>>>>>>>>> 3 
0.11 0 . 8 5  4 O>>>>>>>>>>> 

0.04 0.31 6 O>>>> 
0. 22 1. 70 7 O>>>>>>>>>>>>>>>>>>>>>> 

0. 12 0. 92 9 O>>>>>>>>>>>> 

0. 17 1 24 11 O>>>>>>>>>>>>>>>>> 
0.03 0. 19 12 O>>> 
0.01 0.09 13 O> 

0.08 0.57 15 O>>>>>>>> 
0.08 0 .55  16 O>>>>>>>> 

0.13 1.06 18 O>>>>>>>>>>>>>>> 

Figure C12.11 

COEF 1-VAL LAG 0 

-0.02 -0.12 5 <<O 

-0.01 -0.07 B (0 

-0.06 -0 46 10 <<<<<<O 

-0.04 -0.31 14 <<C<O 

-0.24 -1.75 17 <<<<<<<<<<<<<<<<<<<<<<<<O 

CHI-SWARED+ = 21.94 FOR DF = 15 

Estimation and diagnostic-checking results for an alternative model. 
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The estimated acf and pacf in Figure C12.6 could also be interpreted as 
decaying, thus suggesting a mixed model for the nonseasonal part of the 
data. For example, we could try an ARIMA(l,l, lX0,l. l)12. Estimation 
produces unacceptably small r-values for 6, and 6, (both less than 1.6 in 
absolute value) so this alternative model is not worth pursuing further. 

Final comments. This case illustrates several important points: 

1. 

2. 

3. 

Focus on the very short lags (1,2, 3) and the first few seasonal lags in 
estimated acfs and pacfs. At the identification stage, do not be 
distracted by significant values at near-seasonal lags, fractional-sea- 
sonal lags, or at lags which imply uncommon models (e.g., lag 7 with 
monthly data). For example, consider the moderately significant 
coefficients in the acf in Figure C12.6 at lags 9-1 1 and 13. These are 
substantially reduced in the residual acfs in Figure C12.7 and C12.8 
without having to include coefficients in those lags. Likewise, the 
common procedure of seasonal differencing clears up the peculiar 
wave pattern in the acf in Figure C12.4. 
After a common model has been fitted to a series, a seasonal element 
may still appear at residual acf fractional-seasonal lags or at lags very 
near the seasonal lags. Such residual autocorrelations deserve atten- 
tion, but only after an otherwise satisfactory model has been found. 
The warning value for absolute r-values at these lags in the residual 
acf is the same as for seasonal lags (1.25). In the present case the 
residual acf r-value at lag 6 in Figure C12.7 is only 1.82; but d6 in 
Figure C12.9 has an absolute 1-value of 5.0. 
The chi-squared test for independence of the random shocks is a 
useful aid in diagnostic checking. Use of r-tests alone might lead us 
to incorrectly accept a model with a large number of residual 
autocorrelations that are only moderately significant. In the present 
case, the chi-squared statistic in Figure C12.7 forces us to identify 
another model, although none of the residual autocorrelations is 
significant at the 5% level. 



CASE 13. CIGAR CONS-ON 

A practical rule in Chapter 12 states that modeling the seasonal element 
first sometimes makes identification of the nonseasonal pattern easier. As 
seen in earlier cases this is not always so; sometimes we see both the 
seasonal and nonseasonal patterns quite clearly in the estimated acf and 
pacf. In this case we find that removing the seasonal pattern first is quite 
helpful. 

The data to be analyzed are plotted in Figure C13.1. They represent 
monthly cigar consumption (withdrawals from stock) for the years 
1969- 1976.* The mean of this series seems to fall over time, so nonseasonal 
differencing may be needed. 

There is some evidence that the variance of the series falls along with the 
mean, In particular, the variabdity of the data during 1969 is greater than 
the variability during 1975 and 1976. This contrast aside, the variance over 
the rest of the series is fairly uniform. Though we could try a logarithmic 
transformation we conclude (quite subjectively) that the evidence is not 
strong enough to warrant tlus step. More data may provide a better picture 
of any changes in variance. 

The series shows an obvious seasonal pattern with peak values in October 
and low values in December. With monthly data the length of seasonality is 
12; we pay special attention to estimated autocorrelations and partial 
autocorrelations at lags that are multiples of 12. 

'The data are taken from various issues of Busmess Srurisrrcs published by the US. Depart- 
ment of Commerce. 

Forecasting With Univariate Box- Jenkins Models CONCEPTS AND CASES 
Edited by ALAN PANKRATZ 

Copyright 0 1983 by John Wily & Sons. Inc 
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Figure C13.1 Cigar consumption, 1%9- 1976. 
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Figure C13.1 (Continued) 
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COEF 
0 72 
0 63 
0 57 
0 52 
0 63 
0 59 
0 57 
0 46 
0 45 
0 48 
0 54 
0 67 
0 47 
0 39 
0 33 
0 29 
0 39 
0 33 
0 31 
0 22 
0 19 
0 22 
0 27 

+ + + + + + + + + + + + + AUTOCORRELATIONS + + + + + + + + + + + + + 
+ FOR DATA SERIES: CIGAR CONSUMPTION + 
+ D I F F E R E N C I N C :  0 %AN = 448.052 + 
+ DATA C W N T  = 96 STD M V  = 97. 1571 + 

T-VAL LAC 0 
7. 06 1 c 
4 31 
3 35 
2 74 
3 05 
2 62 
2 37 
1 82 
1 71 
1 77 
1 93 
2 3 2  
1 54 
1 25 
1 04 
0 90 
1 22 
1 00 
0 95 
0 67 
0 57 
0 64 
I) 80 
1 09 

2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 

c 
c 

c 
c 

c 
c 
c 

c 
c 
c 
L 

c 
c 
c 
I: 
c 
c 
e 
L 
c 
c 
L 

c 0 37 
CHI-SOVARED* = 567 38 FOR DF = 24 

+ + + * + + - + + + + P A R T I A L  AUTOCORRELATIONS + + + + + + + + + + + 
COEF T-VAL L A 6  0 
0 72 7 06 1 c O>?>>> 3>>>>?:’>>:~>>> 
0 23 2 22 2 c o>:.>>> 3 
0 13 1 31 3 c O>?> 3 
0 06 0 59 4 c o>> 3 
0. 37 3 62 5 c o>>s>> 3 >>> 
0. 02 0 24 6 c o> 3 
0. 06 0. 60 7 c o>> 3 

-0 19 -1 85 8 c<-:<c<o 3 
0. 12 1 19 9 c o>>s 3 
0.04  0 .41  10 c o> I 
0 .  23 2. 27 11 c o>>>>>3 
0. 32 3. 14 12 c 0>>>>>3>? 

-0.40 -3 .91  13 ccc~c<<c~:<o 3 
-0. 17 -1 67 14 c c<<<o 3 
-0. 12 -1. 14 15 c <<<o 3 
-0. 03 -0.25 16 c <o 3 
0.02  0. 23 17 c o> 3 

-0.08 -0.80 18 c CCO 3 
0 .05  0. 54 19 c o> 1 

-0.03 -0.26 20 c CO 3 
0 .02  0. 17 21 c 0 3 

-0.07 -0.73 22 c cco 3 
0 .05  0. 52 23 C o> 3 
0. 11 1 12 24 c o>>> 3 

Figure C13.2 Estimated acf and pacf for the realization in Figure C13.1. 
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Identification. The estimated acf in Figure C13.2 indicates that nonsea- 
sonal differencing is required to induce a stationary mean. This acf falls to 
zero very slowly; not until lag 13 do we find the r-values falling below the 
relevant practical warning levels. 

After nonseasonal first differencing the data no longer trend downward 
(Figure C13.3); the relevant acf and pacf are displayed in Figure C13.4. The 
acf now cuts off to zero very sharply at lags 2 and 3, so further nonseasonal 
differencing is not needed. As often occurs, nonseasonal differencing clari- 
fies the seasonal pattern. The autocorrelations at lags 12 and 24 decay very 
slowly, so seasonal differencing is called for. [An MA(2),, is inappropriate 
for the seasonal part of the data since the pacf cuts off at lag 24. A seasonal 
MA process would decay at multiples of the seasonal lag in the estimated 
pacf.] 

Figure C13.5 shows the estimated acf and pacf with d = 1 and D = 1. 
We now have a fully stationary series with easily identifiable patterns. The 
spike at lag 1 in the acf followed by a cutoff to zero clearly suggests a 
nonseasonal MA(1). Likewise, the acf spike at lag 12 with a cutoff to zero at 
lag 24 calls for a seasonal MA(1)12. (we ignore the significant spike at lag 
11 at this stage.) Combining these two terms in a multiplicative model, we 
entertain an ARIMA(0, l,lXO, 1, 1)12: 

(1 - ~ ) ( i  - B'*)z ,  = (1 - 8 , , ~ ~ ~ ) ( 1  - e ,B)a ,  (~13.1)  

Estimation and diagnostic checking. The estimation results at the top of 
Figure C13.6 are satisfactory: both coefficients are statistically significant 
(with absolute r-values greater than 2.0) and both satisfy their respective 
invertibility requirements. 

Unfortunately, the residual acf is a disaster. There are large spikes at lags 
I ,  3, 4, 6, 7 and 13 and the chi-squared statistic is quite significant. Model 
(C13.1) is clearly not acceptable. 

Further identification. When a model is as unsatisfactory as (C13.1) it is 
wise to reconsider the estimated acf and pacf used to identify that model. In 
this instance we go back to Figure C13.5, which shows the acf and pacf that 
indicated the data were stationary after both nonseasonal and seasonal first 
differencing. The residual acf and pacf for model (C13.1) may also be 
helpful. Between these pairs of acfs and pacfs, we should be able to find 
clues to a better model. 

First, reconsider Figure C13.5. The acf is not very helpful in suggesting 
an alternative to (Cl3.1). The spike at lag 1 is quite significant, but none of 
the subsequent autocorrelations before lag 11 have r-statistics close to a 



+ + + + + + + + + + + + + AUTOCORRELATIONS + + + + + + + + + + + + + 
+ FOR DATA SERIES: CICAR CONSVr(PTIm + 
+ DIFFERENCINC: 1 PEAN = -2.31579 + 
+DATA COUNT = 95 STD M V  = 69.0459 + 

-0.33 -3. 25 1 C<<<<C<<<CCO 1 
-0.06 -0. SO 2 t cco 1 
-0.02 -0. 16 3 c co 1 
-0. 31 -2. 70 4 <<CC<<CC<~O 1 
0.26 2. 11 5 c O>>>>>>>l> 

-0.01 -0.08 6 c 0 1 
0. 15 1. 19 7 c O>>>>> 3 

-0. 19 -1.45 8 c <<<c<<o 1 
-0.07 -0. 54 9 I cco 3 
-0. 10 -0. 72 10 c ( ( (0  3 
-0.12 -0.93 11 E cc<<o 1 
0.44 4.74 12 t 0>',>>>>>3>>>>>>>>>>>>> 

-0.21 -1. 30 13 c c<<c<cco 1 
0.01 0.04 14 c 0 1 

-0 .07 -0.40 15 c cco 3 
-0.29 -1.76 16 L ccccc<<ccco 3 
0.32 1 . 8 5  17 c 0>>>>>>>>>>>3 

-0 .07 -0. 39 10 c cco 3 
0. 14 0 .00  19 c O>>>>> 1 

-0.12 -0.48 20 c <cc<o 3 
-0.12 -0. 67 21 c c<<co 1 
-0. 06 -0. 33 22 c cco 3 
-0. 10 -0. 55 23 c c<<o 3 

CDEF T-VAL LAC 0 

0. 52 2.07 24 c O>>>>>>>>>>>l>>>>> 
CHI-SQUARED* 5 153. 96 FOR W = 24 

-0 19 -1.83 2 
-0.12 -1 10 3 
-0 .44 - 4 . 2 5  4 
-0. 00 -0.  70 5 
-0.07 -0.72 4 
0. 15 1.46 7 

-0.20 -1.94 0 
-0. 1 1  - 1 . 0 5  9 
-0.32 -3. 10 10 
-0. 46 -4. 40 11 
0.32 3. 12 12 
0. 17 1.64 13 
0. 13 1.29 14 
0. 04 0. 37 15 

-0.03 -0.32 16 
0.09 0.04 17 

-0.04 -0.34 18 
0.02 0 .22  19 
-0.03 -0. 27 20 
0.03 0. 34 21 
0.01 0.04 22 

-0. 12 -1. 19 23 
0. 11 1 04 24 

+ + + + + + + + + + + PARTIAL AUTOCORRELATIONS + + + + + + + + + + + 

-0.33 -3.25 1 <~<cccccc<<<<<<c<o 3 
c<<<<<c<<<o 3 
c <c<c<co 3 

~<<~<<<<c<<<c<<~c~<c<co 3 

COEF T-VAL LAC 0 

c <c<co 3 
c ccc<o 3 
c O>>>?>>> 1 
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c <<c<<o 3 

<<<<<<e<;<<<<~<<O 1 
~ < C < C ~ ~ ~ < ' < < C <  c cc.:<<<c<<o 3 

t 0>>>>>>>>>3>>>>>> 
e O>>>>>>>> 3 
t O>>>>>?> 1 
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c O>>>> 3 
c ( ( 0  3 
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c 0>> I 
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c <i.:<<<o 3 
[: O>>>>> 3 

Figure C13.4 Estimated acf and pacf for the first differences in Figure C13.3. 
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+ + + + + + + + + + + + + AUTOCORRELATIONS + + + + + + + + + + + + + 
+ FOR DATA SERIES: ClCAR C O N S W T I O N  + 
+ D I F F E R E N C I N C :  12 1 PYAU = -.4819= + 
+ DATA COUNT = 83 STD DEU = 52. 5161 + - ~ ~- -~ _.__ 

COEF T-VAL LA6 0 

0. 03 0. 20 2 c O> 1 
-0.57 -5.20 1 <<<<<<C<<<<t<<<<<<<O 3 

0 16 1 16 3 
-0 17 -1 16 4 
0 00 0 00 5 
0 13 0 92 6 

-0 19 - 1  27 7 
0 11 0 74 8 
0 05 0 31 9 

-0 15 -1 00 10 
0 31 2 01 11 

-0 31 -1 95 12 
0 01 0 06 13 
0 12 0 71 14 
0 03 0 16 15 

-0 1b -0 96 1.5 
0 15 0 90 17 

-0 02 -0 10 18 
-0 07 -0.41 19 
0 14 0 81 20 

-0 10 -0 56 21 
-0 09 -0 52 22 

0 14 0 01 23 
-0 10 -0 59 24 

C H l  -SWARFD* = 

c o>>>>> 1 
c <<<<<<o 3 
c 0 3 
c O>>>> 3 
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c O>>>> 3 
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1 0>>>>>>>>>3 
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c O?>>> 3 
c O> 3 
c C<<<<O J 
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L ( 0  3 
c ( (0  3 
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75 55 FOR D F  = 24 

+ + + + + + + + + + + P A R T I A L  AUTOCORRELATIONS + + + + + + + + + + + 

-0 57 -5 20 1 <C<<<<~C<c<c :<<.:<<<o 3 
-0 44 -4 02 2 <<<<<<< C .:<<<<:: CO 3 
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0 27 2 48 11 C o>:,>>>>> I> 
0 05 0 42 12 c O?> 3 

-0 18 -1 65 13 c c<<<<<o 3 
-0 26 -2 39 14 <c<<<c<<<o 3 
0 07 0 67 15 t 0>> 3 

-0 02 -0 23 16 c ( 0  1 
-0 14 -1 31 17 E <<C<<O J 
0 03 0 24 16 c O> 3 

-0 01 -0 06 19 c 0 3 
0 10 0 91 20 E o>>> 3 
0 14 1 26 21 t 03- 3 5 >  3 

-0 12 -1  06 22 c <<<<o 3 
0 07 0 65 23 c O>> 3 
0 01 0 10 24 c 0 3 

Figure C13.5 Estimated acf and pacf for the differenced series ( d  = 1 and D = 1). 
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+ + + + + + + + + +ECDSTAT UNIVARIATE B-J RESULTS+ + + + + + + + + + 
+ FOR DATA SERIES: CIGAR CONSUMPTION + 

+ AVAILABLE: DATA * 83 BACKCASTS = 13 TOTAL = 96 + 
+ DXFFERENCINC: 12 1 DF - 81 + 

+ USED TO FIND SSR: DATA = 83 BACKCASTS = 13 TOTAL 96 + 
+ (LOST DUE TO PRESENCE OF AUTOREQRESSIVE TERMS: 0 )  + 

COEFFICIENT ESTIHATE STD ERROR T-VALUE 
THETA 1 0. 824 0. 058 14. 18 
THETA+ 12 0.849 0.090 9. 43 

ADJUSTED RMSE = 29. 2016 MEAN ABS X ERR = 5. 34 
CORRELATIONS 
1 2 

1 1.00 
2 -0.21 1.00 

++RESIDUAL ACF++ 

-0.26 -2. 40 1 c<ccc<<<c<<cco 3 
COEF T-VAL LAG 0 

0.01 0.12 2 c O> 3 
0.22 1.89 3 c o>>>>n>>>>> 3 

-0.22 -1.84 4 C<<<<<<<<<<<O 3 
0 .00  0. 03 5 c 0 3 
0.25 1. 98 6 c O>>>>>>>>>>>I> 

-0 .28 -2. 07 7 C<<<<<<<<<<<<<O 3 
0.08  0 57 8 c O>>>> 3 
0. 14 0. 99 9 c O>>>>>>> 3 

-0. 13 -0 89 10 c C<<<C<O 3 
0. 12 0. 04 11 c O>>>>>> 3 
0.05 0. 37 12 c O>>> 3 

-0.25 -1.74 13 c <<<<<::<<<;<<<o 3 
0. 14 0.95 14 c O>>>>>>> 3 
0.03 0. 23 15 c 0>> 2 

-0.20 -1.35 16 c <<<<<cc<<<o 3 
0.20 1.28 17 c O>>>>>,>>>> 3 
0.06 0. 40 18 c O>>> 3 

-0. 18 -1. 14 19 c c<<<<<<<co 3 
0. 13 0. 04 20 c O>>>>>>> 3 

CHI-SQUARED+ 5 56.44 FOR DF 18 
+RESIDUAL PACF+ 

-0.26 -2. 40 1 <<<C<<<<<<C<<O 3 
-0.06 -0. 55 2 c <<<O 3 

-0.12 -1.10 4 c <<i<<<o 3 
-0.10 -0.89 5 c <<<<<o 3 

-0. 11 -1. 03 7 c <<<<C<O 3 
-0.05 -0. 49 8 c <<<O 3 
0.10 0 .87  9 c o>>>>> 3 
0.07 0.67 10 c O>>>> 3 
0 .04  0.  35 11 c 0>> 3 
0.00 0 03 12 c 0 3 

COEF T-VAL LA6 0 

0.23 2.05 3 c 0>>>>>>>>>3> 

0.22 2. 02 6 c 0>>>>,>>>>3> 

Figure C13.6 Estimation and diagnostic-checking results for model (C13.1). 
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warning value. An MA(1) seems to be the only reasonable alternative for 
the nonseasonal part of the model based on this estimated acf. 

The pacf in Figure C13.5 could be interpreted as decaying, thus support- 
ing the idea of an MA model (or perhaps a mixed model) for the nonsea- 
sonal element. But it could also be interpreted as displaying two spikes 
followed by a cutoff to zero which suggests an AR(2). Is the acf consistent 
with an AR(2)? We would have to stretch our imaginations to see a 
decaying pattern in the acf. If it decays, it certainly decays quite rapidly-so 
rapidly that it cuts off to zero at lag 2. 

Now consider the residual acf and pacf in Figure C13.6. We could 
assume that (C13.1) is correct as far as it goes, but that it is incomplete. 
Then the residual acf and pacf for that model might tell us how it could be 
reformulated. In fact, this residual acf and pacf are confusing. The acf has a 
series of nondecaying residual autocorrelations at lags 1, 3, 4, 6, and 7, 
suggesting that additional differencing might be needed to induce a sta- 
tionary mean. However, the quick decline to zero in the acf in Figure C13.5 
is strong evidence that differencing beyond d = 1 and D = 1 is not re- 
quired. 

Because the residual autocorrelation at lag 1 in Figure C13.6 is signifi- 
cant despite the presence of a 6,  coefficient in the model, we can consider 
adding a coefficient. This brings us to an ARIMA(1, l,IXO, 1, 1)12 model. 
This possibility is reinforced by the spike at lag 1 followed by a cutoff to 
zero at lag 2 in the residual pacf. Unfortunately, it is difficult to see how 
adding a 9 ,  coefficient to (C13.1) could account for the residual autocorre- 
lations at lags 3,4, 6, and 7. Furthermore, the estimated acf in Figure C13.5 
does not decay from lag 1 as it should if an ARMA(1, 1) were appropriate 
for the differenced series; likewise, the residual acf in Figure C 13.6 does not 
decay as it should if the residuals of model (C13.1) follow an AR( 1) pattern 
with +, < 0. 

We have been stymied in our effort to find a reasonable alternative to 
(C13.1). Perhaps the best we can do is adopt a strategy of estimating the 
seasonal element first, then use the residual acf and pacf to help identify the 
nonseasonal part of the model. We estimate an ARIMA(0, l,O)(O, 1. 1),2 
which has only a seasonal MA term (after differencing): 

(1 - B)( 1 - B'2)P, = ( 1  - 0 , , B ' Z ) a ,  (C13.2) 

We expect h s  model to be incomplete since it contains no terms to account 
for the nonseasonal pattern. 

Further estimation and diagnostic checking. Figure C13.7 shows the 
results of estimating and checking (C13.2). Remember our strategy is to 
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remove the seasonal pattern so the residual acf and pacf give a better 
picture of the nonseasonal pattern. 

The residual acf in Figure C13.7 decays in a wavelike pattern. The decay 
is rather irregular, but the contrast with the acf in Figure C13.5 is marked. 
The earlier acf cuts off sharply to zero after lag 1, suggesting an MA( 1) for 
the nonseasonal part of the model. Now it appears that an AR or mixed 

+ + + + + + + + + +€COSTAT U N I V A R I A T E  B - J  RESULTS+ + + + + + + + + + 
+ FOR DATA S E R I E S .  CIGAR CONSUtlPTION + 
+ D I F F E R E N C I N G :  12 1 D F  = 02 + 
+ A V A I L A B L E :  DATA = 83 BACKCASTS = 12 TOTAL = 95 + 
+ USED TO F I N D  SSR: DATA = 83 BACKCASTS = 12 TOTAL = 95 + 
+ ( L O S T  DUE TO PRESENCE O F  AUTOREGRESSIVE TERP(S: 0 )  + 

C O E F F I C I E N T  E S T I M A T E  S T D  ERROR T-VALUE 
THETA+ 12 0.879 0.078 11.23 

ADJUSTED RMSE = 41 2423 MEAN ABS X ERR = 7.66 

-0 60 -5 46 
-0 51 -4 67 
-0 05 -0 49 
-0 09 -0 79 
-0 33 -3 00 

0 06 0 56 
0 00 0 03 

-0 10 -0 94 
-0 04 -0 41 
0 00 0 02 
0 03 0 31 
0 13 1 16 

Figure C13.7 

++RESIDUAL ACF++ 

-0.60 -5 46 1 .:':<.:..:<: <.:,:'<:<<[. :<,I<,: <(O 1 
COEF T-VAL L A C  0 

0 03 0 21 2 c 0, 3 
0 . 2 5  1 77 3 c o:.:.':':::\;> 3 
-0 26 -1 76 4 [<.:<:<<:.:< <.:o 3 
-0.01 -a 10 5 c 0 1 
0. 31 2 02 6 c o>:,;..;,>.:,;:>>] 

-0.34 -2 08 7 <: c <:.;.: z:.: .:< .:;o 1 
0 1 1  0 64 8 c o:.;':,:, 3 
0 12 0 73 9 c O>:>:i> 1 

-0 20 -1 14 10 c ..I.- . .;<<<CO ' ' 1 
0 12 0 6.5 11 c o>:,.;.> 3 
0 10 c 55 12 c O>>> 1 
-3 26 -1 49 13 [ ':.:.:<'.:<:<<o 3 
0. 18 1 02 14 c 02:.;.>>:;. 3 
0 06 0 31 15 c IJ> :s 1 

-0 25 -1 35 16 c .':<:<:<.:<.::<o 1 
0 20 1 06 17 c O>:>:::>>:>j 1 
0 05 3 26 18 c o:,:, 1 

-0.22 -1 14 19 c ' - - ' - . - -  .\*.\v-..o 1 
0 21 1.11 20 c O:.:>>;>>> 3 

CHI-SQUARED+ = 103.00 FOR D F  = 19 
+RESIDUAL PACF+ 

0 
,;\~>.:<<: , 7 . > , 1 ....~'..~(<[.:'r'::((.:D 1 

COEF 1 - V A L  L A G  
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e 
9 

10 
11 
12 

c O>i 
c 0 
t <<<o 
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Estimation and diagnostic-checking results for model (C 13.2). 
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structure is more appropriate. The residual pacf in Figure C13.7 is con- 
sistent with an AR(2): it has two spdces before cutting off to zero at lags 3 
and 4. The pacf spike at lag 5 is best ignored for now. Analysis of the 
residuals of (C13.2) leads to an ARIMA(2,1,0)(0, 1, 1),2: 

( I  - + , B  - +zB2)( 1 - B)(l - BI2)Z; = ( I  - 8 , , B ” ) a ,  (C13.3) 

The results for model ((33.3) appear in Figure C13.8. All estimated 
coefficients are statistically significant with absolute 1-values well in excess 

+ + + + + + + + + +ECDSTAT UNIVARIATE 8-J RESULTS+ + + + + + + + + + 
+ FOR DATA SERIES: CICAR CDNSWTION + 
+ DIFFERENCING: 12 1 DF - 8 0  + 
+ AVAILABLE: DATA ss 83 BACKCASTS = 417 TOTAL = 500 + 
+ USED TO FIND SSR: DATA = 83 BACKCASTS = 415 TOTAL 5 498 + 
+ (LOST DUE TO PRESENCE OF AUTORECRESSIVE TERMS: 2) + 

COEFFICIENT ESTIMATE STD ERROR T-VALVE 
PHI 1 -0.843 0.088 -9. 56 
PHI 2 -0.495 0.088 -5. 63 
THETA* 12 0. 901 0. 064 14. 14 

ADJUSTED RMSE = 28. 2222 MEAN ABS X ERR = 4 . 9 1  
CORRELATIONS 
1 2 3 

i 1.00 
2 0.58 1.00 
3 0. 12 0.03 1.00 

++RESIDUAL ACF*+ 

-0. 16 -1.40 1 C <<<<.‘,<<<.c<c<<<<<o 1 
-0. 03 -0. 29 2 C <<<O 1 
-0. 19 -1. 68 3 C <<<<<<<<<<<<<<<<<<<O 1 
-0.07 -0. 57 4 C <C<<<C<O J 
-0.02 -0.20 5 c <<O 1 
0. 19 1.61 6 C O>>?>~~>>=.>>>>>>>>)> 1 

-0. 19 -1. 57 7 C <C<<<<<<<<<(~~<<<<<<O 1 
0.02 0. 16 8 O>> 
0 . 0 8  0.62 9 O>>>>>>>> 
0.03 0 26 10 O>>> 
0 06 0. 46 11 O>>>>>> 
0.00 0 00 12 0 

-0.21 -1. 65 13 <iC<<C<<<C(<<.~.~C(C<~:<O 
0.05 0. 40 14 O>>j>> 
0 . 0 1 .  0.09 15 O> 

0. 15 1. 17 17 O>>>>?>>>>>>>>>> 
0. 15 1.09 18 02>*>.>>>>>>>?>>>> 
-0. 10 -0.76 19 <c~:<<<<<i<o 
0.00 -0.02 20 ’ 0  

COEF T-VAL LAG 0 

-0.09 -0. 68 16 <<<:C<:<<f<O 

CHI-SQUARED* zs 24. 73 FOR DF = 17 

Figure C13.8 Estimation and diagnostic-checking results for model (C13.3). 
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of 2.0. The model is invertible since bI2 satisfies the condition 10,,1 .c 1. It 
is also stationary because 4, and & meet the necessary conditions: 

1421 = 0.495 < 1 

62 + 4, = -0.495 - 0.843 = - 1.338 < 1 

4, - 4, = -0.495 + 0.843 = 0.348 < 1 

The residual acf indicates that the residuals of this model might satisfy the 
independence assumption. The t-values of the autocorrelations at lags 1, 3. 
6, and 7 are around the warning level of 1.6, and the t-value at 13 exceeds 
the near-seasonal warning level of 1.25. Nevertheless, this residual acf is far 
better than the ones in Figures C13.6 and C13.7. The chi-squared statistic is 
insignificant at the 10% level, but just barely. We will experiment with some 
other models, but we might end up using (C13.3). 

How could we improve on the preceding results? A sensible strategy is to 
try adding an MA coefficient at each lag where the residual autocorrelation 
r-value approaches or exceeds the relevant warning level. By all means we 
should adhere to the principle of parsimony by trying one additional MA 
coefficient at a time. We should also favor those lags suggested by experi- 
ence and common sense. Therefore, lag 1, with a residual acf absolute 
t-value greater than the practical warning level of 1.25, is a preferred choice. 
Second would come lags 3, 6, and 13 because they are either short lags or 
possibly related to the seasonal pattern. Finally, we might consider lag 7. 

To make a long story short, 8, is significant but it reduces 62 to 
insignificance and the residual acf is unacceptable. e6 is insignificant ( r  = 
- 1.15). el, is significant ( t  = 2.19), but the residual acf is improved only 
moderately. However, as shown in Figure C13.9, adding an MA term at lag 
3 produces excellent results. Our model is 

(1 - + , B  - (a,B2)(1 - B)(1 - B " ) i ,  = (1 - 0,,B'*)(l - 6 , B 3 ) a ,  

(C 13.4) 

Not only is b3 significant, the residual acf clears up beautifully. None of 
its r-values exceeds the relevant warning levels and the ch-squared statistic 
is quite insignificant. The residual plot in Figure C13.10 causes no prob- 
lems. 

The reader should check to see that all stationarity and invertibility 
conditions for ths  model are met. In doing so it may help to remember that, 
with a multiplicative model, the invertibility condition applies to Q,, and e3 
separately. 
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+ + + + + + + + + +ECOSTAT UNIVARIATE B-J RESULTS+ + + + + + + + + + 
+ FOR DATA SERIES: CICAR CONSUMPTION + 
+ DIFFERENCING: 12 1 DF = 79 + 
+ AVAILABLE: DATA = 83 BACKCASTS 5 417 TOTAL = 500 + 
+ USED TO FIND SSR: DATA = 83 BACKCASTS = 415 TOTAL = 498 + 
+ (LOST DUE TO PRESENCE OF AUTORECRESSIVE TERM. 2 )  + 

COEFFICIENT ESTIMATE STD ERROR T-VALUE 
PHI 1 -1. 017 0. 059 -17. 20 
PHI 2 -0 837 0. 074 -11. 36 
THETA 3 0. 514 0.112 4 59 
THETA& 12 0 890 0.073 12. 24 

ADJUSTED RMSE 5 26 4654 MEAN ABS X ERR = 4.64 
CORRELATIONS 
1 2 3 4 

1 1.00 
2 0. 57 1 30 
3 -0.24 -0 63 1.00 
4 0. 06 -0 04 4 - 0 1  1. 00 

++RESIDUAL ACF++ 
COEF T-VAL LAG 0 

-0. 05 4. 46 1 C <<<<<O 3 
0.06  0. 55 2 C O > i > > > . >  3 

-0.04 -0.39 3 C <<<CO 3 
0 .02  0 . 2 0  4 L o>> 3 
-0.03 - 0 . 2 5  5 C <r:i0 3 
0.10 0.a9 6 c O>i>>>:J>>>> 3 

-0.07 -0.63 7 C ic<<<<<o 1 
0 0 0  0 0 1  8 c 0 I 
0.03 0 25 9 C O>>> 3 
0 .11  0.93 10 c O>>>>Y>>>>>> 3 
0 03 0. 23 1 1  t O>>> 3 

-0. 04 -0. 39 12 L r,<<<O 3 
-0 13 -1. 10 13 C <<<<<<<<<<<<<o 3 
0. 03 0. 26 14 C O > i >  3 
0 .01 0.11 15 c O> 3 

-0. 06 -0. 53 16 C < < < < < < 0 3 
0. 11 0. 95 17 C 0>>>>:.>>>>>> 3 
0. 13 1.08 18 C O>>>>>>>,>>>>> 3 

-0. 09 -0. 77 19 C <c<cc*:<<<o 3 
-0. 03 -0.26 20 L <<<O 3 

CHI-SOUARED* = 9.80 FOR DF = 16 

Figure C13.9 Estimation and diagnostic-checking results for model (C13.4). 

Final comments. These cigar-consumption data are unusually challeng- 
ing to model. It is instructive to repeat several practical principles that 
helped us find a satisfactory model: 

1. When an initial model is grossly inadequate, return to the original acf 
and pacf with a fresh eye. 

2. Model the seasonal element first to get a clearer picture of the 
nonseasonal pattern in the residual acf and pacf than is available in 
the initial acf and pacf. 
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3. Add coefficients to an existing model one at a time. That is, be 
guided throughout by the principle of parsimony. 

4. Give preference to commonly occurring or common-sense models. 
Coefficients at lags 1, 2, and 3, seasonal lags, and near-seasonal lags 
(13 in this case) or fractional-seasonal lags (3 and 6 in this case) 
should receive the closest attention. 

5. Ignore all but the short lags and the first few seasonal lags early in 
the identification stage. For example, in this case the significant 
autocorrelation at lag 11 in Figure C13.5 effectively disappears in all 
subsequent residual acf s without any coefficients being estimated at 
that lag. 



CASE 14. COLLEGE ENROLLMENT 

College enrollment is typically larger in the fall semester than in the spring 
semester. New students usually start in the fall but some withdraw between 
semesters because of academic or social problems. Therefore, we expect that 
new-student enrollment ulrlll have a seasonal pattern with s = 2. 

The data in Figure C14.1 confirm th is  expectation. They show new-stu- 
dent enrollment at a college starting with the fall semester, 1954. Visual 
analysis confirms that the second half of each year (the fall semester) 
invariably has higher enrollment than the subsequent spring semester. We 
might think of these observations as having been drawn from two different 
probability distributions, one (for fall semesters) with a larger mean and the 
other (for spring semesters) with a smaller mean. If the mean of this series 
changes each period, but such that observations separated by two time 
periods have a similar overall level, we expect that differencing by length 
two is required to induce a stationary mean. 

The series appears to have a roughly constant variance. Aside from 
seasonal variation, its overall level does not change much. Therefore, 
transformations other than seasonal differencing do not seem necessary. 

Identification. Figure C14.2 provides evidence that the original series 
has a nonstationary mean: the estimated acf drops toward zero quite slowly. 
The t-values do not fall well below the 1.6 warning level until lag 9. 
Furthermore, the warning level of 1.25 is relevant at all lags that are 
multiples of 2 because these are seasonal lags; the 1-values do not pierce this 
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Figure C14.1 College-enrollment realization. 
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level until lag 12. With a nonstationary series the estimated pacf provides no 
additional useful information. 

The seasonal autocorrelations (at lags s = 2, 2s = 4, 3s = 6,. . . ) do not 
start their slow decay from a high level. As pointed out in Chapter 7. 
estimated autocorrelations need not be large to indicate a nonstationary 
mean. It is their slow decay that indicates nonstationarity. 

If we were not alert to the strong seasonal pattern in these data, we might 
conclude that nonseasonal differencing is required because of the slowly 
decaying acf. However, visual analysis of the data and our knowledge of 
how seasonality of length two can affect an estimated acf lead us to 
conclude that seasonal differencing is needed. 

As a point of information, Figure C14.3 shows the estimated acf after 
nonseasonal first differencing (d = 1). Its pattern is roughly the same as 

+ + + + + + + + + + + + + AUTOCORRELATIONS + + + + + + + + + + + + + 

+ DIFFERENCING:  0 MEAN E 691.704 + 
+ FOR DATA SERIES:  WRM-I-tlENT + 

+ DATA COUNT 54 STD MV - si. 8483 + 
COEF 
-0.44 -3.21 
0. 55 3. 44 
-0.60 -3.14 
0. 51 2. 27 
-0.54 -2.20 
0. 46 1. 73 
-0. 48 -1. 70 
0. 47 1. 59 
-0.38 -1.22 
0. 44 1. 40 

-0. 35 -1. 06 
0 35 1-04 
-0. 46 

0 .  29 
CHI- 

+ + +  
COEF 
-0 44 
0 45 
-0. 42 
0. 19 
-0. 14 
-0. 04 
0. 01 
0. 02 
0. 09 
0. 04 
0. 06 
-0. 03 
-0.23 
-0.01 

T-VAL LAC 
1 
2 
3 
4 
5 
6 
7 
8 
9 
0 
1 
2 

-1.36 13 
0 81 14 

-SQUARED* = 

+ + + + + . I  

1-VAL LAC 
-3 21 1 
3 27 2 
-3 1 1  3 
1 40 4 

-1 05 5 
-0 26 6 
0 05 7 
0 16 0 
0 64 9 

0 44 I1 
-0 23 12 
-1 b0 13 
-0 00 14 

o 28 10 

0 
cccc<t<C<cccc<cO 3 

c 0>>>>>>>>>3>>>>>>>> 
<<ccc<<<cccccc<ccc<co 3 

c 0>>>>>>>>>>>>>3>>> 
<<c<<ccc<cccc<c<<co 3 
c O>>>>>>>>>>>>>>> 3 
c <<ccccccc<cccc<<o 3 

c o>>>>>>>>>>>>>>>> 3 
c cc~c<<<<<c<c<o 3 

c O>>>>>>>>>>>>>>> 3 
c cccc<<c<cccco 3 
c O>>>>,>>>>>>> I 
c <cccccc<<<cc<cco 3 

c O>>>>>>>>>> 3 
188. 23 FOR DF = 14 

. + + PARTIAL AUTOCORRELATIONS + + + + + + + + + + + 
0 

c<cc<<c<c<<<<<<c<<<cc<o 3 
c O>>j)>j>>>)>>>l>>>>~>>> 

<<\I<<<<c<<<c<<<<<c<c<o 3 
c o>>>>>>>>>> 3 
[: c<c<ccco 3 
c <<0 3 
c 0 3 
c O> 3 
t O>>i> I 
c O>> 3 
c O>>> 3 
t < i O  3 
c c<<<<c<<<<<o 3 
c ( 0  3 

Figure C14.2 Estimated acf and pacf for the data in Figure C14.1. 
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that of the original acf. Most importantly, it does not drop rapidly to zero. 
A novice analyst, unfamiliar with the effects of nonstationary seasonal 
variation, might proceed with even further nonseasonal differencing by 
setting d = 2; this will not solve the fundamental problem. Differencing 
once (D = 1) by the seasonal length (s = 2) is needed: we must calculate 
the values w, = L, - z,-,. 

The acf after differencing once by length two (Figure C14.4) suggests the 
data now have a stationary mean: all the r-values after lag 3 are quite small. 
The highly significant spike at lag 2 indicates there is still a seasonal pattern 
in the data. This pattern appears to be of the MA variety since the acf cuts 
off to zero at lags 4. 6. 8, and 12. (Remember that lags s, 2s, 3s,. . . are the 
important ones when we want to identify the seasonal pattern. With s = 2, 
we must focus on lags 2, 4. 6,. . . .) The decay (rather than a cutoff) to zero, 
on the negative side, at lags 2, 4, and 6 in the pacf is consistent with an 
MA( l ) ,  model for the seasonal part of the data. 

The strong spike at lag 2 in the acf could influence the values of the 
adjacent autocorrelations at lags 1 and 3. Recall from Chapter 3 that 
estimated autocorrelation coefficients can be correlated (positively or nega- 
tively) with each other. Thus it is difficult in this case to identify the 
nonseasonal pattern. The seasonal pattern, in the form of a spike at lag 2, 
intrudes itself into the middle of the nonseasonal (short-lag) pattern. It is 
wise to estimate a purely seasonal model first, letting the residual acf and 
pacf guide us in identifying the nonseasonal pattern. We tentatively enter- 
tain an ARIMA(O,O, 0)(0,1, l), realizing that it could be incomplete since it 

+ + + + + + + + + + + + + AUTOCORRELATIONS + + + + + + + + + + + + + 
+ FOR DATA SERIES ENROLLMENT + 
+ DIFFERENCING 1 MEAN = 188679 + 
+ DATA COUNT = 53 STD DEV = 88.6911 + 

0 COEF T-VAL LA6 
-0 85 -6 16 1 .\,..<<<<<%< :i<<.;.;c <c<c<o 
0 75 3 51 2 c 0>>;>>>>>>3>>>>>>>>> 
-0 79 -3 0 5  3 ;<.:e ~c':<c<~.'< :<c'cc'<c<o 3 
0 75 2 48 4 c 0 > > : ~ > ~ > > > > > > > > ~ ~ 3 ~ > >  

-0 71 -2 13 5 <:cc :.c~cc<:c<cc<<<<o 3 
0 68 1 87 6 c O>?>>>>> >>>>>>>>>>I 

-0 66 - 1  70 7 c <<ccc<<<c~:ccc<<<o 3 
0 63 1 55 8 c o>>;>>>>>>>>>>>>> 3 

-0 58 -1 37 9 c <<.:.:<<<.:<<<<<<<0 3 
0 56 1 28 10 C 0>>>>>>>>>>>>:> 3 

-0 52 -1  15 11 C <<.:<<<.:c<c<<<o 3 
0 53 1 14 12 C (I>>;>>>>>>>:'>> 3 

-0 55 - 1  15 13 C .:<<<c<<<<c<c<<o 3 
0 50 1 03 14 I O>>>>>>>i,>>>> 3 

3 ,. , 

CHI-SGUARFD+ 377 53 FOR DF = 14 

Figure 434.3 Estimated acf for the first differences ( d  - 1) of the data in Figure 
c14.1. 
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+ + + + + + + + + + + + + AIJTOCORRELATIONS + + + + + + + + + + + + + 
+ FOR DATA SERIES: ENROLLMENT + 
+ DIFFERENCIN6: 2 WEAN = 3.71154 + 
+ DATA COUNT = 52 STD D€V = 46.49 + 
C M F  
0. 32 

-0. 42 
-0. 36 
-0. 11 
-0.01 
-0. 04 
-0. 03 
0. 10 

1-VAL LAC 
2.30 1 

-2.75 2 
-2.08 3 
-0 .57  4 
-0.05 5 
-0 .24  6 
-0. 14 7 
0. 52 8 

0 
c 0>>3>>>>5>>>>>3>> 

<~<<<CC<<<<<<~<<<<<<<O 3 
C<<C<<i<<<<<<<<<<<O 1 
c <<<<<o 3 
c 0 3 
c <<o 3 
E (0  3 
c O>>>>> 3 

0. 15 0.81 9 c O>>>>>>>> 3 
0. 15 0.81 10 c O>>>>>>>> 3 
0. 14 0. 70 11 c O>>>;r>>> 3 

-0.07 -0.37 12 c <<<<o 3 
-0.21 -1.08 13 c <<<<c<c<<<<o 3 

CHI-SQUARED* 32.29 FOR DF a 13 

+ + + + + + + + + + + PARTIAL AUTOCORRELATIONS + + + + + + + + + + + 
COEF T-VAL LA6 0 
0 .32  2.30 1 c O>>Y>>>>>>I> 

-0.58 -4 .18  2 <<<<cc<<< t <ccc<<<<co 3 
0.06 0 . 4 4  3 c O>> 1 

-0.32 -2.27 4 <C<<~<<<<<<O 3 
-0.08 -0.54 5 c <<<O 1 
-0.2s -2.08 6 c<<ii<i<<co 3 
-0.09 -0. 62 7 c <<<o 3 
-0.10 -0.75 8 c <<<O 3 
-0.03 -0.21 9 c (0  I 

1 0. 13 0.96 10 c .J4> 

0. 17 1.26 11 c o>>:.>>> 3 
-0.01 -0.10 12 c D 3 
0. 16 1. 14 13 c o>>>>> 3 

Figure C14.4 Estimated acf and pacf for the first seasonal differences (D = 1) of 
the college-enrollment data. 

o>-. -. 

has no nonseasonal element: 

( 1  - P ) f ,  = (1 - eZB2)u, (C14.1) 

Estimation and diagnostic checking. In Figure C14.5 we see that e2 is 
statistically significant so we keep it in the model. Our major concern is to 
identify the nonseasonal pattern using the residual acf and pacf. 

The most striking feature of the residual acf is the significant spike at lag 
1 with a cutoff to zero at lag 2. This calls for the addition of a 6,  coefficient 
to (C14.1). The acf spike at lag 3 also has an absolute r-value greater than 
the residual acf short-lag warning level of 1.25, but the principle of 
parsimony dictates adding one coefficient at a time. 

Adding an MA term at lag 1 could reduce the residual autocorrelation at 
lag 3 to insignificance. In a multiplicative model, there are implicit coeffi- 
cients at lags which are sums of the lags of the multiplied coefficients. In the 
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+ + + + + + + + + +ECOSTAT UNIVARIATE B-J RESULTS+ + + + + + + + + + 
+ FOR DATA SERIES: ENROLLMENT + 
+ DIFFERENCING: 2 DF = 51 + 
+ AVAILABLE: DATA = 52 BACKCASTS = 2 TOTAL = 54 + 
+ USED TO F I N D  SSR: DATA = 52 BACKCASTS = 2 TOTAL = 54 + 
+ (LOST DUE TO PRESENCE OF AUTOREGRESSIVE TERMS: 0 )  + 

COEFF I C I ENT EST I MATE STD ERROR T-VALVE 
THETA* 2 0.945 0. 060 15.73 

ADJUSTED RMSE = 33. 9611 MEAN AES X ERR = 4. 1 1  

++RESIDUAL ACF++ 
COEF T-VAL LAG 0 
0. 36 2 63 1 c O>>>>>>>>>>>Y> I>>>> 
o 09 o 5a ~1 c O>>>>> 3 

- 0 . 2 5  -1.60 3 c <‘:<c<~:c<~cc<<o 3 
-0. 14 -0 87 4 c <<<c<c<o 3 
-0. 21 -1. 28 5 c <cc<c<c<<cco 3 
-0. 12 -0.69 6 c .:<:c<cco 3 
-0.09 -0 4V 7 c cccco 3 
0. 1 1  0.  63 8 c O>>>>> 3 
0. 13 0 76 9 c O>>>>?>> 3 
0 16 0 90 10 c O>>i>>>>> 3 
0. 12 0. 68 1 1  c O>>>>>> 3 
-0.04 -0. 21 12 c CCO 3 
-0.20 -1.07 13 c <<...:‘:.:<<<co 3 

+RESIDUAL PACF+ 
CHI-SQUARED+ = 2 4 . 1 8  FOR DF = 12 

COEF 1-VAL LAC 0 
0. 36 2. 63 1 c 0>>>>>>>>>>>>>3>>>> 

-0 .05  -0.35 2 c cco 3 
-0.31 -2.23 3 c c c~<~cccr;’:ccc<c<o 3 
0.07 0 51 4 c O>>>> 3 
-0. 17 -1.26 5 c <.:.<<<<<cco 3 
-0.08 -0.60 6 c c<c<o 3 
-0.01 -0.08 7 c <O 3 

0 .09  0 63 8 c O>>>> 3 
0 . 0 2  0.16 9 c O> 3 
0.04 0. 31 10 c 0>> 3 
0.10 0.74 1 1  c O>>>>> 3 

-0. 14 -1.02 12 c <<<<<cco 3 
-0. 12 -0.89 13 c c<<cc<o 3 

Figure C14.5 Estimation and diagnostic-checking results for model (Cl4.1). 

present case, including 8, and €12 in a multiplicative model creates an 
implicit coefficient at lag 3. This may be seen as follows. In backshift form 
the model we are entertaining is 

( 1  - B ~ ) z ,  = (1 - 8 , ~ ~ ) ( 1  - e , B ) a ,  (C14.2) 

Expanding the RHS and writing it in common algebraic form (using the 
definitions of operator B )  gives 
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This shows that (C14.2) contains an implicit term at iag 3 with the 
coefficient constrained to be 6,8,. 

Aside from the implicit terms in multiplicative models, adding one 
appropriate coefficient can improve the overall fit sufficiently to reduce the 
sizes of residual autocorrelations at many different lags. (This is illustrated 
in a striking way in Case 13 where adding 6, clears up the residual acf 

+ + + + + + + + + +ECOSTAT U N I V A R I A T E  B-J RESULTS+ + + + + + + + + + 
+ FOR DATA SERIES: ENROLLPENT + 
+ DIFFERENCING:  2 DF = 5 0  + 
+ AVAILABLE: DATA = 52 BACKCASTS = 3 TOTAL = 55 + 
+ vsu) TO FIND SSR: DATA = 52 BACKCASTS = 3 TOTAL = 55 + 
+ (LOST DUE TO PRESENCE OF AUTQRECRESSIVE T E R I S :  0 )  + 

C W F L C I W T  E S T I M A T E  STD ERROR T-VALUE 
THETA 1 -0 454 0. 144 -3. 15 
THETA+ 2 0.677 0 .  126 5. 39 

ADJUSTED RWSE = 33. 5676 MEW ABS X ERR = 3.89 
CORRELATIONS 
1 2 

1 1.00 
2 0. 50 1. 00 

++RESIDUAL ACF++ 
COEF T-VAL LAG 0 
0. 03 0. 20 1 c O> 3 
0. 01 0. 11 2 

-0.26 -1.88 3 
-0.07 -0.45 4 
-0.13 -0.85 5 
-0.02 -0. 14 6 
-0.06 -0.39 7 
0. 15 1.03 0 
0. 12 0. 80 9 
0. 14 0.91 10 
0.12 0 . 7 4  11 
0.00 0 .00  12 

-0. 18 -1. 14 13 
CHI-SQUARED* = 

+RESIDUAL PACF+ 

L O> 3 
C<<<<<<<<<<<<<O 3 
c <<<O 3 
c <<<<<<O 3 

c (0  3 
c ( ( (0  3 
c O>>>i;r>>> 3 
c O>>>>>> 3 
c O>>>S>i> 3 
c O>>>>>> 3 
c 0 3 
c <<<<<<<<<o 3 

12. 58 FOR DF = 11 

COEF T-VAL LAC 0 
0. 03 0. 20 1 c O> 3 
0.01 0 10 2 c O> 3 

-0.26 -1.89 3 C<<C<<<<<<<<<<O 3 
-0.06 -0. 40 4 c <<<O 3 
-0. 12 -0.88 5 c <<<<<<O 3 
-0. 09 -0.66 6 E <<<<<O 3 
-0. 10 -0.71 7 c <:<<<<O 3 
0. 09 0.  68 B c o>si>> 3 
0.09 0.62 9 c O>>>> 3 
0.09 0 .68  10 c O>>>>> 3 
0. 19 1.37 11 c O>>>>Y>>>> 3 
0 .08  0. 56 12 c O>>>> 3 

-0. 09 -0.65 13 c <<<<<O 3 

Figure Ct4.6 Estimation and diagnostic-checking results for model (C14.2). 
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dramatically.) Thus we modify (C14.1) by adding one MA coefficient at 
lag 1. 

Further results. Model (C14.2) gives good results (see Figure C14.6). 
Each estimated coefficient is significant and each satisfies its respective 
invertibihy condition. The former residual acf spike at lag 1 (Figure C14.5) 
has effectively disappeared, and the ch-squared statistic has been cut in 
half. 

There remains a residual acf spike at lag 3 with an absolute r-value 
greater than 1.25. Adding an MA term at lag 3 is appropriate. We choose an 
MA term over an AR term since the residual acf cuts off to zero after lag 3 
rather than decaying. 

Using the standard multiplicative form, our ARIMA(O,O,3)(0,1, 1)2 
model appears in backshift form as: 

(1 - B ~ ) z ' ,  = (1  - 8 , ~ ~ ) ( 1  - e , B  - ~ , B ' ) u ,  (ci4.3) 

+ + + + + + + + + +ECOSTAT U N I V A R I A T E  8-J RESULTS+ + + + + + + + + + 
+ FOR DATA S E R I E S :  ENROLLMENT + 
+ D I FFERENC I NC : 2 DF = 49 + 
+ AVAILABLE:  D4TA = 52 BACKCASTS = 5 TOTAL = 57 + 
+ USED TO FIN5 SSR: DATA = 52 BACKCASTS = 5 TOTAL = 57 + 
+ ( L O S T  DUE TO PRESENCE OF AUTOREGRESSIVE TERMS: 0) + 

C O E F F I C I E N T  E S T I M A T E  STD ERROR T-VALUE 
THETA 1 -0 434 0. 126 -3 .45  
THETA 3 0. 255 0. 125 2. 05 
THETA* 2 0. 799 0. 092 8.  64 

ADJUSTED RMSE = 32. 2218 MEAN ABS Z ERR = 3. 74 
CORRELATIONS 
1 2 3 

1 1 0 0  
2 -0 06 1 00 
3 0. 19 0 13 1 00 

++RESIDUAL ACF++ 
CDEF 1-VAL LAG 0 
0. 00 0 .03  1 0 
0 09 0 67 2 O>.:>>:>>:>>>> 
-0 05 -0 39 3 <C<<<O 
-0 14 -0 97 4 <<<<<c'1~;<cc<<co 
-0 10 -0 73 5 <<.:<.:<<<t:<o 
-0. 01 -0. G6 6 <O 
-0 12 -0 84 7 iii<i<<<<<<co 
0 17 1 17 8 o>>>>>>>>>>>>;.>>>> 
0 .  11 0 71 9 O>>>>>>>>>>>, 
0 .07  0 4 5  10 O>>>>>>> 
0 15 0 .97  11 O>>>>>>>:>>>S>>>> 
-0 01 -0. 06 12 (0  
-0. 18 -1. 17 13 iCC<<<<I<<.~CC<~<C<O 

CHI-SQUARE5* = 10. 10 FOR 5F = 10 

Figure C14.7 Estimation and diagnostic-checking results for model (C14.3). 
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This form gives a complicated coefficient at lag 3: it is a combination of the 
explicit coefficient 0, and the implicit coefficient 8,0,. This can be seen by 
expanding the RHS of (C14.3) and expressing it in common algebraic form: 

I t  may be preferable to estimate 8, freely by considering this additive 
model: 

( 1  - P)r-, = ( I  - e,B - e , ~ *  - 83B3)Q,  (C14.4) 

See Chapter 11  for a discussion of additive models. There is no u priori 
reason to choose (C14.3) or (C14.4). If both produce acceptable results we 
may simply choose the one giving the best fit. 

A comparison of the estimation and diagnostic-checking results in Fig- 
ures C14.7 and C14.8 shows that model (C14.4) is slightly superior: its 

+ + + + + + + + + +€COSTAT UNIVARIATE B-J RESULTS+ + + + + + + + + + 
+ FW DATA SERIES: ENROLLKNT + 
+ DIFFERENCING: 2 DF = 49 + 
+ AVAILABLE: DATA = 52 BACKCASTS = 3 TOTAL = 55 + 
+ USED TO FIND SSR: DATA = 52 BACKCASTS = 3 TOTAL 55 + 
+ (LOST DUE TO PRESENCE OF AUTDRECRESSIVE TERUS: 0 )  + 

COEFFICIENT ESTIMATE STD ERROR T-VALUE 
THETA 1 -0. 412 0 .121 -3. 40 
THETA 2 0.812 0. 006 9.  41 
THETA 3 0. 520 0. 124 4. 21 

ADJUSTED RHSE = 31.4406 HEAN ABS il ERR = 3. 69 
CORRELATIONS 
1 a 3 

1 1 .00  
2 0. 13 1 00 
3 -0. 70 0. 14 1 .00  

++RESIDUAL ACF++ 
CLEF T-VAL LAC 0 
0 .01  0 11 1 O> 
0.04 0 .44  2 O>>>>>> 

-0. 15 -1.07 3 <<<<<<<<<<<<<<a 
-0.15 -1.06 4 <<<<<<<<<<<<<<a 
-0. 04 -0 27 5 <<<<O 
-0. 14 -0. 94 6 <<<:<<<*<<<<<<<o 
-0.02 -0. 16 7 <<o 
0.06 0 .41  0 O>>>>>> 
0. 12 0.76 9 O>>?>>>>>>>>> 
0 .08  0 . 5 1  10 0>:,>>>>>> 
0 .08  0 53 11 O>>>>>>>> 
0.02 0 . 1 0  12 O>> 

-0.21 -1. 40 13 . . . . . . . . . . . . . . . . . . . . . . .  
CHI-SQUARED+ = 9. 36 FOR DF = 10 

Figure C14.8 Estimation and diagnostic-checking results for model (C14.4). 
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Figure (34.9 Residuals from model (C14.4). 
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Table C14.1 Forecasts from &el C14.4 

Future Percent 
Forecast 80% Confidence Limits Observed Forecast 

Time Values Lower Upper Values Errors 

81 2 766.5591 726.3 15 1 806.803 1 n.a. 
82 1 640.5447 597.0222 684.0672 n.a. n.a. 

2 749.8210 705.6451 793.9969 n.a. n.a. 
83 1 640.5447 596.1527 684.9367 n.a. n.a. 

“ a a .  = not available. 

RMSE and chi-squared statistic are both smaller. Nevertheless, both models 
are acceptable and either one could be used. 

The residual plot for ((34.4) in Figure C14.9 does not point to any 
problems. The forecasts from (C14.4) in Table C14.1 show that it mimics 
the strong seasonal pattern in the data quite well. 



CASE 15. 

Box and Jenkins [ 11 suggest that about 50 observations are required to build 
an ARIMA model. However, Jenkins [34, p. 641 presents an example of a 
(multivariate) ARIMA model based on only 14 observations. The key is not 
necessarily the absolute number of observations but rather the amount of 
“statistical noise” in the data. If the noise factor (the variance of the 
random shocks) is small, it may be possible to extract enough information 
from relatively few observations to construct a useful ARIUA model. 

In this case we build an ARIMA model using only 42 observations. Our 
purpose is not to contradict Box and Jenkins’ guideline regarding the 
minimum number of observations. In fact, it should be emphasized that an 
analyst should actively consider alternatives to an ARIMA model when less 
than 50 observations are available. Nevertheless, we show in this case that it 
is possible to develop an acceptable ARIMA model even when the number 
of observations seems barely adequate. 

In Chapter 7 we discuss the idea of a deterministic trend. In this case 
study we illustrate how a model with a deterministic trend element can 
sometimes provide a useful representation of a data series. 

The data, shown in Figure C15.1,* represent quarterly U.S. exports to the 
European Economic Community (EEC) from the first quarter of 1958 
through the second quarter of 1968. The upward trend of the data suggests 
that the mean is not stationary; nonseasonal differencing may therefore be 
required. 

‘These data are found in Table 6. p. 89, of U.S.  Exporis and Imports. published by the U.S. 
Census Bureau. 
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Figure C15.1 U.S. exports to the European Economic Community (FEC). 
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There also appears to be a seasonal pattern in the data so we expect to 
see significant autocorrelations at the seasonal lags (multiples of 4). 

Identification. The estimated acf and pacf for the original data appear 
in Figure C15.2. Although Box and Jenkins suggest calculating no more 
than n/4 autocorrelations, we stretch that guideline slightly by finding 12 
autocorrelations. This should provide a clearer picture of the seasonal 
pattern by giving us three seasonal autocorrelations (at lags 4,8, and 12). 

The estimated acf decays to zero rather slowly suggesting that nonsea- 
sonal first differencing may be needed to induce a stationary mean. This is 
not surprising since inspection of the data shows that the data are trending 
upward. It is possible, however, that the seasonal pattern is obscuring the 
nonseasonal pattern: a large, positive autocorrelation at lag 4 could be 
positively correlated with the surrounding autocorrelations, thus preventing 
the acf from decaying rapidly. 

+ + + + + + + + + + + + + AUTOCORRELATIONS + + + + + + + + + + + + + 
+ FOR DATA SERIES: EXPORTS + 
+ DIFFERENCINO: 0 =AN - 1141.07 + 
+ D A T A C O U N T =  42 STD DEV - 260.459 + 

C& T - V K  LAO 0 
0.02 5. 20 1 t ..................... 
0.81 3.41 2 c 
0. 66 2. 24 3 c 
0. 67 2. 04 4 c 
0.53 1.49 5 c 
0.49 1.29 6 c 
0.38 0. 98 7 c 
0.30 0.95 8 c 
0.28 0. 69 9 c 
0 . a  0.67 10 c 
0. IS 0.35 11 c 

. . . . . . . . . . . . . . . . . . . . .  
o>>>>>>>>>>>>>l>> 
O>>>>>>>>>>>>>>>I> 
o>>>>>>>>>>>>> 3 
O>>>>>>>>>>>> I 
O>>>>>>>>>> 3 
O>>>>>>>>>> 3 
O>>>>>>> 3 
O>>>>>>> I 
O>>>> 3 

0. 17 0.40 12 r 0>>>3 3 
CHI-SQUMODo - 1%. 17 FOR DF - 12 

+ + + + + + + + + + + PARTIAL AUTOCORRELATIONS + + + + + + + + + + + 
c m  T - V K  LAG 0 
0. e2 5 . a  1 c O>>>>>>>l>>>>>>>>>>>> 
0.42 2. 74 2 c o>>>>>>> I>>> 

-0.m -1.51 3 c c<<<<<o 3 
0.21 1.35 4 

-0.14 -0.92 6 
0. 05 0. 34 7 
0. 13 0.81 8 

-0. 15 -1.00 9 
0.08 0.51 10 

-0.22 -1.39 11 
0.09 0.50 12 

-0. ia  -1.14 s 
c o>>>>> 3 
c cccco 3 
c <c<co 3 
c O> 3 
t o>>> 3 
c cc<co 3 
t O>> I 
t ccccco 3 
c 0>> 3 

Figure (35.2 Estimated acf and pacf for the realization in Figure (35.1. 



Exports 537 

We should get a better picture of the seasonal pattern by examining the 
acf and pacf of the first differences. The acf in Figure C15.3 provides 
evidence that there is a nonstationary seasonal pattern in the data: the 
autocorrelations at lags 4, 8, and 12 have r-values greater than 1.25 and they 
do not decay at all. The autocorrelations at lags 4 and 8 are equal in value 
and the coefficient at lag 12 is larger than those at lags 4 and 8. Apparently 
seasonal first differencing (length four) is needed. This is supported by 
inspection of the first differences plotted in Figure C15.4. For example, all 
the thirdquarter observations lie below the calculated mean, while all but 
one of the fourth-quarter observations lie above the mean. 

The acf and pacf after seasonal differencing but without nonseasonal 
differencing (Figure C15.5) indicate that a seasonal element remains in the 
data: the negative acf spike at lag 4 has a large absolute r-value. The acf cuts 
off to zero at lags 8 and 12, suggesting that the remaining seasonal pattern is 
MA(l),. This is confirmed by the tendency of the estimated pacf to decay 
on the negative side at lags 4, 8, and 12. 

+ + + + + + + + + + + + + AUTOCORRELATIONS + + + + + + + + + + + + + 
+ FOR DATA SERIES: EXPORTS + 
+ DIFFERENCING: 1 HEAN = 20. 0268 + 
+ DATA COUNT = 41  STD DEV = 130. 585 + 
COEF T-VAL LAG 0 
-0. 63 -4. 03 1 <<<C<<<<<<<C<C<C<C<~<O 3 

0 . 4 2  2.00 2 c O>>>>>>>>>>>>>I 
-0. 49 -2 14 3 c <c:<<<<<<<c<<<<<o 3 
0. 41 1. 63 4 c o>>>:>:>>>>>>>>>> 3 

-0. 31 -I 15 5 c <iCi<<C<<<O 3 
0 20 0. 70 6 c O>>>>>>> 3 

-0 28 -1 00 7 c <‘:C.:<<<<<O 3 
0 41  1 42 8 c 0>:;.;>>>>>>>>>>> 3 

-0 41  - 1  37 9 c <<.:<<<<.:<<<<<<0 3 
0 40 1 28 10 c O>>>>>>>>>>>>> 3 

- 0 . 4 3  - 1  32 11 C 
0 . 4 9  1 43 12 c +>>.?,>.?->>T>>>>>> 

<<<:<<<t:<<<<<<<o 3 
3 o ~ > > -  - .  . . . . 

CHI-SOUARED+ = 107 81 FOR DF = 12 

+ + + + + + + + + + PARTIAL AUTOCORRELATIONS + + + + + + + + + + + 
COEF T-VAL LAG 0 

-0. 63 -4 03 1 <(<<<:,<.;.:<;<[ <-;.-;;<;r:<<<o 3 
0 . 0 4  0 . 2 3  2 t 0, 3 

-0 35 -2.26 3 .:<c <.:<<<<c<<o 3 
-0. 05 -0. 31 4 c C<O 3 
-0 .04  -0. 23 5 c ( 0  3 
-0. 18 -1 15 6 c .:<<<c<o 3 
-0. 28 -1 76 7 c<i<<<c<<<o I 
0 . 1 9  1 .20  8 c O>>;,>>> I 

-0.23 -1 48 9 c cc<<<<<<o 3 
0.03 0. 18 10 c O> 3 

-0. 07 -0. 44 11 c <<0 3 
0.06 0 42 1 2  c 0>> 3 

F w e  C153 Estimated acf and pacf of the first differences in Figure C15.4. 
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Figure C15.4 First differences ( d  = I )  of the export data. 
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+ + + + + + + + + + + + + AUTOCORRELATIONS + + + + + + + + + + + + + 
+ FOR M T A  SERIES: EXPORTS + 
+ DIFFERENCINC:  4 EhAN = 75. 4263 + 
+ DATA COUNT = 38 STD M V  = 121.859 + 
C M F  
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Figure C15.5 Estimated act and pacf of the seasonal differences (D = 1) of the 
export data. 

Th~s  acf has a surprising characteristic: it decays rapidly to zero, suggest- 
ing that nonseasonal first differencing is not required. This is unexpected 
considering the apparent upward trend of the data in Figure C15.1. Figure 
C15.6 is a plot of the seasonally differenced data. These numbers seem to 
fluctuate around a fixed mean, reinforcing the evidence from the acf that 
only seasonal differencing is needed to induce a stationary mean. 

It is difficult at this point to clearly identify an appropriate model for the 
nonseasonal part of the data. The acf in Figure C15.5 suggests an MA(1) 
because of the spike at lag 1 with a cutoff to zero at lag 2. However, the 
large autocorrelation at lag 4 could be correlated with the surrounding 
autocorrelations, distorting our picture of the nonseasonal pattern. There- 
fore, we attempt to remove the seasonal pattern first and let the residual acf 
suggest an appropriate form for the nonseasonal part of the model. We 
choose an ARIMA(0, 1, 

(1 - B4)Z, = ( 1  - e44B4)a, 

model for the seasonal part of the data: 

(C15.1) 
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Figure C15.6 Seasonal differences ( D  = 1) of the export data. 

Estimation and diagnostic checking. Estimation and diagnostic-checking 
results for (C15.1) in Figure C15.7 are discouraging. The estimated coeffi- 
cient is insignificant and the residual acf has a large spike remaining at lag 
4. This is puzzling since the acf and pacf in Figure C15.5 provide strong 
evidence that a 6, coefficient is needed. 

Inspection of the seasonally differenced data in Figure C15.6 provides a 
clue. The mean of the series is about 75; this could be significantly different 
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+ + + + + + + + + +€COSTAT UNIVARIATE B-J  RESULTS+ + + + + + + + + + 
+ FOR DATA SERIES EXPORTS + 
+ DIFFEREN.CING 4 DF = 37 + 
+ AVAILABLE DATA = 38 BACKCASTS = 4 TOTAL = 42 + 
+ USED TO FIND SSR DATA = 38 BACKCASTS * 4 TOTAL = 42 + 
+ (LOST DUE TC PRESENCE OF AUTORECRESSIVE TERIlS. 0 )  + 

COEFFICIENT ESTIMATE STD ERROR T-VALUE 
THETA+ 4 0 038 0. 164 0 23 

ADJUSTED RtlSE = 145 054 HEMI ABS X ERR = 10 00 

++RESIDUAL ACF++ 
COEF T-VAL LAG 0 
0 35 2 17 1 c O>>>>>>>>>>>>>>>I>> 
0 19 1 04 2 c O>>>>>>>>> 1 

-0 21 -1 12 3 c <<c<<<<<<<o 1 
-0 46 -2 40 4 C<iC((~:~~:C(C<<(<.~~<<<C<CO 3 
-0 11 -0 48 5 c c<<<<o 1 
-0 17 -0 76 6 C <<~:<cc<<o 1 
0 2 3  1 0 4  7 C O>>>>>>>>>>>> 1 
0 1 0  0 4 4  e c  O>>>>> 3 
0 1 4  0 6 0  9 C O>>>>>>> 3 
0 07 0 28 10 t O>>> 1 

CHI-SQUARED+ = 24 35 FOR DF = 9 

Figure C15.7 Estimation and diagnostic-checking results for model (C15.1) 

from zero when the data range from only - 239.8 to 352.1. When the mean 
of a differenced series is nonzero, it implies that the data contain a 
deterministic trend. (This topic is introduced in Chapter 7.) This conclusion 
is reinforced by the behavior of the original data in Figure C15.1. We have 
not accounted for the upward trend in that series with nonseasonal dif- 
ferencing; the acf in Figure C15.5 drops quickly to zero, implying that 
nonseasonal differencing is not needed. Yet something must appear in the 
model to explain the upward drift of the original data. Apparently, a 
deterministic trend is called for. As discussed in Chapter 7 a deterministic 
trend may be included in a model by expressing the differenced variable wf 
in deviations from its mean p ,  rather than assuming (as we usually do with 
data outside the physical sciences) that p, = 0. Thus an alternative to 
(C15.1) is 

(C15.2) 

where G, is the seasonal differences of z, expressed in deviations from the 
mean p,. 

(C15.2) gives good results. Figure C15.8 shows that both b4 and the 
constant are significant. (The estimated constant is equal to the estimated 
mean fi, since there are no AR terms present.) The residual acf shows no 
evidence of a remaining seasonal pattern. 
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+ + + + + + + + + +€COSTAT UNIVARIATE B-J RESULTS+ + + + + + + + + + 
+ FOR DATA SERIES: EXPORTS + 
+ DIFFERENCING: 4 DF =36 + 
+ AVAILABLE: DATA = 38 BACKCASTS = 4 TOTAL .c 42 + 
+ USED TO FIND SSR: DATA = 38 BACKCASTS = 4 TOTAL = 42 + 
+ (LOST DUE TO PRESENCE OF AUTOAEQRESSIVE T E R f S :  0 )  + 

COEFFICIENT ESTIWTE STD ERROR T-VALUE 
THETA+ 4 0.895 0. 151 5. 91 
CONSTANT 82.1545 5.84458 14.0565 

M A N  82. 1545 5.04458 14.0565 

ADJUSTED RUSE = 100. 583 MEAN ABS Y. ERR = 7. 58 
CORRELATIONS 
1 2 

1 1 .00  
2 0 . 8 1  1.co 

++RESIDUAL ACF++ 
COEF T-VAL LAC 
0 . 4 8  2 .95  1 
0 .38  1 .93  2 
0 .12  0 . 5 5  3 
0 .05  0 . 2 2  4 
0. 15 0 . 6 8  5 
0. 05 0.22 6 

0.04 0 19 8 
0 .06  0 26 9 
0 . 0 6  0.28  10 

+RESIDUAL PACF+ 

0 .  19 0.88 7 

CHI-SQUARED+ = 

c 
c 

c 

c 
c 
c 
19. 53 FOR DF = B 

-0 
......................... 
O>>>>>>>>>>>>>>>>>>>l 
O>>>>>> 3 
0>> 3 
O>>>>>>> 3 
0>> 3 
O>>>>>>>>>> 3 
O>> 3 
O>>> 3 
O>>> 3 

COEF T-VAL LAC 0 
0 .48  2 . 9 5  1 c O>>>>>>>>>>>>>>>I>>>>>>>> 
0 .19  1 .18  2 c OX>>>>>>>>> 3 

-0. 16 -0. 99 3 c <:*:<<C<<<O 3 
-0.03 -0. 17 4 c (0  3 
0 .23  1 .41  5 

-0. 10 -0. 59 6 
0. 14 0 .87  7 

-0.09 -0. 54 8 
-0.01 -0. 07 9 

0 . 0 9  0 . 5 5  10 

o>>>>>>>>>>> 3 
CC<CCO 3 

O>>S>>>> 3 
c<<co 3 

co 3 
O>>>> 3 

Figure C15.8 Estimation and diagnostic-checking results for model (C15.2). 

Further identification. The residual acf in Figure C15.8 provides infor- 
mation for identifying the nonseasonal pattern. As pointed out in Chapter 
12, filtering out the seasonal pattern sometimes permits the residual acf to 
give a better indication of the remaining nonseasonal pattern. In th is  case 
the residual acf in Figure C15.8 calls for a different nonseasonal structure 
than is suggested in the acf in Figure C15.5. The latter has a single spike at 
lag 1, implying that an MA(1) describes the nonseasonal pattern. But the 
residual autocorrelations at lags 1 and 2 in Figure C15.8 both have 1-values 
larger than the practical warning level of 1.25; the acf then cuts off to zero 
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+ + + + + + + + + +ECOSTAT UNIVARIATE B-J  RESULTS+ + + + + + + + + + 
+ FOR DATA SERIES EXPORTS + 
+ DIFFERENCING 4 DF - 35 + 
+ AVAILABLE DATA = 38 BACKCASTS = 5 TOTAL = 43 + 
+ USED TO FIND S S R  DATA = 38 BACKCASTS * 5 TOTAL = 43 + 
+ (LOST WE TO PRESENCE OF AUTORECRESSIVE TERMS 0 )  + 

COEFFICIENT ESTIMATE STD ERROR T-VALUE 
THETA 1 -0 331 0 159 -2 08 
THETAS 4 0 671 0 150 5 8 1  
CONSTANT 81 6018 5 61943 14 5214 

MEAN 81 6018 5 61943 14 5214 

ADJUSTEE RMSE = 92 2867 MEAN ABS X ERR = 6 lE 
CDRRELATIONS 
1 a 3 

1 1 00 
2 0 02 1 00 
3 0 03 0 64 1 00 

++RESIDUAL ACF++ 
COEF T-VAL LAC O 
0 09 0 55 1 c o>: :\5 3 
0 36 2 23 2 c O>>?>>>>j;>>>>>>IY> 
0 01 0 03 3 t 0 3 

-0 02 -0 09 4 c co 3 
0 1 8  098 5 c o>> ::>;>>>> 1 
-0 07 -6 36 6 I: (CCO 3 
0 24 1 27 7 c O>>>>>>?>>>?> I 
-0 04 -0 21 8 c <a 3 
0 05 0 24 9 c O>> 3 
0 09 0 46 1 0  c O > i > > i  3 

CHI-SQUARED+ = 11 11  FOR DF = 7 

Figure C15.9 EsQmation and dmgnosbc-checking results for model (C15.4) 

at the remaining lags. Therefore, we represent the nonseasonal part of the 
data with an MA(2) model. Adding this to (C15.2) using the multiplicative 
form gives an ARIMA(0, 0,2)(0,1, 1)4: 

G, = ( I  - e , ~ ~ ) ( 1  - e,B - B ~ B * ) ~ ,  (C15.3) 

The residual autocorrelations at lags 1 and 2 in Figure C15.8 could be 
correlated with each other so that adding either 8, or 8,, but not both, to 
(C15.2) could clear up the residual pattern. The principle of parsimony 
dictates that we should not use two coefficients where one provides equally 
good results. Since the residual autocorrelation at lag 1 is the larger, we 
consider an ARIMA(O,O, IXO.1, 1)4 as an alternative to (C15.3): 

G, = ( I  - 8,B4)(l - B,B)o, ((35.4) 

Further estimation and diagnostic checking. Figure C15.9 shows that 
(C15.4) is not adequate. Although 8, is significant, the residual autocorrela- 
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+ + + + + + + + + +ECOSTAT UNIVARIATE B-J RESULTS+ + + + + + + + + + 
+ FOR DATA SERIES: EXPORTS + 
+ DIFFERENCING: 4 DF - 3 4  + 
+ AVAILABLE: DATA = 38 BACKCASTS 6 TOTAL = 44 + 
+ VSED TO FIND SSR: DATA = 38 BACKCASTS = 6 TOTAL = 44 + 
+ (LOST DUE TO PRESENCE OF AUTMIECRESSIVE TERMS: 0 )  + 

COEFFICIENT ESTIMATE STD ERROR T-VALUE 
THETA 1 -0.428 0. 159 -2.69 
THETA 2 -0. 460 0. 152 -3.02 
THETA. 4 0.893 0.150 5. 96 
CONSTANT 00. 72 6. 34420 12. 7233 

MEAN 80. 72 6. 34428 12. 7233 

ADJUSTED RMSE = 83. 7 MEAN ABS X ERR = 5. 38 
CORRELATIONS 
1 2 3 4 

1 1.00 
2 0.28 1 . 0 0  
3 -0. 31 -0 05 1.00 
4 -0. 18 -0.01 0.61 1. 00 

++RESIDUAL ACF++ 
COEF T-VAL LAC 0 

-0. 02 -0. 13 1 c co 3 
0. 03 0. 16 2 c O> 3 
0.08 0. 49 3 E O>>>> 3 

-0.01 -0. 04 4 c 0 3 
0. 09 0 .  54 5 c O>>>> 1 

-0.07 -0 43 6 c c<cco 3 
0.26 1. 58 7 c o>>>>>>>>>>>>> 3 

-0. 07 -0. 43 8 c <<c<o 3 
-0.02 -0. 13 9 c co 3 
0. 12 0.70  10 c O>>>>>> 3 

CHI-SQUARED. = 5.45 FOR DF = 6 

Figure C15.10 Estimation and diagnostic-checking results for model (C15.3). 

tion at lag 2 now has a larger t-value than before. This result brings us to 

The results in Figure C15.10 show that (C15.3) performs well. All 
estimated coefficients have absolute r-values well in excess of 2.0; the reader 
should check to see that all invertibility conditions are satisfied. The 
estimated coefficients are not too highly correlated. The residual acf is 
consistent with the hypothesis that the shocks in (C15.3) are independent; 
all absolute r-values are less than the relevant warning levels and the 
chi-squared statistic is satisfactory. The residual plot in Figure C15.11 does 
not suggest problems for the model, though the large residual for the first 
quarter of 1965 calls for an investigation to see if that observation is 
recorded correctly. 

(C15.3). 
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EXPORTS RESIDUALS 
--DIFFERWIN: 4 
--EACH VERTICAL AXIS INTERVAL = 8.45926 
Low = HEAN- HIGH - 

-244.063 9.10936 141.981 
TI* . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  VALVE 
59 

60 

61 

62 

63 

64 

65 

66 

67 

60 

11 
21 
31 
41 
11 
1 1  
31 
41 
11 
21 
31 
41 
11 
21 
31 
41 
11 
21 
31 
41 
11 
21 

I -113.925 
-68.4357 
23. 5565 

-8. 17223 

116.238 
-27.0809 

16. 539 
-19. 1029 
77. 4496 
80.7574 
68. 0144 

-7.79508 
-3.08902 
82. 4925 
35. 0207 
14. 3247 
64. 7472 
94. 9572 

-37. 7965 

n. 2971 

4 4 1  
1-46 

31 -3. 99871 
41 I M 141.981 

21 I-+- 40. 7458 
1 1 - =  I -2M. 063 Q 

31 I I* 94. 1373 
99. 4911 f .'* 2.44476 

41 

-1 13.307 
11.82% 

-66. 7322 

11 
21 

-12.3455 
-31. 3418 

31 
41 
11 

-91. 2659 s*/ i -31. 7325 

21 
31 
41 

-72. 553 ---L 13. 5369 
11 
21 

*<I <: 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

e THIS RESIDUAL FALLS OUTSIDE 2 STD M V  LIMIT 

Figure C15.11 Residuals from model (C15.3). 

FORXa!Sb 'ng. Forecasts from (C15.3) are shown in Table C15.1. They are 
calculated from the difference-equation form of (C15.3) as discussed in 
Chapter 10. That form is 

2,  z,-4 + - 6 4 d 1 - 4  - d,d , - ,  - 8241-2 + d,64d,-5 + 8 2 6 4 d r - 6  

(C 15.5) 
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Table C15.1 Forecasts from model (C153) 

Future Percent 
Forecast 80% Confidence Limits Observed Forecast 

Time Values Lower Upper Values Errors 

68 3 1450.9571 1343.8211 1558.0931 n.a.O n.a. 
4 1648.0558 1531.5322 1764.5793 n.a. ma. 

69 1 1592.8197 1466.3237 1719.3157 n.a. n.a. 
2 1662.6479 1536.1519 1789.1439 n.a n.a. 
3 1556.2652 1429.2463 1683.2840 n.a  n.a. 
4 1723.2240 1596.1098 1850.3383 n.a. ma. 

70 1 1673.5397 1546.3154 1800.7640 ma. ma. 
2 1743.3679 1616.1436 1870.5922 n.a. n.a. 

an.a. = not available. 

From origin z = 42 the forecasts for lead times 1 = 1 and 2 are 

i42(1) = 1299.3 + 80.72 - 0.893( -91.2659) + 0.428(13.5369) 

+0.460( -72.553) + (-0.428)(0.893)( -31.3418) 

+ (-0.460)(0.893)( - 12.3455) 

= 1450.9571 

i4*(2) = 1485.1 + 80.72 - 0.893( -31.7325) + 0.428(0) 

+ 0.460( 13.5369) + ( - 0.428)(0.893)( - 91.2659) 

+( -0.460)(0.893)( -31.3418) 

= 1648.0558 

(C15.5) shows how the model captures both the seasonal pattern and the 
upward trend in the data. The first term ( . z ~ - ~ )  in (Cl5.5) starts each 
forecast from the same quarter one year earlier to begin at the proper 
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+ + + + + + + + + + + + + AUTDCORRELATIONS + + + + + + + + + + + + + 
+ FOR DATA SERIES EXPORTS + 
+ D I F F E R E N C I N G  4 1 MEAN = 5 78919 + 
+ DATA COUNT = 37 STD D E V  = 137 163 + 

COEF T-VAL LAG 0 
-0 37 -2 24 1 CCC<i<<<<<<C<<<<CCO 3 

0 21 1 1 1  2 c O>>>>>>>>>> 1 
-0 09 -0 45 3 c <<C<O 3 
-0 46  -2 37 4 <<<c<~:i:~.:<<<<<;<c<<<<<o 3 

0 3 4  1 5 4  5 c o>:>>>>>>>>>>>>>>> 3 
-0 36 - 1  54 6 E : c,tc<c<i<~C'ec<~iCO 1 
0 3 8  1 5 3  7 c  o>>>>>>>>>>>>>>>>>>> 1 

-0 14 -0 52 0 <i<<<<<O 
0 05 0 21 9 O>>> 
0 12 0 45 10 O>>>>>> 

0 20 0 71 12 D>>>>>>> >>> 
-0 29 - 1  07 11 ,:.;;<<.: .:<< :c<<<o 

CHI-SQUARED, zs 43 31 FOR DF 5 12 

+ + + + + + + + + + + P A R T I A L  AUTOCORRELATIONS + + + + + + + + + + + 
COEF T-VAL LAG 0 

-0. 37 -2 24 1 << c <.:<:i.:<<cio 3 
0 .08  0 50 2 
0.02 0 09 3 

-0. 50 -3. 53 4 < 
0 . 0 4  0 25 5 
-0 13 -0. 70 6 
0.10 0. 59 7 

-0 .24  -1 .44  0 
0.08 0. 51 9 
0.01 0 . 0 7  10 

-0.06 -0. 34 11 
-0. 19 -1 .  14 12 

c O>>> 1 
c O> 3 

:<-:< :<<<< C <C'ii<<<;<o 3 
c O> 1 
c <<i<O 3 
c O>>> 1 
C i<<<<<<<O 3 
c O>>> 3 
c 0 3 
c <<0 I 
c C<<<C<O 3 

Figure C15.12 Estimated acf and pacf for the export data after seasonal and 
nonseasonal differencing (D = 1 and d = I) .  

overall seasonal level. Then the estimated constant term raises the forecast 
by 80.72 units each time period to account for the upward trend. The rest of 
the terms account for the remaining seasonal and nonseasonal patterns, 
including the interaction between the two represented by the multiplicative 
terms. 

An alternative model. Suppose we ignore the seasonal pattern at the 
beginning of our analysis and start from the acf and pacf in Figure C15.2. 
They are consistent with an AR(2): the acf decays and the pacf has two 
significant spikes at lags 1 and 2. Estimation results (r-values in parentheses) 
are 

( 1  - 0.3868 -0.616B2)f, =: 8, 
(2.97) (4.66) 
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+ + + + + + + + + +€COSTAT UNIVARIATE 8-J RESULTS+ + + + + + + + + + 
+ FOR DATA SERIES: EXPORTS + 
+ DIFFERENCING: 4 1  DF = 35 + 
+ AVAILABLE: DATA = 37 BACKCASTS = 12 TOTAL = 49 + 
+ USED TO FIND SSR: DATA = 37 BACKCASTS = 11 TOTAL = 48 + 
+ (LOST DUE TO PRESENCE OF AUTORECRESSIM TERMS: 1) + 

COEFFICIENT ESTIHATE STD ERROR 1-VALUE 
PHI 1 -0.374 0. 154 -2.44 
THETA* 4 0. 960 0.  107 8. 98 

ADJUSTED RMSE = 07. 5628 HEAN ABS X ERR = 5. 61 
CORRELATIONS 
1 2 

1 1.00 
2 -0. 07 1. 00 

++RESIDUAL ACF++ 
COEF 1-VAL LAC 0 
-0. 09 -0 53 1 c<<c<c<<co 
0.01 0.08 2 

-0. 21 -1.25 3 
-0. 11 -0. 65 4 

0 .  13 0.73 5 
-0.00 -0. 46 4 

O . 2 Q  1.00 7 
-0.00 -0.43 8 
0.02 0.00 9 
0. 14 0 .72 10 
CHI-SQUARED+ * 

O> 
<cc<<<ccccc<<~<<ccc<<o 

c<c<<c<<<<co 

<<<<<cc<o 

c<ccccc<o 

O>>>>>>>>>>>>> 

O>>>>>>>>>>>>>>>>>>>> 

0>> 
O>>i>>>>>>>>>>> 

6. 85 FOR DF = 0 

Figure C15.13 Estimation and diagnostic-checking results for model (C15.6). 

Since 6, and G2 sum to 1.002 the model is nonstationary and first 
differencing is required. We have already seen from the estimated acf for the 
first differences in Figure C15.4 and the plot of the first differences in 
Figure C15.5 that seasonal differencing is warranted. 

Seasonal and nonseasonal differencing together produce the estimated 
acf and pacf in Figure C15.12. The acf spike at lag 4 followed by a cutoff at 
lags 8 and 12 calls for an MA(l), seasonal model. The decaying pacf values 
at the seasonal lags confirm this. The alternating spikes at lags 1,2, and 3 in 
the acf and the single spike at lag 1 in the pacf suggest an AR(1) with 
+, < 0. Our model is 

(1  - + , B ) ( I  - B)(1 - B4)f,= (1 - e4B4)0, (C15.6) 

Estimation and diagnostic-checking results (Figure C 15.13) show that 
(C15.6) is acceptable, though the RMSE and chi-squared are both slightly 
larger than those for (C15.3) in Figure C15.10. 

F i d  comments, We have found two adequate models, (C15.3) and 
(C15.6). The key difference between them is that (C15.3) accounts for the 
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trend in the data with a deterministic drift represented by the constant term 
= 80.72. But ((35.6) involves first differencing as well as seasonal dif- 

ferencing and has no constant term. Any drifting in the forecasts derived 
from (C15.6) will be purely stochastic. 

It is unlikely that data series in economics or other social sciences contain 
truly deterministic trend factors. However, a model is not necessarily the 
truth: a model is only an imitation of reality. If a model with a deterministic 
trend component provides a superior representation of the behavior of a 
data series, then we may use that model, keeping in mind that we have 
merely found a way of describing the behavior of the available data; we 
need not believe that the underlying process contains a truly deterministic 
trend element. 

In the present case we can rationalize the deterministic component of 
(C15.3) as representing a growth factor resulting from inflation or from the 
long-term growth of world trade as economies continue to expand over the 
years. This result would be even more defensible if the model were in log 
form. Then a constant represents growth by a fixed percentage amount 
rather than growth by a fixed absolute amount per time period. In either 
case, a deterministic trend is more defensible in this instance than it is in 
Case 6. There we find a significant negative constant after first differencing, 
but this implies that the price of AT & T stock trends downward by a fixed 
amount each week; this has no sensible long-term interpretation. 

If we dislike the notion that the data contain a deterministic growth 
factor, we can turn to model (C15.6). Its forecasts are not tied to any 
deterministic element, and it fits the data nearly as well as (C15.3). The 
reader can experiment with the idea of a deterministic trend by modeling 
the data in Case 9 using only seasonal differencing. 



TABLES 

Table A Snnlent’s r-disbibution 

The tabled values are two-tailed values f( a; P) such that 

prob{)r, variatel > r (  a; v)} = a 

The entries in the table were computed on a CDC Cyber 172 computer at the 
University of Minnesota using IMSL subroutine MDSTI 

V 0.200 0.100 0.050 0.010 0.001 

1 3.08 
2 1.89 
3 1.64 
4 1.53 
5 1.48 
6 1.44 
7 1.41 
8 1 240 
9 1.38 

10 1.37 
11 1.36 
12 1.36 
13 1.35 
14 1.35 
15 I .34 

6.3 1 
2.92 
2.35 
2.13 
2.02 
1.94 
1.89 
1.86 
1.83 
1.81 
1.80 
1.78 
1.77 
I .76 
1.75 

12.71 
4.30 
3.18 
2.78 
2.51 
2.45 
2.36 
2.3 1 
2.26 
2.23 
2.20 
2.18 
2.16 
2.14 
2.13 

63.66 
9.92 
5.84 
4.60 
4.03 
3.71 
3-50 
3.36 
3.25 
3.17 
3.1 1 
3.05 
3.01 
2.98 
2.95 

636.62 
31.60 
12.92 
8.6 1 
6.87 
5.96 
5.41 
5-04 
4.78 
4.59 
4.44 
4.32 
4.22 
4.14 
4.07 
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Table A (Conlinrred) 

a 

Y 0.200 0.100 0.050 0.010 0.001 

16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
60 
70 
80 
90 

100 
120 
m 

I .34 
1.33 
I .33 
1.33 
1.33 
1.32 
1.32 
1.32 
1.32 
1.32 
1.31 
1.31 
1.31 
1.31 
1.3 I 
1.31 
1.31 
1.31 
1.31 
1.31 
1.31 
1.30 
I .30 
1.30 
1.30 
1.30 
1.30 
1.30 
1.30 
1.30 
1.30 
1.30 
I .30 
I .30 
1.30 
1.30 
1.29 
1.29 
1.29 
I .29 
I .29 
1.28 

1.75 
I .74 
1.73 
1.73 
1.72 
1.72 
1.72 
1.71 
1.71 
1.71 
1.71 
1.70 
1.70 
1.70 
I .70 
1.70 
I .69 
1-69 
1.69 
1.69 
1.69 
1.69 
I .69 
1.68 
1.68 
I .68 
1.68 
I .68 
I .68 
1.68 
1.68 
1.68 
I .68 
I .68 
I .68 
1.67 
I .67 
I .66 
1.66 
I .66 
1.66 
1.64 

2.12 
2.1 1 
2.10 
2.09 
2.09 
2.08 
2.07 
2.07 
2.06 
2.06 
2.06 
2.05 
2.05 
2.05 
2.04 
2.04 
2.04 
2.03 
2.03 
2.03 
2.03 
2.03 
2.02 
2.02 
2.02 
2.02 
2.02 
2.02 
2.02 
2.01 
2.01 
2.01 
2.0 1 
2.0 1 
2.01 
2.00 
I .99 
I .99 
I .99 
I .98 
I .98 
I .96 

2.92 
2.90 
2.88 
2.86 
2.85 
2.83 
2.82 
2.8 1 
2.80 
2.79 
2.78 
2.77 
2.76 
2.76 
2.75 
2.74 
2.74 
2.73 
2.73 
2.72 
2.72 
2.72 
2.7 1 
2.71 
2.70 
2.70 
2.70 
2.70 
2.69 
2.69 
2.69 
2.68 
2.68 
2.68 
2.68 
2.66 
2.65 
2.64 
2.63 
2.63 
2.62 
2.58 

4.01 
3.97 
3.92 
3.88 
3.85 
3.82 
3.79 
3.77 
3.75 
3.73 
3.7 1 
3.69 
3.67 
3.66 
3.65 
3.63 
3.62 
3.61 
3.60 
3.59 
3.58 
3.57 
3.57 
3.56 
3.55 
3.54 
3.54 
3.53 
3.53 
3.52 
3.5 1 
3.5 1 
3.5 1 
3.50 
3.50 

3.44 
3.42 
3.40 
3.39 
3.37 
3.29 

3.46 

Source: 
New York, 1980. Reprinted by permission. 

Sanford Weisberg, Applied bneur Regression, John Wiley & Sons, 
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Table B x2 critical points 

Critical 
point 

x' 

- 

5 
1 
2 
3 
1 

5 
6 

8 
9 

10 
I 1  
12 
13 
14 

15 
16 
17 
18 
19 

20 
21 
22 
?3 
24 

25 
26 
27 
28 
?9 

30 
*o 
50 
60 

70 
80 
w 
00 

, 

- 

.14N 

1 .Y2 
2.77 
4.11 
5.39 

6.63 
i .&I 
9.01 

10.2 
11.4 

12.5 
13.3 
14.8 
16.0 
li.1 

ia.2 
19.4 
20 5 
? I  .6 
22.7 

13.8 
24.9 
26.0 
27.1 
28.2 

29.3 
30.4 
31.5 
32.6 
33 7 

34.8 
45.6 
56.3 
67.0 

i i . 6  
88.1 
98.6 

109 

,100 

2.71 
4.61 
6.25 
7.78 

9.24 
10.6 
12.0 
13.4 
14.7 

16.0 
17.3 
185 
19.8 
L'1.l 

22.3 
23.5 
24.8 
26.0 
?7.2 

28.4 
29.6 
30.8 
32.0 
33.? 

34.4 
35.6 
36.i 
37.9 
39.1 

40,3 

63.2 
74.4 

85.5 
96.Q 

51 .a 

108 
118 

,025 

j.02 
7.38 
9.35 

1 1 . 1  

12.8 
14.4 
16.3 
I7 5 
19.0 

m.5 
1'1.9 
23.3 
24.7 
26.1 

27.5 
28.8 
30.2 
31.5 
32.9 

34.2 
35.5 
36 8 
3s. I 
39.4 

-HI6 
41.9 
43.2 
44.5 
45.7 

47.0 
59.3 
i l .4  
83.3 

95.0 
10; 
I18 
I30 

.OlG 

6.63 
9 7 1  

11.3 
13.3 

15.1 
15.8 
18.4 
?O. I 
2i .7  

23.2 
24 7 
26.2 
2 7 . i  
29. I 

30.6 
39.0 
33.1 
34,8 
36.2 

37 6 
38.Y 
40 3 
4 I .6 
3y.0 

41.3 
45.6 
4y.0 
48.3 
49.6 

50 a 
6 3 . i  
76.3 
88.4 

100 
1 I ?  
I24 
136 

7.88 
10.6 
12.8 
14 9 

10.7 
18.5 
20.3 
22.0 
23.6 

25.L' 
26.8 
28.3 
29.8 
31.3 

32.8 
34.3 
35.7 
37.2 
38.6 

a . 0  
41.4 
42.8 
w.2 
45.6 

46.9 
48.3 
49.6 
51.0 
52.3 

53.7 
66.8 
:as 
Y?.O 

1M 
I16 

140 
128 

10.8 
13.8 
16.3 
18.5 

20.5 
'72.5 
24 3 
26.1 
21.9 

"3.6 
31.3 
32.9 
34.5 
31.1 

37.7 
39 3 
40.8 
42.3 
32.8 

45.3 

48.3 
49.7 
41.2 

52.6 
54.1 
55.5 
56.4 
58.3 

59.7 
73.4 
86.6.; 
99.6 

112 
125 
137 
i 49 

%.a 

- 
Source: 
2nd ed., John Wiley & Sons, New York, 1979. Reprinted by permission. 
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Air-camer freight. case study, 44 I 
Alavi. A. S.. fn 20 
All. F. B.. 472,479 
Anderson. R. L.. 68 
Ansley. C. F.. fn 220 
AR process see Autoregressive process 
AR( 1) process, 47.58,95. 124, 142.318 
as moving-average process of infinitely 

theoretical autooorrelation functions, 56. 

theoretical partial autocorrelation func- 

high order. I08 

60. 123, 124. 142. 147.301 

tions, 56, 123. 124.30 I 

and quasi-periodic patterns, 386 
theoretical autocorrelation functions. 123. 

theoretical panial autocorrelation func- 

ARIMA models. see UBJ-ARIMA models 
ARIMA(O.I.1) model as exponentially- 

weighted moving average (EWMA), 
109.433.462 

ARIMA(p,d.q) notation. see Notation. 
ARIM4p.d.q) 

ARMA process. 127.391 
ARMA(1.1) process, 95,233 

AR(2) process, 95 

126.302 

tions. 123. 126.302 

theoretical autocorrelation functions. 123. 

theoretical partial autocorrelation func- 

Armed robberies (Boston), case study. 472 
ATBT stock price. case study. 167,402 
Athletic shoe production data. 6 
Autocorrelation coeffiaents: 

129,305 

tions. 123, 129.305 

estimated. 35 

correlation among, 64 
defined and explained. 35 
example of calculation. 36 
formula for calculation, 35 
maximum useful number. 37 
standard error. 68 
statistical significance, 38.68.82 
warning t-values. 308 

theoretical, 54. 140. 146 
Autocorrelation function (acf ): 

estimated, 37.58 
advantages, 38 
graphical representation. 37 
and stationarity of mean, 42. I08 
formed from es~maied  autoconelation 

sampling error, effects of, 60 

for AR( I )  process. 56.60. 123, 124,301 
for AR(2) process, 123. 126,302 
for ARMA(l.1) process. 123. 129.305 
derived for AR( 1) process. 142 
derived for MA( 1) process. 136 
for MA( I )  process, 57,64, 123. 127.303 
for MA(2) process. 123. 128.304 
for pure AR process. 55. 122 
for pure MA process. 55. I22 
see alto Identification stage 

coefficients. 37 

theoretical, 54 

Autocovariances, 52, 138. 144 
defined. 52 
for a stationary process, 54 
matrix representation. 53 
standardized. 53 

Autoregressive (AR) operator: 
nonseasonal. 99 
seasonal. 280 
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Autoregressive (AR) process. 48. 122 
algebraic representation. 48 
defined and explained. 48 
theoretical autocorrelation functions. 56. 

60, 122. 123. 124. 126.301.302 
theoretical panial autocorrelation func- 

tions. 56.60. 122. 123. 124. 126. 301. 
302 

Backcasting. 220.283.326,454 
Backshift notation. %. 165 
Bartlett. M. S.. 64.68 
Bartlett’s approximation (to the standard 

error of the autocorrelation coefficient 
sampling distribution). 68.227 

Bootstrap forecasting. 10.242.285 
Boston armed robberies. case study. 175.472 
Box. G. E. P.. 4. 11. 17. fn 20.37. fn 48.63. 

81. fn 167. 186. 189. fn 193. fn 202. 
220. fn 228. fn 229. fn 240. fn 258.280. 
3 15.386.53 I 

Box-Cox transformation. 186 
Box-Pierce approximate chi-squared test. 

Business inveniories. change in. case study. 
fn 229 

315 

Chemical process. example of ARIMA 
representation. 107 

Chi-squared test applied to residual 
autoconelations. 228 

Cigar consumption. case study. 506 
Cleary. J. P.. 346 
Coal production. case study. 347 
Coefficients. autocorrelation. see Autocor- 

relation coefficients 
Coefficients. partial autocorrelation. see Par- 

tial autocorrelation coefficients 
Coefficients. estimated model: 

correlation among. 202 
estimation of. see Estimation stage 
invcrtibility. 133.285 
near-redundancy. 203 
stationariry requirements. 130.285.299 
statistical significance. 202 

Cogger. K. 0.. fn 114 
college enrollment. case study. 523 
Computer dating service. example of 

ARIMA representation. 107 

Conditional least squares (CLS) estimation 

Confidence intervals. see Forecasting 
Constant term. 48 

and deterministic trends, 186. 534 
relationship to mean in nonseasonal 

models. 101. 104. 138. 142 
Convergence test applied to coefficient 

estimates. 218 
Cooper. R. L.. 20 
Correlation among estimated model 

Covariance. formula. 77 
Cox. D. R.. 186 
Cumulative periodogram. fn 230 

Daniels. H. E.. fn 73 
Data. see Time-series data 
Davies. N.. 228 
Dependence. statistical. 8 
Derman. C.. fn 257 
Deterministic trend. 186 

procedure. 220 

coefficients. 202 

criteria for inclusion. 188 
example. 534 
statistical indication of. 188 
theoretical justifications for. 188 

Deutsch. S. J.. 472.479 
Deviations from the mean. 29 
Diagnostic checking stage. 18.87.91.224 

chi-squared test. 228. 320 
cumulative periodogram. fn 230 
examples. 320.329.335.353.373.473.499 
fitting subsets of data. 231 
forecasting history. 323 
illustrated. 234. 283 
overfitting. 230 
and reformulation of model. 233.334.343. 

residual autocorrelation function. 225 
residual plot. 230.32 1 
see also Residual autocorrelation 

coefficients 

354.361.375.379.396.460.499. 512 

Difference-equation form for forecasting. 241 
Differencing: 

nonseasonal. 23 
backshift notation. 165 
choosing appropriate degree. 166. 173. 

and deterministic trends. 186 
4 I I. 492 
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excessive. 166.300 
first-degree. 25 
and integration. 95. 166. 190 
and mean of a series. 28. 102. 165 
mechanics. 25.28. 164 

second-degree. 28. 164.41 1 

backshift notation. 279 
choosing appropriate degee. 279,450. 

first-degree. 274 
mechanics. 274 
purpose. 274 
second-degree. 279 

Differencing operator. 97. 101. 165 
Durbin. J.. fn 40. fn 228 
Durbin-Warson statistic. 262 

purpose. 25 

seasonal. 274.450.463 

492 

Econometric models. and ARlMA models, 

Efficient-markets hypothesis. 106 
Enrollment. college. case study. 523 
Estimation stage. 18. 86.9 I. 192 

backcasting. 220.283.326.454 
and closeness of model fit. 83.206.207 
examples. 318. 329. 335. 353. 373.473.499 
illustrated. 86.201.283 
and invertibility conditions. 133.285 
least-squares criterion. 193 
maximum likelihood criterion. 193 
and stationarity conditions. 130, 285 
see dso Coefficients: Estimated model; 

Nonlinear least-squares estimation 

26 I 

Expected value. 76 
Exponentially weighted moving-average 

(EWMA). as ARIMA model. 109. 
433.462 

Exports. case study. 534 

First differences. see Differencing 
Forecasting. interval. 240.255 

example of calculations. 256 
example of calculations with logarithmic 

data. 257 
Forecasting. point, 240 

bootstrap. 10. 242.285 
difference equation form for. 241 
example of calculations. 243 

example of calculations with logarithmic 

optimal nature of ARlMA results. 258 
random shock form for. 250 
variance and standard deviation. 253 

Fractional-seasonal lags. 282.291. 500.505 

Gauss-Newton estimation method. 200.210 
Gleser. L. J., fn 257 
Gradient estimation method. 210 
Granger. C. W. J.. fn 107,263 
Grid-search estimation method. 198 

data, 257 

Half-seasonal lag, 282.308, 500 
Hay. R. A.. 346.472.479 
Heating-degree days. data. 268.274 
Housing permits. case study, 369 

Identification stage. 18.68.85.88.273.282.289 
examples, 317,328,334, 351.369.441.472. 

see olso AR( 1)  proces: AR(2) process: 
492.512 

MA( I )  process: MA(2) process; 
ARMA( 1.1) process: Autocorrelation 
function (acff. theoretical; Panial auto- 
correlation func!ion (pacn. theoretical 

Implicit coefficients in multiplicative models. 
288.531 

independence. statistical. 8 
Integration of differenced data. 95. 166, 190 
intervention model, 345.455 
Inventories of business. change in. case study. 

Invertibility. 133,285 
315 

conditions for nonseasonal models. 134. 

conditions for seasonal models. 285 
estimation-stage check. 133 
formal mathematical condition. 15 1 
reawn for requirement, 135. 152 
unique correspondence between theoret- 

ical autocorrelation function and 
ARlMA process. 152 

299 

Jenkins. G. M.. 4. 11. 17. 20, fn 35. 37. fn 48. 
63. fn 73. 81. fn 167. 186. fn 189. 193. 
fn 202.220. fn 240. fn 258. 280. 315. 
386.534 

Joint probability function. 5 I 
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Least-squares estimation method. 193. 197. 
See also Nonlinear least-squara 
estimation 

Levenbach, H.. 346 
Ljung. G .  M.. 228 
Ljung-Box approximate chi-squared test. 

228 
Logarithmic transformation. 177.446 

confidence intervals for point forecasts 

point forecasts with. 257 
with. 257 

McCleary. R.. 346.472.479 
MA process. see Moving-average process 
MA(]) process. 47.63.95, 121. 136 
as autoregressive (AR) process of infinitely 

theoretical autocorrelation function. 57.64. 

theoretical partial autocorrelation func- 

high order, 104 

123. 127. 136.303 

tions, 57.64. 123. 127. 303 
MA(2) process. 95 

theoretical autocorrelation function. 123, 

theoretical partial autocorrelation function. 
128.304 

123. 128.304 
Machine tool shipments. case study, 492 
Mansfield. E., fn 38. fn 262 
Markov process, 142 
Marquardt D. W., fn 200.209,283 
Marquardt's compromise. 200,209,283 
Maximum likelihood estimation criterion. 

Mean. 14. 109 
193 

of a differenced series. 102 
of a process, I I 
of a realization. 14 
and stationarity. see Stationarity. mean 

Mean absolute percent error (MAPE). 492 
Mixed process. 95. 127 

and coefficient near-redundancy. 203 
theoretical autocorrelation functions, 123, 

theoretical partial autocorrelation func- 
129.305 

tions. 123. 129.305 
Model. see UBJ-ARIMA model 
Monte Carlo methods. fn 220 
Moving Average (MA) process. 48. 125 

algebraic representation, 48 
defined and explained. 48 

theoretical autocorrelation functions. 57. 
64. 122. 123. 127. 128.303.304 

theoretical partial autocorrelation func- 
tions. 57. 122. 123. 127, 128.303.304 

Moving-average operator. 99 
Multiplicative seasonal models. 280.285 
Multivariate models, 20 

Naylor. T. H.. 20 
Near-redundancy of estimated model 

Sear-seasonal lag. 282.29 1,308,505 
Nelson. C. R.. 20. fn 257 
Newbold. P.. fn 107. fn 220.228. 263 
Nonlinear least-squares estimation, 197 

algorithm for. 198.210 
conditional and unconditional. 220 
Gauss-Newton method. 200.210 
gradient method, 210 
grid search method. 198 
Marquardt's compromise. 200,209 

Nonseasonal models. see UBJ-ARIMA 

Nonstationarity. homogeneous, 157 
Nonstationary mean. IS5. See also 

Nonstationary variance, 175. See uho 

Notation. 95 

coefficients. 203 

models 

Stationarity, mean 

Stationarity. variance 

ARIMA(p,d,q). 96 
backshift. nonseasonal, %, 165 
backshift. seasonal, 279 
compact backshift, 99,279 
differencing, 98. 101. 165 
expected value. 76 
see ako Operator 

Okin. I.. fn 257 
Operator: 

autoregressive, 99 
backshift. 96 
differencing, 97, 101 
moving-average. 99 

Optimality of ARIMA forecasts. 19.258 
Order. 95 

autoregressive (AR). determined from par- 
tial autocorrelation function. 55 

defined. 48 
moving-average (MA). determined from 

autocorrelation function. 55 
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Reformulating models. see nagnostic 

Residual autocorrelation coefficients. 225 
checking stage 

formula for calculating. 225 
standard error. 227 
statistical significance, 227 
warning t-values. 308 
see ako Diagnostic-checking stage 

Residual autocorrelation function. 87.225. 
See also Diagnostic-checking stage 

Residuals. 83. 194 
analyzing plot. 230.321 
autocorrelation among, 83 
outlying, 455 
see ako bagnostic checking stage 

Root-mean-squared error (RMSE), 206 

Overfitting. as diagnostic check 
Overtransfonnation of data. 166 

Pasimony. principle of. 8 1 
Partial autocorrelation coefficients: 

estimated. 38 
calculation of. 39 
statistical significance. 4 I. 73.82 
warning t-values. 308 

theoretical. 54 

estimated. 41.58 
Partial autocorrelation function (pacf ): 

defined and explained. 4 1 
formed from partial autocorrelation 

graphical representation. 41 
sampling error. effects of. 60 

for AR( 1) process. 56.60. 123. 124,301 
for AR(2) process, 123, 126,302 
for ARMA( 1.1) process, 123, 129.305 
for MA(]) process, 57.64, 123. 127.303 
for MA(2) process. 123. 128,304 
for pure AR process. 55. 122 
for pure MA process. 55. 122 
see alro Identification stage 

Parts availability, case study, 168 
Periodic models, see Seasonal (and periodic) 

models 
Periodogram. cumulative, fn 230 
Pierce. D. A.. fn 228 
Point forecasts, see Forecasting 
Process. defined and illustrated, 46.8 I 
Profit margin. case study. 463 

Quasi-periodic process. 386 
Quenouille. M. H.. fn 73 

coefficients. 4 I 

theoretical. 54 

Rail freight, case study. 391 
Random-shock form of ARlMA model. 250 
Random shock terms. 48 

assumptions, 49 
autocorrelation among, 225 

Random-wak model. 106.407 
Real estate loans, case study. 173,4 1 1 
Reah t ion :  

defined and illustrated. 46.8 1 
recommended size. 1 I ,  297 

Redundancy of estimated model coefficients. 
203 

Sample, see Realization 
Sampling distribution. 68 
Saving rate. case study. 328 
Seab, T. G.. 20 
Seasonal (and periodic) models, 265.439 

additive. 288 
differencing in, 274 
generating forecasts from, 285 
multiplicative. 280 

invertibility requirements. 285 
stationarity requirements. 285 

nature of data. 268 
theoretical autocorrelation functions. 270. 

272.289 
theoretical partial autocorrelation func- 

tions. 210.272.289 
Second differences. see Differencing 
Significance, statistical: 

estimated autocorrelation coefficients. 38. 

estimated model coefficients. 202 
estimated partial autocorrelation 

68.82 

coefficients. 41.73.82 
Stationarity : 

mean. 11.42 
conditions. 130. 285.299 
examples. 42. 167.369.39 I .  402.4 I I 
formal mathematical conditions. 150, 

practical checks. 133. 167.298 
reason for requirement. 132 
see uko Differencing 

fn 285 

variance. 14. 175 
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Stationarity (Conrinued) 
examples. 44 I .  472,506 
practical checks. 133.298 
reason for requirement. 132, 144 
see also Logarithmic transformation 

weak and strong. 52 
Statistical inference. 67 
Statistical significance. see Significance. 

statistical 
Subsets of a realization. fitting as a diagnostic 

check, 23 I 
Sum of quared residuals. 195 

Tiao. G. C.. In 20.346 
Time-series data. 6 

continuous. 10 
discrete, 10 
examples. 6 
graphical representation. 8 
notation. 6 
penodic. 268 
seasonal. I I ,  268 

Transfer function. fn 20 
Transformations of data. see Differencing: 

Logarithmic transformation 
Triggs. C. M., 228 
1-values: 

estimated autocorrelation coefficients. 70 
estimated model coefficients, 202 
estimated partial autocorrelation 

warning levels in estimated autocorrelation 

warning levels in estimated partial autocor- 

coefficients. 73 

functions. 308 

relation functions. 380 

UBJ modeling procedure, 16 
goal. 16 
nature. 8. 19 

overview of three stages. 17 

backshift notation. 96 
characteristics of good models. 81.200 
and econometric models. 261 
evaluation criteria. 80 
EWMA model as a special case. 109.433. 

forecasting accuracy, 10 
interpretations. 103. 105. 109 
ontimaiity of forecasts. 19.258 
requirements: 

UBJ-ARIMA models. 5. 167 

462 

data types. 10 
sample sizc.-I 1. 297 
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